电流互感器二次出线的极性要求及确定方法
- 格式:doc
- 大小:73.00 KB
- 文档页数:2
电流,互感器安装要求及二次,开路,故障的处理为什么电流互感器二次侧不能开路电流互感器安装要求及二次开路故障的处理 1.按图施工,接线正确,导线两端编号标记应清楚,标号范围符合规程要求。
2.二次回路导线或电缆,均应采用铜线,电流互感器回路导线截面不应小于2.5mm2,电压互感器回路导线截面不应小于1.5mm2.3.电流互感器出口第一端子排应选用专用电流端子,电流互感器不使用的二次绕组在接线板处应短路并接地。
4.盘、柜内二次回路导线不应有接头,控制电缆或导线中间亦不应有接头,如必须有接头时,应采用其所长的接线端子箱过渡连接。
5.电流互感器极性不能接反,相序、相别应符合设计及规程要求,对于差动保护用的互感器接线,在投入运行前必须测定两臂电流相量图以检验接线的正确性6.二次回路导线排列应整齐美观,导线与电气元件及端子排的连接螺丝必须无虚接松动现象,导线绑把卡点距离应符合规程要求。
7.二次回路对地绝缘应良好,电压回路和电流回路之间不应有混线现象。
8.电流及电压回路,均应在互感器二次侧出口处一点接地。
电压回路应有熔断器保护。
电流互感器即CT一次绕组匝数少,使用时一次绕组串联在被测线路里,二次绕组匝数多,与测量仪表和继电器等电流线圈串联使用,测量仪表和继电器等电流线圈阻抗很小,所以正常运行时CT是接近短路状态的。
CT二次电流的大小由一次电流决定,二次电流产生的磁势,是平衡一次电流的磁势的。
若二次开路,其阻抗无限大,二次电流等于零,其磁势也等于零,就不能去平衡一次电流产生的磁势,那么一次电流将全部作用于激磁,使铁芯严重饱和。
磁饱和使铁损增大,CT发热,CT线圈的绝缘也会因过热而被烧坏。
还会在铁芯上产生剩磁,增大互感器误差。
最严重的是由于磁饱和,交变磁通的正弦波变为梯形波,在磁通迅速变化的瞬间,二次线圈上将感应出很高的电压,其峰值可达几千伏,如此高的电压作用在二次线圈和二次回路上,对人身和设备都存在着严重的威胁。
【电力技术】电流、电压互感器极性的规定意义及检测方法1相量的起因大家知道,我们的发电机原理是导体切割磁力线产生电动势,而发电机定子绕组的三相排列是按照三相平均分360度排列的,随着发电机转子的转动,感应出三相电动势。
发电机顺时针转动,就产生了A相超前B相1200的相位,B相超前C相1200的相位,C相超前A 相1200的相位,发电机每分钟转动3000转,那么每秒转数就是3000/60秒=50周,这个就是我们说的50HZ的来由,反过来,每转一周的时间(T=1/f)就是1/50=0.02秒就是20毫秒,也就是说完成一个360度的变化需要20毫秒。
下面我们可以形象的从相量图和波形图看出相位关系。
当电动势作用在负载上时,由于负载的性质由电阻、电感、电容组成的阻抗决定,使得电流与电压之间表现出不同的相位:下面我们就沿着这个主线进一步分析相量在保护中的应用2电流、电压互感器减极性标记的含义及意义1电流、电压互感器减极性标记的含义及意电压互感器的接线及极性是保证全站所有保护相量正确的最基本的因素,所有需要判断方向的保护都必须首先要求电压极性正确,为了统一标准,我们现在规定:所有电压互感器不论是新投,还是因某种原因检修更换二次线,都必须保证电压互感器二次从极性端正出,也就是说电压互感器正极性。
请看如下示意图1-1:保证了电压互感器的正极性,就为我们在考虑变电站内各个保护装置的方向以及在带负荷测相量的时候,提供了一个基础,因为就算有的保护装置不需要判别方向,也需要通过电流、电压之间的相位关系来确定电流互感器极性是否正确,当做这个工作的时候,我们需要关注的是流经保护安装处的负荷性质、潮流流向、电压互感器极性,只有采集好全部信息,才能确定保护二次回路的接线的正确性。
因此,我们规定:要求电压互感器的正极性。
从上图中可以看出电压互感器一次电流从一次线圈的极性端流入,这个不是刻意做的,而是一次必须要这么接线,这是一次安装的工艺所必须的,那么二次线圈的引出线就必须从极性端引出,非极性端结成N线在主控室一点接地,这样就能保证电压互感器UA、UB、UC的正极性。
