电流互感器极性的判断
- 格式:docx
- 大小:34.83 KB
- 文档页数:4
电流互感器绕组极性检查步骤
按照要求穿好工作服及绝缘鞋,戴好安全帽及手套
1、进场到老师处报到
2、领取操作任务书并详细阅读
3、考评员交待考评任务
4、选取指针式万用表及电源按钮开关电源及抹布
5、检查指针式万用表,先旋转换位开关一圈,检查是否灵活;把换位开关转至欧姆档1Ω处,将万用表的测试笔两端短接,表针指向0处,如果不在0处,万用表的调零按钮调整至0处。
6、万用表检查完毕后,进入场地,场地一周巡视检查一次,用抹布将被测电流互感器擦拭一次,用一字起将电流互感器上二次桩头上的接线盒盖子拆除放在一边。
7、拿出万用表,将转换开关调至A档0。
25uA处;将电源按钮开关+接线夹头夹于电流互感器P1桩头,将电源按钮开关-接线夹头夹于电流互感器P2桩头;(电流互感器二次桩头共有3组接线端子,正常检测只需检测1S1、1S2即可),用左手将万用表的红笔接于1S1端子,黑笔接于1S2端子,用右手轻按按钮开关上的按钮,同时观察万用表指针偏转情况,如果指针向顺时针方向摆动,说明是加极性,(即是同名端),如果指针向逆时针方向摆动,说明是减极性,(即异名端)。
8、测量结束后,用一字起将互感器二次桩头上的接线盖安装好,将万用表旋钮开关旋转至交流1000V处,与表笔一起整理放入
盒中,拆除电流互感器上的电源接线夹头并整理好,一起放回原来取工具的地方。
9、清理现场,填写检查结论,交考评员处,报告结束。
10、出场。
电流互感器二次桩头:。
电流互感器极性、接线方式及其应用引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。
电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。
本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。
2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。
升压站电流互感器极性的几点看法500kV开关站的CT极性比较重要,涉及保护测量的相关设计,极性接反可能导致差动保护误动,测量极性接反,会导致后台显示的有功、无功数据与实际相反,导致方向误判。
用于保护的CT极性是否正确,可通过现场调试试验验证。
但测量、计量CT的极性不能单靠试验验证,同时还需根据电网的潮流方向进行核实。
在图中主变高压侧CT“一次潮流是从主变流向电网,500kV主接线图上测量和计量CT的P2朝向主变,汇控柜端接图纸取S1接相,S2接N。
在倒送电时,电流和功率极性是发电状态,所以需要修改为取S2接相,S1接N ”。
广东中调自动化明确,对于500kV开关站和发变组是独立的系统,500kV开关站所有出线正方向均为由母线指向线路或变压器,发电机流出恒为正。
故在机组发电时,发电机组为正,是发电状态,主变出口(主变低压侧)为正(主变低压侧),功率流入厂内架空线;开关站主变出线为负,功率流入开关站,线路出线为正,功率流出开关站;在倒送电时,线路出线为负,功率流入开关站,开关站主变出线为正,功率流入厂内架空线,主变出口(主变低压侧)为负,功率流入主变;而按照调换主变高压侧的测量CT极性后,导致倒送电时开关站主变出线和线路出线功率均为负,调度自动化图显示错误。
所以要求重新调回主变高压侧测量CT接线极性,保留计量CT接线极性。
1、极性接法原理分析(1)计量、测量互感器极性接法电流互感器的计量绕组必须掌握两点确定接线,一是确定电流互感器P1的安装位置,二是确定绕组功能类型,我们知道计量、测量都反映功率事实,电度表是功率的时间累计,而功率由电流、电压及相位组成。
一般定性的规定电厂输出功率为正,吸收功率为负,功率计算一般以电压为参考方向,在发电机电压正方向确定的前提下,电流互感器以发电机指向母线为正方向。
(2) 差动、后备保护极性接法要正确完成差动及后备保护CT极性接法,必须先弄清楚其保护对象,还有它的一次极性端朝向,差动保护及后备保护要求CT一次必须以流入设备的电流方向为正方向,极性不能接错。
用直流法检测并判断电流互感器电压互感器的极性及进行绝缘试验一、用直流法检测并判断电流互感器、电压互感器的极性及进行绝缘试验:1、用万用表测量互感器极性的步骤:首先询问考官互感器是否退出运行⑴、准备材料:绝缘手套、放电棒、毛巾、三根测试线,一块万用表,一块2500V兆欧表、螺丝刀一把、短接线、电池、沙纸。
⑵、检查绝缘手套是否完好,如坏,征询监考老师,如监考教师说怎么办,回答说换新的。
⑶、检查接地线,两端都要检查,如一端掉,戴绝缘手套接好。
⑷、对电流互感器进行放电,先放一次侧,后放二次侧,各个接线端纽都要进行放电,放电后,手套放在放电棒上以备下次再用。
⑸、用沙纸对电流互感器一次、二次接线端纽进行除锈,用毛巾对电流互感器一次、二次接线端纽和外壳进行清扫。
⑹、检查万用表,用螺丝刀对万用表进行静态调0。
⑺、把红色测试线接在万用表+端纽上,黑色测试线接到*端纽上,两线搭接,表计打到Ω档和100Ω档位上进行动态调0。
⑻、用仪表对电流互感器一次、二次接线端纽进行导通。
⑼、把万用表红色测试线另一端接二线的S1接线桩上,黑色测试线的另一端接到S2接线桩上。
⑽、把电池的红色线接到电流互感器一次P1接线桩上,黑色线接到P2接线桩上。
