连续时间LTI系统的频率特性及频域分析
- 格式:doc
- 大小:84.50 KB
- 文档页数:7
nGDOU-B—11—112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。
二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MA TLAB数值计算的方法并不能处理连续时间信号.然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号.MATLAB提供了大量生成基本信号的函数.比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。
为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图.三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot().(1)正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。
程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin (w*t+phi );plot(t,ft ),grid on ;axis ([0,3,-2。
2,2.2])title (’正弦信号’)(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。
连续时间L T I系统分析(总8页) -本页仅作为预览文档封面,使用时请删除本页-实验三 连续时间LTI 系统分析一、实验目的(一)掌握使用Matlab 进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab 进行连续时间LTI 系统的频率特性及频域分析方法1、学会运用MATLAB 分析连续系统的频率特性2、学会运用MATLAB 进行连续系统的频域分析(三)掌握使用Matlab 进行连续时间LTI 系统s 域分析的方法1、学会运用MATLAB 求拉普拉斯变换(LT )2、学会运用MATLAB 求拉普拉斯反变换(ILT )3、学会在MATLAB 环境下进行连续时间LTI 系统s 域分析二、实验条件装有MATLAB 的电脑三、实验内容(一)熟悉三部分相关内容原理(二)完成作业1、已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。
(1) 用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);符号法求解零输入响应: >> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi=dsolve(eq,cond);>> yzi=simplify(yzi)yzi =符号法求解零状态响应:exp(-2*t)*(4*exp(t) - 3)eq1='D2y+3*Dy+2*y=Dx+3*x';eq2='x=exp(-3*t)*heaviside(t)';cond='y=0,Dy=0';yzs=dsolve(eq1,eq2,cond);yzs=simplify(yzs)yzs =(exp(-2*t)*(exp(t) - 1)*(sign(t) + 1))/2图像如下:代码:subplot(211)ezplot(yzi,[0,8]);grid ontitle('ÁãÊäÈëÏìÓ¦')subplot(212)ezplot(yzs,[0,8]);grid ontitle('Áã״̬ÏìÓ¦')数值计算法:t=0::10;sys=tf([1,3],[1,3,2]);f=exp(-3*t).*uCT(t);y=lsim(sys,f,t);plot(t,y),grid on ;axis([0 10 ]);title('ÊýÖµ¼ÆËã·¨µÄÁã״̬ÏìÓ¦')(2)使用MATLAB命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;系统的冲激响应和阶跃响应(数值法):代码:t=0::10;sys=tf([1,3],[1,3,2]);h=impulse(sys,t);g=step(sys,t);subplot(211)plot(t,h),grid on;axis([0 10 ]);title('³å¼¤ÏìÓ¦')subplot(212)plot(t,g),grid on;axis([0 10 ]);title('½×Ô¾ÏìÓ¦'卷积积分法求系统的零状态响应:Ctsconv函数的定义:function[f,t]=ctsconv(f1,f2,t1,t2,dt)f=conv(f1,f2);f=f*dt;ts=min(t1)+min(t2);te=max(t1)+max(t2);t=ts:dt:te;subplot(221)plot(t1,f1);grid onaxis([min(t1),max(t1),min(f1)-abs(min(f1)*,max(f1)+abs(max(f1)*])title('f1(t)');xlabel('t')subplot(222)plot(t2,f2);grid onaxis([min(t2),max(t2),min(f2)-abs(min(f2)*,max(f2)+abs(max(f2)*])title('f2(t)');xlabel('t')subplot(212)plot(t,f);grid onaxis([min(t),max(t),min(f)-abs(min(f)*,max(f)+abs(max(f)*])title('f(t)=f1(t)*f2(t)');xlabel('t')求系统的零状态响应代码:dt=;t1=0:dt:10;f1=exp(-3*t1).*uCT(t1);t2=t1;sys=tf([1,3],[1,3,2]);f2=impulse(sys,t2);[t,f]=ctsconv(f1,f2,t1,t2,dt)如图,根据两图相比较,两种方法做出的零状态响应大体相同。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
实验报告
实验项目名称:运用Matlab进行连续时间信号卷积运算
(所属课程:信号与系统)
学院:电子信息与电气工程学院
专业: 10电气工程及其自动化
姓名: xx
学号: ************
指导老师: xxx
一、实验目的
1、学会运用MATLAB 分析连续系统的频率特性。
2、掌握相关函数的调用。
二、实验原理
1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即
)()()()()()(01
)(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得:
)(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++
101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( jω )称为系统的频率响应特性,简称系统频率响应或频率特性。
一般H ( jω )是复函数,可表示为:
)()()(ωϕωωj e j H j H =
其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ωϕ称为系统的相频响应特性,简称相频响应或相频特性。
H ( jω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。
H ( jω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。
MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( jω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。
H 返回w 所定义的频率点上系统频率响应的样值。
注意,H 返回的样值可能为包含实部和虚部的复数。
因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。
2、对于正弦激励信号)sin(0ϕω+t A ,当经过系统后,其稳态响应为:)](sin[|)(|00ωϕϕωω++t j H A
三、程序设计实验
1、试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。
已知 R = 10Ω,L = 2H ,C = 0.1F 。
2、已知系统微分方程和激励信号如下,试用MATLAB 命令求系统的稳态响应。
(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t
(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = − e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t
四、实验步骤
按照实验要求设计程序如下所示
1、 w=-20:0.001:20;
Fw=(2*sin(w).*exp(i*w))./w;
plot(w,abs(Fw));
-20-15-10-505101520
00.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。
已知
R = 10Ω,L = 2H ,C = 0.1F 。
2、w=-6*pi:0.001:6*pi;
b=5;a=[1,1,5];
H=freqs(b,a,w);
subplot(2,1,1);
plot(w,abs(H)),grid on
subplot(2,1,2);
plot(w,angle(H)),grid on
-20
-15-10-50510152000.5
1
1.5
2
2.5
-20-15-10-505101520
-4-2
2
4
(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t
3、t=0:0.01:20;
w=2;
H=(j*w)/(j*w+1.5);
f=cos(2*t);
y=abs(H)*cos(w*t+angle(H));
subplot(2,1,1);
plot(t,f);grid on
subplot(2,1,2);
plot(t,y);grid on
02468101214161820
-1-0.5
0.5
1
02468101214161820
-1-0.5
0.5
1
(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = − e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t
4、t=0:0.01:20;
w1=2;w2=5;
H1=(-j*w1+2)/(-[w1]^2+2j*w1+3);
H2=(-j*w2+2)/(-[w2]^2+2j*w2+3);
f=3+cos(2*t)+cos(5*t);
y=abs(H1)*cos(w1*t+angle(H1))+abs(H2)*cos(w2*t+angle(H2));
subplot(2,1,1);
plot(t,f);grid on
subplot(2,1,2);
plot(t,y);grid on
0246810121416182012
3
4
5
02468101214161820
-1-0.5
0.5
1。