电流互感器极性、接线方式及其应用引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。
电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。
本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。
2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端(减极性),当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端(加极性)。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
谈谈对于极性和方向保护的理解以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。
为什么一次电流和二次侧电流要相反呢其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置!这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!!因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!!减极性具体接线接线具体来说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。
当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。
对于电压互感器而言也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。
再说说方向保护对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性:当正方向故障时一次侧电压超前电流30°左右当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°)既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了!再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧我们必须遵循一定的规范,这个规范就是减极性接法!!如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了!这就再一次印证了我们经常说的对于方向性保护,一定要注意二次接线,极性不要搞错了交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。
防止电流互感器二次回路开路的反事故措施发电企业因电流互感器二次回路N线开路导致区外故障保护误动作事故,原因是电流互感器二次回路验收及定检方法存在不足。
为防止电流二次回路开路,提高继电保护及安全自动装置运行可靠性,应采取如下反措。
一、电流互感器二次回路验收要求新安装或更改后的电流二次回路验收应严格执行GB/T 50976-2014 《继电保护及二次回路安装及验收规范》及DL/T 995-2016 《继电保护和电网安全自动装置检验规程》交流电流回路验收要求。
重点检查:(一)检查电流互感器二次绕组的用途、接线方式、级别、容量、实际使用变比、极性、接地点位置,测量各二次绕组直流电阻。
检查方法:核查设备铭牌、图纸、试验报告等,并与实际接线进行核对;使用万用表分别检查并记录二次绕组内阻、负载直流电阻及接地电阻,三相直流电阻应平衡,接地电阻应小于0.5Ω;结合绝缘检查进行电流回路一点接地检查:断开电流互感器二次回路接地点,检查全回路对地绝缘,若绝缘合格可判断仅有一个接地点。
(二)新安装或更改后的电流二次回路应结合发电机短路试验或利用专用升流仪器完成一次升流检查。
升流试验范围应包括所有保护用电流互感器。
通过一次升流试验检查电流互感器的变比、电流回路接线的完整性和正确性、电流回路相别标示的正确性。