按红色电池按纽三次,看表指针偏转方向,正偏为减极性。
把测试结果写在答题纸上。
⑾、戴绝缘手套双手握放电棒未端进行放电,一次、二次各接线桩都要进行放电。
拆除接线。
处,用完后打到空档装好。
⑶、测量前必须挂接地,进行放电处理。
⑷、测量完取下接线时戴上绝缘手套。
⑸、测三次极性。
2、测量互感器的绝缘电阻:⑴、在测量极性后已经对电流互感谢器进行放电,先对2500V兆欧表外观进行检查,红色测试线接仪表L端纽上,黑色测试线接在仪表E端纽上,摇动兆欧表先进行开路检查,指针是否指向∞,后慢摇请监考老师帮忙进行短路检查,看指针是否回零。
然后用熔丝将一次侧和二次侧分别短接起来。
⑵、把兆欧表黑色测试线的一端接在电流互感器的二次接线桩上,摇动仪表请监考老师戴好绝缘手套帮忙在把红色的测试线另一端接在一次接线桩上测试1分钟读出指针所指的数值,把红色测试线拿开,停止摇动仪表。
怎样测量电流互感器的极性
???电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。
????测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①
1
见图1
侧K1
L1、K1
2
见图21~5V为减极性;若
注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。
3仪表法
一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。
标注字母不清楚,如LQJ-10、LQJ-10Q等型号的电流互感器,如果不进行极性判断,很容易看错导致接线错误;这就更需要在接线前认真地进行极性测试。
电流互感器极性
电流互感器是一种专为电力系统安装的装置,它可以用来检测和测量系统中电流的变化。
电流互感器的极性很重要,它可以确保电流互感器的正确使用和精确测量。
本文将介绍如何确定电流互感器的极性,这些知识对于电力系统的监控和维护至关重要。
电流互感器有两种极性:正和负,其中正极性表示在正电极上产生的正电流,负极性表示在负电极上产生的负电流。
正确确定电流互感器的极性可以确保它们正确安装和使用,以便获得精确的电流数据。
确定电流互感器的极性需要注意几个因素:首先,电流互感器必须正确安装,以便精确检测电流变化;其次,必须确定电流传感器安装点的极性,即正电极和负电极;最后,需要检查电流传感器本身是正极性还是负极性,以便正确连接。
具体来说,要确定电流互感器的极性,可以进行以下操作:首先,确定电流传感器安装点的极性,将安装点分为正电极和负电极;其次,观察电流传感器本身是正极性还是负极性,正极性电流互感器应该安装在正电极,而负极性电流互感器应安装在负电极;最后,检查安装时准确确定电流互感器的正确极性;如果极性不正确,可能会导致测量误差或故障。
此外,需要注意的是,电流互感器极性的确定不仅仅是连接的问题,还包括电路参数的问题,比如线圈电感、线圈电阻等,这些参数和极性有关。
电流互感器极性也可以根据使用情况和要求来确定,如果没有经验,最好咨询专业人士,由专业人士确定最佳的安装极性。
总的来说,确定电流互感器的极性非常重要,电流互感器的正确极性不仅能确保安全,而且可以提高测量精度和可靠性。
因此,在安装和使用电流互感器时,必须根据电路参数和使用要求精确确定极性,从而保证电力系统的稳定和安全。
低压电流互感器的校验方法互感器常见问题解决方法在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。
1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。
1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端,则这种标志叫减极性。
一次电流从P1进,二次电流从S1出。
极性检查很简单,除了可以在互感器校验仪上进行检查外,还可以使用直流检查法。
2、电流互感器退磁检查电流互感器在电流蓦地下降的情况下,互感器铁芯可能产生剩磁。
如电流互感器在大电流情况下蓦地切断、二次绕组蓦地开路等。
互感器铁芯有剩磁,使铁芯磁导率下降,影响互感器性能。
长期使用后的互感器都应当退磁。
互感器检验前也要退磁。
退磁就是通过一次或二次绕组以交变的励磁电流,给铁芯以交变的磁场。
从0开始渐渐加大交变的磁场(励磁电流)使铁芯达到饱和状态,然后再渐渐减小励磁电流到零,以除去剩磁。
对于电流互感器退磁,一次绕组开路,二次绕组通以工频电流,从零开始渐渐加添到确定的电流值(该电流值与互感器的设计测量上限有关,一般为额定电流的20—50%左右。
可以这样判定,假如电流蓦地急剧变大,此时表示铁芯以进入磁饱和阶段)。
然后再将电流缓慢降为零,如此重复2—3次。
在断开电源前,应将一次绕组短接,才断开电源。
铁芯退磁完成。
此方法称开路退磁法。
对于有些电流互感器,由于二次绕组的匝数都比较多。
若接受开路退磁法,开路的绕组可能产生高电压。
因此可以在二次绕组接上较大的电阻(额定阻抗的10—20倍)。
一次绕组通以电流,从零渐变到互感器一次绕组的允许的最大电流,再渐变到零,如此重复2—3次。
由于接有负载铁芯可能不能完全退磁。
由于一次绕组的最大电流有限制,过大的话可能烧坏一次绕组。
