2014年秋北师大版九年级数学上3.4探索三角形相似的条件(2)倍速课时学练课件
- 格式:ppt
- 大小:1.53 MB
- 文档页数:1
北师大版九年级数学(上)第四章探索三角形相似的条件(2)导学案4.6一、学习目标1.理解并掌握三角形相似的判定定理:“两边对应成比例且夹角相等的两个三角形相似”.2.会运用三角形相似的判定方法解决简单问题.二、温故知新1.下列说法中正确的个数是( )①所有的等腰直角三角形都相似;②有一个角是80°的两个等腰三角形相似;③有一个角是100°的两个等腰三角形相似;④有一个角相等的两个等腰三角形相似.A.4 B.3 C.2 D.12.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ADE沿DE 折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )A.12B.2 C.3 D.4三、自主探究:阅读课本p912—92探究(一)相似三角形的判定方法2:(1).我们已经有哪些判别两三角形相似的方法?(2)全等三角形有哪些判定方法?类比三角形全等的判定,你认为可能还有哪些方法能判定两个三角形相似?(请大胆猜想)请同学们证明:两边成比例且夹角相等的两个三角形相似.探究(二)如果△ABC与△A’B’C’两边成比例,且其中一边所对的角相等,那么这两个三角形一定相似吗?由此你能得到什么结论?如图,每组中的两个三角形是否相似?为什么?(1)2.5510657FEDCBA3.56(2)2743F EDCBA请同学们证明:两角对应相等的两个三角形相似。
例:如图,D、E分别是△ABC的边AC、AB上的点。
AE=1.5,AC=2,BC=3,且43ABAD=,求DE的长。
EDCBAFECBA四、随堂练习1.如图,(1)若=ABAE________,则△ABC∽△AEF;(2)若∠E=________,则△ABC∽△AEF。
2.如图,∠A=52°,AB=2.5,AC=5.5,△DEF中,∠E=52°,DE=7,EF=3,•△ABC•与△EDF 是否相似?为什么?52°73FE D2.552°5.5CBA3、如图所示,D 是△ABC 的边BC 上的一点,AB=2,BD=1,DC=3, 求证:△ABD ∽△CBA五:本课小结:本节课知识点:你还有什么收获或困惑?六.当堂检测:1.下列条件不能判定△ABC 与△ADE 相似的是( ) A .AE AD =AC AB B .∠B =∠ADE C . AE AC =DEBC D .∠C =∠AEDE D CBA2.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与右图中△ABC相似的是()(A) (B) (C) (D)3、如图,正方形ABCD 中,E 为AB 中点,BF =41BC ,那么图中与△ADE 相似的三角形有___________.课堂作业:P93: 习题4.6。
探索相似三角形相似的条件【学习目标】1.相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点进阶:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点进阶:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C把线段AB分成两条线段AC和BC两段,如果AC BCAB AC,那么线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. 要点进阶:512AC AB-=≈0.618AB(0.618是黄金分割的近似值,512-是黄金分割的准确值).2.作一条线段的黄金分割点:如图,已知线段AB,按照如下方法作图:(1)经过点B作BD⊥AB,使BD=21AB.(2)连接AD,在DA上截取DE=DB.(3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.要点进阶:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念例1、买西瓜为什么挑大个?思驰是一个好奇心很强的女孩,凡事都喜欢问个为什么.一天,思驰跟爸爸上街买西瓜.见爸爸选中的全是大个西瓜,她的小脑袋瓜又转开了:买西瓜为什么挑大个?“你这个沈老师的得意门生,能用学过的数学知识解决吗?”,爸爸“将”了思驰一军.回到学校,思驰就找来远兮一起商量.两人便开始了一番精彩对话.思驰:西瓜可以近似看成球体,可以应用球的体积公式.远兮:大西瓜和小西瓜的皮厚几乎相等.思驰:人们买瓜是为了吃瓤.远兮:瓤的体积在整个西瓜体积中占的比越大越好.思驰:两者的体积比如何求呢?经过一段时间的商讨,她们提出了解决方案:设瓜瓤(视为球体)的半径为r,瓜皮厚度为a,则瓤和整个瓜的体积比为:3333343()4()()3r r rr a r ar aππ==+++<1当a一定时,r值越大,(3()rr a+的值越接近于1,即西瓜越大,瓤与整个瓜的体积比越接近于1.思驰把解决方案讲给父亲听后,父亲充满了赞许之意,但父亲同时又提出了:你能用你正在学习的相似图形知识解决问题吗?等你学完图形的相似这一章后,我相信你还能找出新的方法的.问题:你认为生活中还有哪些与它类似的情形?类型二、相似三角形的三个判定定理例2.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.举一反三【变式】如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.例3、如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE的长为多少?举一反三【变式】如图,在△ABC于△ADE中,AB AEBC ED,要使△ABC于△ADE相似,还需要添加一个条件,这个条件是___________.例4、如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)举一反三【变式】如图,已知每个小正方形的边长均为1,△ABC与△DEF的顶点都在小正方形的顶点上,那么△DEF与△ABC相似的是()类型三、黄金分割例5.折纸与证明---用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)举一反三:【变式】如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.【巩固练习】一、选择题1. 如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B. 2个 C.3个D. 4个2.在△ABC中,D、E分别是边AB、AC上的点,下列条件中不能判定△AED∽△ABC是()A.∠ADE=∠C B.∠AED=∠B C. AD ACAE AB= D.AD DEAC BC=3.如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有()A.8对 B. 6对 C.4对D. 2对4.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC相似的个数有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点P是线段AB的黄金分割点,且PA>PB,若S1表示以PA为边的正方形的面积,S2表示长为AB、宽为PB的矩形的面积,那么S1()S2.A.>B.=C.<D.无法确定6.有以下命题:①如果线段d是线段a,b,c的第四比例项,则有a cb d .②如果点C是线段AB的中点,那么AC是AB、BC的比例中项.③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项.④如果点C是线段AB的黄金分割点,AC>BC,且AB=2,则AC=-1.其中正确的判断有().A.1个B.2个C.3个D.4个二、填空题7.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)8.在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.9.如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有个.10.如图,点D、E、F在△ABC三边上,EF、DG相交于点H,∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=50°,图中与△GFH相似的三角形的个数是.11.如图,在Rt△ABC中,AC=8,BC=6,直线l经过C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.12.如图所示,顶角A为36°的第一个黄金三角形△ABC的腰AB=1,底边与腰之比为K,三角形△BCD为第二个黄金三角形,依此类推,第2008个黄金三角形的周长为____________.三、解答题13. 如图,点P在平行四边形ABCD的CD边上,连接BP并延长与AD的延长线交于点Q.(1)求证:△DQP∽△CBP;(2)当△DQP≌△CBP,且AB=8时,求DP的长.14如图,已知△ABC 中,AB=,AC=,BC=6,点M 为AB 的中点,在线段AC 上取点N ,使△AMN 与△ABC 相似,求MN 的长.15.如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.。