一次升流试验应包括单相升流试验,以检查零序电流回路的完整性和正确性。
(三)如现场条件限制无法进行一次升流试验,则应用二次通流试验代替。
在电流互感器接线盒或就地端子箱,逐相通入二次电流,检验接入保护的二次绕组连接组别的正确性。
二、电流互感器二次回路定检要求电流二次回路定检应严格执行DL/T 995-2016 《继电保护和电网安全自动装置检验规程》交流电流回路定检要求。
重点要求如下:(一)定检时应重点检查电流二次回路的完整性和正确性。
定检结束前,在端子箱或保护装置端子排处分别检查并记录每相电流回路的CT内阻及二次负载。
电流二次回路接线恢复完整后,检查每相回路接地电阻。
电流互感器的安装、调试要求及反措要求1、在电流互感器安装调试时应进行电流互感器出线端子标志检验,核实每个电流互感器二次绕组的实际排列位置与电流互感器铭牌上的标志、施工设计图纸是否一致,防止电流互感器绕组图实不符引起的接线错误。
新投产的工程应认真检查各类继电保护装置用电流互感器二次绕组的配置是否合理,防止存在保护动作死区。
以上检验记录须经工作负责人签字,作为工程竣工资料存档。
2、保护人员应结合电流互感器一次升流试验,检查每套保护装置使用的二次绕组和整个回路接线的正确性。
反措要求1、检查中发现主保护或断路器失灵保护存在保护死区,可通过更改电流互感器二次绕组接线予以解决的,应立即进行整改。
2、由于电流互感器二次绕组排列不满足1.1条二次绕组配置原则等原因,无法通过更改二次绕组接线予以解决的保护死区问题,按以下原则处理:①仅在二次绕组内部故障时存在保护死区的,可结合电流互感器的更新改造进行整改;②非二次绕组内部故障(如断路器本体故障)时亦存在保护死区的,应立即进行整改。
3、电流互感器二次绕组更改接线后,按相关规程规定做好带负荷测试及图纸修改等工作,确认无误后方可将保护装置投入运行。
更换电流互感器要注意的事项更换运行中的电流互感器组中的一个互感器时,要选择变比、极性、电压等级都相同的电流互感器,伏安特性也应不相上下,这些参数都要经过试验合格。
电流互感器的更换,必须停电进行。
如果由于容量或变比不能满足使用需要而更换电流互感器,则除了应考虑上述几项要求之外,还应检查电流互感器所带保护装置的整定值以及所带仪表的倍率。
此外,更换后要将电流互感器接地(保护接地),以防止一次绝缘击穿和高压窜入二次侧而威胁人身安全和损坏设备。
在变电安装、检修工作中,对新投运变电所的电流互感器和新更换的电流互感器都要作10%误差曲线,以确保电流互感器在允许的误差范围内工作,特别是对于母差保护、变压器差动保护,以避免保护装置的不正确动作。
电流互感器极性的接法及其测试方法发布时间:2023-02-24T05:21:42.114Z 来源:《中国电业与能源》2022年第19期作者:李国军[导读] 电流互感器为变电站内的二次设备提供电流的测量数据李国军广东电网有限责任公司河源源城供电局广东河源 517000摘要:电流互感器为变电站内的二次设备提供电流的测量数据,其中电流互感器的极性时其重要特性之一,其正确性直接关系到保护、测量、计量的准确性,一旦电流互感器极性存在错误,会给变电站安全稳定运行造成严重影响。
因此在电流互感器投运必须进行极性测试,以防接线错误导致极性弄反。
本文介绍了直流法、交流法等极性测试方法,讨论了各种方法的特点,推荐使用电流法作为现场测试的优先选项。
在电流互感器投运后还需进行带负荷测试作为最后一道防线,对功角关系进行判断以确保电流互感器的极性完全正确。
关键词:电流互感器;极性;电流法;带负荷测试1 引言电流互感器是变电站中常用的一种电力设备,它将较大的一次电流转换为较小的二次电流,经过的适当变比关系给继电保护装置、测控装置、电能计量装置提供电流的测量数据。
电流互感器绕组极性一旦错误,则会造成保护装置拒动或误动、测量或计量错误等严重后果,因此务必保证电流互感器的组别以及极性正确。
对于电流互感器在新投运、技改大修后或者其他必要情况时,必须对电流互感器进行极性检查。
本文阐述了变电站内电流互感器极性的接法,并对现场电流互感器极性测试的方法进行了讨论,具有一定的实用参考价值。