假如接有负载的二次绕组产生电压不是过高的话,可以加大二次绕组的负载电阻。
江苏省电力行业《农网配电营业工》职业技能鉴定操作考核评分标准(考评员用)江苏省电力行业《农网配电营业工》职业技能鉴定操作考核(考评员评分用)姓名准考证号操作开始时间结束时间江苏省电力行业《农网配电营业工》职业技能鉴定操作考核任务书1、操作项目直流法判断互感器的极性(仅用于配电运行方向)2、操作时间本项作业时间 30分钟3、操作说明(1)独立操作;(2)现场提供高压电流互感器、高压电压互感器各一只;(3) 对互感器外观进行检查,标识清晰,外表应无损伤;(4)用直流法正确测试高压电流互感器或高压电压互感器的极性;(5)正确使用工器具;(6)现场电子式万用表、指针式万用表、5号电池;(7)否决项:工作中未做好安全防护措施,发生安全违章,损坏计量设备或仪器仪表,即取消考核,并作零分处理;(8)时间到应立即停止操作,整理工具材料离开操作场地。
江苏省电力行业《农网配电营业工》职业技能鉴定操作直流法判断互感器的极性姓名准考证号电流互感器、电压互感器极性试验记录单互感器极性试验记录:试验人:试验日期:直流法判断互感器的极性(整理)一、工器具准备及安全检查1、250V兆欧表1只,万用表1只,兆欧表、万用表测试连接线各两条(红色黑色),电源盒一只,放电棒一根,绝缘手套两只,一字起一把,砂纸一张,抹布一条,裸铜线三根。
2、检查兆欧表、万用表外观是否完好,对兆欧表进行开路、短路检查,检查绝缘手套有无合格证,试验标签是否过期(六个月一次),有无漏气现象;检查放电棒有无合格证,试验标签是否过期(1年一次)二、询问老师互感器处在什么状态?老师答:此时互感器处在检修状态。
这时检查(电流、电压)互感器有无接地,(注意:不要碰触电流、电压互感器)三、互感器导通检查1、取绝缘手套戴上,将放电棒的接地端夹在互感器的外壳接地上,依次用放电棒的顶端(带接地电阻)和直接接地端钮对电流器P1P2I S1I S2桩头进行放电,再对电压互感器A 、B 、a1、 b1、a2、 b2、进行放电。
电流互感器的极性、误差1 TA的极性(1)电力运行经验表明,TA的极性对继电保护装置能否正确动作影响极大。
农网中,大多保护装置特别是变压器差动保护装置,误动的主要原因就是连接TA二次线圈时极性接反。
(2)TA线端抽头有极性标注,原边用L1和L2表示,副边用K1和K2表示,L1和K1为同极性端子,L2和K2为同极性端子。
当一次电流由L1流进,L2流出时,二次电流应当由K1流出经过二次负载流进K2。
这样,当一、二次绕组中同时由同性端子通入电流时,在铁心中产生的磁通方向也相同;反之,如果极性接反,一二次绕组在铁心中产生的磁通方向相反,二次侧不能正确测量一次侧电流大小和方向,保护装置不能正确判断事故,从而出现“该动不动,不该动误动”现象。
(3) TA二次回路接线完毕之后,一定对一、二次绕组间的极性进行检验,以保证正确对应。
检验方法就是在二次回路中串接一只电流指示表,原边加入直流电流,根据原边电流方向和电流表指示方向即可鉴别出同极性端。
2 TA的误差(1)TA是作为电流源而工作的,运行中的TA由于励磁电流的存在,二次电流I2与换算后的一次电流I′1不但在数值上不相等,在相位上也不相同,这就造成了TA的误差。
由于换算后的一、二次电流数值不等造成的电流误差,称为变比误差(简称比差)通常以实测二次电流I2与换算到二次侧的一次电流I′1(I′1=I1/nLH)之差对I′1的百分比表示,即 fWC= ×100%。
(2)由于励磁电流造成二次与一次电流向量间的夹角,称为相角误差(简称相差或角差),用δ表示,当二次电流向量超前于一次电流相量时,δ为正角差;反之δ为负角差。
(3)当系统发生短路故障时,通过TA的一次电流成倍增长,铁心严重磁饱和,励磁电流急剧增加,TA 误差迅速加大,严重影响继电保护装置动作的可靠性。
因此,规程规定保护用TA最大比差小于10%,最大角差小于7°。
3 影响TA误差的因素(1)与励磁安匝大小有关,励磁安匝加大,励磁电流增加,误差加大。
电流互感器极性电流互感器极性是电工领域里一个基本概念,学习它可以让我们更好地理解和操作电气设备是怎样发挥作用以及它们之间是如何连接的。
因此,对电流互感器极性的理解是非常重要的。
互感器就是用来测量电流的设备。
它可以把原电流的增幅和降幅进行不同的转换,使其在另一处可以正确地控制和测量。
互感器通常是一种可以把电流变换成磁感应的线圈结构,它可以对外界产生反应,有着定值的阻值和电感。
电流互感器极性是指互感器输出电流与原输入电流之间的相位关系,即在同一电源中彼此间的潜在关系,可以理解为原输入电流和输出电流之间的相对位置。
一般来说,当互感器的极性是正的时,输出电流的相位与原输入的相位是相同的;当互感器的极性为负时,输出电流的相位与原输入的相位是相反的,其结果就是把电流反接了。
电流互感器极性可以在安装时就确定,也可以通过更改互感器结构来更改。
其确定方法根据特定的电气设备有所不同,一般而言,通过了解其结构以及在相连的电源不同的侧的接口连接方式,可以很容易找出电流互感器的极性。
虽然安装时就确定好电流互感器极性的方法较为直接,但更改电流互感器的极性也是非常重要的,可以在一定程度上提高电气设备在使用过程中的可靠性和精度。
首先,更改电流互感器极性可以提高电气设备在使用过程中的可靠性。
一般来说,如果没有正确地设置电流互感器极性,会引发一些设备故障,比如空开跳闸、烧坏继电器等,而可以有效地更改电流互感器极性可以减少这些故障发生的概率。
其次,更改电流互感器极性可以提高电气设备的精度。
由于电流互感器的输出的相位与原输入的相位有关,因此若不正确地设置互感器的极性,会影响电气设备的使用精度。
更改电流互感器极性可以使电气设备的正常使用得到保证。
总之,电流互感器极性是非常重要的,我们要认真学习它,以确保在安装和使用电气设备时能够正确操作。
虽然安装时就确定好电流互感器极性的方法较为直接,但更改电流互感器的极性也是非常重要的,可以在一定程度上提高电气设备在使用过程中的可靠性和精度。
电流互感器(加极性、减极性)相关知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
反之,就是加极性。
低压电流互感器实用技术问答30例(之一)刘国宏马晓文河北省康保供电分公司(076650)1.电流互感器铭牌上额定电流比的含义是什么答:额定电流比系指一次额定电流与二次额定电流之比。
通常用不约分的分数表示。
所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。
2.何为电流互感器的准确等级答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。
0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。
3.电流互感器的极性标志是怎样规定的答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
4.电流互感器额定容量的含义是什么答:电流互感器的额定容量就是额定二次电流I2e通过额定负载Z2e时所消耗的视在功率,即S2e=。
一般I2e=5A,因此S2e=25Z2e。
在电流互感器的使用中,二次连接及仪表电流线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。
5.什么是电流互感器误差答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流Í0,使其产生误差。
从电流互感器一次电流Í1和折算后的二次电流Í2’的向量图来看(如图 2所示),折算后的二次电流旋转180˚后一Í2’,与一次电流Í1相比较,不但大小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。
电流互感器的极性以线路为例:正常运行时的电流波形。
电流极性接反后的波形TA极性的检测怎样测量电流互感器的极性电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。
测量电流互感器的极性的方法很多,常用的有以下三种方法:①直流法;②交流法;③仪表法。
1直流法见图1。
用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。
如指针摆动与上述相反为加极性。
图1直流法测电流互感器极性2交流法见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U2及U3的数值若U3=U1-U2为减极性。
图2交流法测电流互感器极性3 仪表法电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为 L1,尾端标为 L2;二次线圈的首端标为 K1,尾端标为 K2。
在接线中 L1 和 K1 称为同极性端,L2 和 K2 也为同极性端。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转。
引言变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。
因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。
1 传统的极性检测方法1.1直流法电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。
检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K 端上。
当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。
反之,为异极性。
1.2、交流法将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V 的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。
2 新极性检测方法该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。
2.1原理根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。
当某一节点趋于无穷大的极限情况时,KCL可以推广至任意用一闭合面(虚线表示与纸平面的相交线)所包围的电路部分。
该闭合面S包围了部分电路,并与支路1、2、3相交,应用KCL定律可得i1-i3-i2=0。