2 电流互感器极性的接法2.1 变压器电流互感器极性的接法变压器二次设备需要电流测量数据的设备一般包括保护、测控、母线差动以及计量等,电流互感器各个绕组的二次侧分别用电缆接入对应的装置中,以220kV变压器电流互感器为例,如下图所示,其中电流互感器极性端P1均指向母线侧。
图1 220kV变压器电流互感器二次绕组分布对于变压器的差动保护,其电流的正方向,是指电流从母线流入变压器。
测定电流互感器极性的常用方法
(1)直流法。
在电流互感器的一次绕组(或二次绕组)两端,通过按钮开关接入1.5~3V干电池。
假设一次绕组的首端L1接电池正极,尾端L2接电池负极;在二次绕组两端接一低量程直流电压表或电流表,仪表的正极接二次绕组的K1端,负极接K2端。
当按下按钮开关电路接通时,若直流电压表或电流表指针向正方向起;松开按钮开关电路断开时,直流电压表或电流表指针向反方向起,则说明电流互感器为减极性,是正确的。
反之为加极性。
直流法测定电流互感器的极性,简便易行,结果准确,是工程实践中最常用一种方法。
(2)交流法。
将电流互感器的一次绕组尾端L2和二次绕组尾端K2连接在一起,在匝数较多的二次绕组两端K1和K2之间接入1~5V的交流电压U1,再用10V以下小量程的交流电压表分别测量一次绕组两端Ll和L2间的电压U2、Kl和L1间的电压U3,若U3=U1 -U2,则为减极性;若U3 =U1+U2,则为加极性。
在试验中应注意使接人的电压U1尽量低,只要电压表的读数能看清楚即可,以免电流过大损坏绕组。
为使读数清楚,电压表的量程应选得小一些。
当电流互感器的变比为5及以下时,用交流法测定电流互感器的极性既简单,又准确。
但电流互感器的变比较大(10以上)时,因U2数值较小,U3和U1数值接近,电压表读数不易区分大小,故不易
采用此法测定极性。
(3)仪器法。
一般的电流互感器校验仪都带有极性指示器,因此,在测定电流互感器误差之前,仪器可预先检查极性。
若极性指示器没有指示,则说明被试电流互感器极性正确(减极性)。
电流互感器的接线方式、饱和及伏安特性,值得收藏!电流互感器(CT)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。
在系统的保护、测量、计量等设备的正常工作中扮演着极其重要的角色。
整理了关于CT的相关知识点与大家分享,具体内容包括以下四个方面:1.电流互感器二次回路接线方式2.电流互感器的饱和3.电流互感器伏安特性4.电流互感器回路接线错误案例分析01电流互感器二次回路接线方式在变电站中,常用的电流互感器二次回路接线方式有单相接线、两相星形(或不完全星形)接线、三相星形(或全星形)接线、三角形接线及和电流接线等,它们根据需要应用于不同场合。
现将各种接线的特点及应用场合介绍如下。
(1)单相接线方式单相式接线,这种接线只有一只电流互感器组成,接线简单。
它可以用于小电流接地系统零序电流的测量,也可以用于三相对称电流中电流的测量或过负荷保护等。
(2)两相星形接线方式两相星形接线,这种接线由两相电流互感器组成,与三相星形接线相比,它缺少一只电流互感器(一般为B相),所以又叫不完全星形接线。
它一般用于小电流接地系统的测量和保护回路,由于该系统没有零序电流,另外一相电流可以通过计算得出,所以该接线可以测量三相电流、有功功率、无功功率、电能等。
反应各类相间故障,但不能完全反应接地故障。
对于小电流接地系统,不完全星形接线不但节约了一相电流互感器的投资,在同一母线的不同出线发生异名相接地故障时,还能使跳开两条线路的几率下降了三分之二。
只有当AC相接地时才会跳开两条线路,AB、BC相接地时,由于B相没有电流互感器,则B相接地的一条线路将不跳闻。
由于小接地电流系统允许单相接地运行2小时,所以这一措施能够提高供电可靠性。
需要指出的是,同一母线上出线的电流互感器必须接在相同的相,否则有些故障时保护将不能动作。
(3)三相星形接线方式三相星形接线又叫全星形接线,这种接线由三只互感器按星形连接而成,相当于三只互感器公用零线。
二次接线技术规范(一)一般规定4.3.1 本节适用于继电保护、自动装置、控制、信号和测量等二次回路。
4.3.2 二次回路的工作电压不应超过400伏。
4.3.3 在有振动的地方,应采取防止导线接头松脱和继电器误动作的措施。
(二)断路器的控制回路4.3.4 总降压变电所和大型配电所的断路器一般采用电磁或弹簧储能操动机构;出线回路少且就地控制的配电所,当开断容量又能满足要求时也可采用手力操动机构。
4.3.5 断路器控制回路需满足下列要求:一、应能监视电源及跳、合闸回路的完整性,在断路器跳、合闸线圈及合闸接触器线圈上,不允许并接电阻。
二、应能指示断路器合闸与跳闸的位置状态,自动合闸或跳闸时应有明显信号。
三、在操动机构本身没有机械“防跳”装置时,应有电气“防跳”装置。
四、合闸或跳闸完成后应使命令脉冲自动解除。
五、接线应简单可靠,使电缆芯最少。
4.3.6 一般采用灯光监视的接线方式,断路器在合闸位置时红灯亮,跳闸位置时绿灯亮,需要时也可采用音响监视的接线方式,断路器合闸或跳闸位置由控制开关的手柄来表示,其垂直位置为合闸,水平位置为跳闸,控制开关手柄内应有信号灯。
4.3.7 当采用硅整流电容储能直流系统时,为了减少故障时储能电容的能量消耗,应将回路内的指示灯等常接负载的正极自控制电源+KM小母线改接至另外的电源回路。
此时,对控制回路的正电源应采用别的办法进行监视。
4.3.8 断路器的事故跳闸信号回路应采用不对应接线:一、断路器手力操作时,利用操动机构与操动把手的辅助接点构成的不对应接线。
二、断路器为电磁或弹簧操动时,利用控制开关与操动机构辅助接点构成的不对应接线。
4.3.9 断路器的防跳回路应满足下列要求:一、由电流起动的防跳继电器的动作时间,不应大于跳闸脉冲发出至断路器辅助触点切断跳闸回路的时间。
二、一般利用防跳继电器的常开触点,对跳闸脉冲予以自保持。
当保护跳闸回路串有信号继电器时,该防跳继电器触点应串接其电流自保持线圈。
电流互感器二次回路一、电流互感器二次回路电流互感器是将交流一次侧大电流转换成可供测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离,保证工作人员的安全。
电流互感器是单相的,一次侧流过电力系统的一次电流,二次侧接负载ZL(表计、继电器线圈等),一般二次侧额定电流为5A 或1A 。
1.电流互感器的极性和相量图电流互感器一次绕组和二次绕组都是两个端子引出,如图8-l 所示,绕组L1-L2为一次绕组,绕组K1-K2为二次绕组。
在使用电流互感器时,需要考虑绕组的极性。
电流互感器一次绕组和二次绕组的极性通常采用减极性原则标注,即当一次和二次电流同时从互感器一次绕组和二次绕组的同极性端子流入时,它们在铁芯中产生的磁通方向相同。
在图8-1中,L1与K1是同极性端子,同样L2与K2也是同极性端子。
同极性端子还可以用“*”、“·”等符号标注。
电流互感器采用减极性原则标注时,当一次电流从L1(或L2)流人互感器一次绕组时,二次感应电流的规定正方向从K1(或K2)流出互感器二次绕组(这也是二次电流的实际方向),如图8-2(a )所示。
如果忽略电流互感器的励磁电流,其铁芯中合成磁通为:02211=-N I N I (8-1)则 TA n I N N I I 11211/ == (8-2)式中21I 、I ——电流互感器一次电流、二次电流;21、N N ——电流互感器一次绕组匝数、二次绕组匝数;TA n ——电流互感器变化。
可见,此时电流互感器一次电流、二次电流相位相同,如图8-2(b)所示。
2.电流互感器的接线方式电流互感器的接线方式指电流互感器二次数绕组与电流元件线圈之间的线接方式。
常用的接线方式有三相完全星形接线、两相不完全星形接线、两相电流差接线方式等。
例如用于电流保护的常用接线方式如图8-3所示。
图8-3(a)三相完全星形接线,三相都装有电流互感器以及相应的电流元件,能够反应三相的电流,正常情况下中性线电流为0=++=c b a n I I I I ;图8-3(b )两相不完全星形接线,只有两相(一般是A 、C 相)装有电流互感器以及相应的电流元件,只能反应两相的电流,正常情况下中性线电流为b c a n I I I I -=+=。