下面讨论一种特殊状态,当初始时刻电路中无电流通过时,如果强制性地使某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测量。
电流互感器的二次接线方式和电流互感器的极性判断以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。
新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。
1 正确的电流互感器的二次接线方式(1)变压器按Y/△-11接线时,两侧电流之间有30。
的相位差,即同相的低压侧电流超前高压侧电流30。
,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。
根据电流相位关系做出向量图,因2组电流互感器的二次线电流同相位,若不考虑其它因素的影响,流入差动继电器的各相电流均应为0。
变压器高压侧即原边一次线圈接成Y,则与其对应的高压侧电流互感器二次接线应接成△型,将A相电流互感器的负端子与B相电流互感器的正端子联接后,引出a相线电流;B相负端子与C相正端子联接后,引出b相线电流;C相负端子与A相正端子联接后,引出c相线电流。
变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。
如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。
二次引出线分别接在a、b、c各相负端子上。
2电流互感器的极性判断电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。
标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。
(2)一般的过电流保护只靠动作时限获得选择性,但对双侧电源线路和环形网络,不能满足选择性的要求,为实现保护的选择性,在各电流保护上加装一方向元件,便构成方向过流保护。
电流互感器极性、接线方式及运行中注意的问题1 引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。
电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。
本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。
2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定1 和2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。
怎样测量电流互感器的极性
电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。
测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。
1直流法
见图1。
用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。
如指针摆动与上述相反为加极性。
图1直流法测电流互感器极性
2交流法
见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U
及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。
2
图2交流法测电流互感器极性
注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。
3仪表法
一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。
高压电流互感器极性的判断
按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。
判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。
其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。
把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。
然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针
摆动与上述相反,为正极,检查是否看错或标注错误,检测时二次侧接线柱处标有P字母的为保护用端子。
高压断路器装配的用于测量和保护的电流互感器虽然线圈多、变比多,但在出厂时已全部连接到接线端子排上,且标注清楚,相对容易测试。
如ZW7-40.5/1600-25型户外交流高压真空断路器,每相带有四个线圈,其中二个用于测量,二个用于保护,三个变比,分别为500/5、600/5、800/5。
单只的电流互感器其极性标注字母一般随外绝缘一起浇注,多数二次侧接线柱处位置狭小,标注字母不清楚,如LQJ-10、LQJ-10Q等型号的电流互感器,如果不进行极性判断,很容易看错导致接线错误;这就更需要在接线前认真地进行极性测试。