电流互感器的二次接线方式和电流互感器的极性判断以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。
新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。
1 正确的电流互感器的二次接线方式(1)变压器按Y/△-11接线时,两侧电流之间有30。
的相位差,即同相的低压侧电流超前高压侧电流30。
,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。
根据电流相位关系做出向量图,因2组电流互感器的二次线电流同相位,若不考虑其它因素的影响,流入差动继电器的各相电流均应为0。
变压器高压侧即原边一次线圈接成Y,则与其对应的高压侧电流互感器二次接线应接成△型,将A相电流互感器的负端子与B相电流互感器的正端子联接后,引出a相线电流;B相负端子与C相正端子联接后,引出b相线电流;C相负端子与A相正端子联接后,引出c相线电流。
变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。
如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。
二次引出线分别接在a、b、c各相负端子上。
2电流互感器的极性判断电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。
标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。
(2)一般的过电流保护只靠动作时限获得选择性,但对双侧电源线路和环形网络,不能满足选择性的要求,为实现保护的选择性,在各电流保护上加装一方向元件,便构成方向过流保护。
电流互感器二次出线的极性要求及确定方法
[摘要] 分析了继电保护、计量、测量、故障录波等相关装置对电流互感器二次出线极性的要求,并介绍了极性确定步骤,最后给出了某电厂的发变组TA二次出线的极性配置示意图。
关键词电流互感器二次出线极性配合
0 引言
电气二次设备,如继电保护装置、测量装置、计量装置、安全自动装置等,都需要通过电流互感器来反映一次侧电流值,从而实现保护、测量等功能。
电流互感器的传递变换具有极性,其二次出线极性的确定将对相关电气二次设备功能的实现造成影响,特别是保护装置用TA 的二次出线极性出现错误时将导致保护的误动或拒动,严重时将危及一次设备乃至电网的安全。
1 电流互感器的二次出线极性要求
GB1208-2006《电流互感器》规定:电流互感器中标有P1(L1)、S1(K1)的所有端子在同一瞬间具有同一极性,即P1(L1)与S1(K1)是同极性关系。
其中,P1、P2(L1、L2)在电流互感器的本体上有标注(变压器套管TA除外,需由设备厂方和单体试验方提供TA的一次指向信息);S1、S2(K1、K2)在电流互感器的二次接线端子处有标注。
值得注意的是,国外TA必须通过产品的出厂说明书和单体试验来获取极性信息。
1.1 与继电保护装置的配合
1.1.1电流差动保护
电流差动保护需要对一次设备各侧TA二次电流的矢量进行差流计算,因此需要综合考虑各侧TA极性的配合。
对于变压器差动保护中组别引起的相差,目前微机保护均通过软件来计算补偿,所以各侧TA二次接线均采用“Y”接法。
至于电流差动保护,由于各侧TA有0°和180°两种接线方式,因此要根据保护装置的具体要求来确定TA的极性。
表1为几种国内常见的电流差动保护的极性要求。
差流为矢量差:
差流为矢量和:
值得注意的是,TA极性的确定除了要满足保护所要求的“0°”或“180°接线方式外,还必须考虑TA与带方向的保护之间的配合问题。
如南瑞RCS-985(接线方式如图1所示)的失磁保护与差动保护共用机端侧TA111,由于失磁保护要求TA二次出线靠发电机侧为极性端,因此只有在确定该TA靠发电机侧为极性端后,才能考虑中性点侧TA101满足差动保护的0°接线要求。
1.1.2方向过流保护
由于电压互感器的二次侧均以极性端作为出线,即一次侧为A接一次侧导线、N接地,二次侧为a端子出线、n接地,因此对于方向过流保护,只需按照说明书确定TA的二次出线极性。