排列组合应用举例
- 格式:ppt
- 大小:208.00 KB
- 文档页数:18
乘法原理和排列组合
乘法原理是概率论中一种常用的计数方法。
它是指如果事件 A 可以发生的方式数为 m 种,事件 B 可以发生的方式数为 n 种,那么事件 A 和 B 同时发生的方式数为 m × n 种。
排列是从给定的对象中取出几个,按照一定的顺序排列起来;而组合是从给定的对象中取出几个,不考虑顺序。
举例来说,假设有 3 个任务,每个任务可以由 A、B、C 三个
人中的任何一个完成。
那么根据乘法原理,完成这 3 个任务的方式数为 3 × 3 × 3 = 27 种。
即每个任务有 3 种选择,总的方
式数为 3 的 3 次方。
再举一个例子,假设有 5 个人排队,他们的身高依次是A、B、C、D、E。
那么根据排列的定义,他们可以排列成的不同队形数为 5 × 4 × 3 × 2 × 1 = 120 种。
即第一个位置有 5 种选择,第
二个位置有 4 种选择,以此类推。
再来看一个组合的例子,假设有 7 个球员要从中选出 3 个进行比赛。
那么根据组合的定义,不考虑选出球员的顺序,选出的不同组合数为 C(7, 3) = 7! / (3! * (7 - 3)!) = 35 种。
即从 7 个球
员中选出 3 个的方式数为 35 种。
乘法原理和排列组合在概率论和统计学中都有广泛的应用。
它们是辅助计算事件发生方式数和计算概率的重要方法,可以帮助我们更好地理解和分析随机事件的规律。
排列组合的基本概念与应用排列组合是组合数学中的一个重要概念,广泛应用于数学、统计学、计算机科学等领域。
本文将介绍排列组合的基本概念,并探讨它在实际问题中的应用。
一、排列与组合的概念1.1 排列排列是从一组元素中选择若干个元素按照一定的顺序排列而成的,不同顺序即为不同的排列。
设有n个元素,若从中选取m(m≤n)个元素排列,则称为从n个元素中选取m个元素的排列数,通常表示为P(n,m)。
排列数的计算公式为:P(n,m) = n! / (n-m)!其中,"!"表示阶乘,即n! = n×(n-1)×(n-2)×...×2×1。
1.2 组合组合是从一组元素中选择若干个元素而成的无序集合,不同选择方式即为不同的组合。
设有n个元素,若从中选取m(m≤n)个元素组合,则称为从n个元素中选取m个元素的组合数,通常表示为C(n,m)。
组合数的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、排列组合的应用2.1 数学中的应用排列组合在数学中有广泛的应用,例如概率论、统计学、组合数学等。
在概率论中,排列组合被用于计算事件的可能性;在统计学中,排列组合可以用于计算样本的排列方式;在组合数学中,排列组合被用于解决组合问题。
2.2 信息学竞赛中的应用排列组合在信息学竞赛中也是一个重要的概念,往往与计数问题有关。
在信息学竞赛中,经常会出现一些需要计算排列组合数的问题,比如从一组数中选取若干个数进行计算,或者对字符串进行排序等。
了解排列组合的基本概念和计算方法,能够帮助竞赛选手更好地解决这类问题。
2.3 实际问题中的应用排列组合在实际问题中也有广泛的应用。
举例来说,假设有一个班级里有10个学生,要从中选出3个学生组成一个小组,那么这个问题就是一个排列组合问题。
计算组合数可以得到答案,即C(10,3) = 120,表示共有120种不同的选组方式。
第 1 页 共 7 页排列组合问题的基本解法江苏省梁丰高级中学 (215600) 张伟新 排列组合问题主要依据分类计数原理和分步计数原理,其本身应用的知识并不多,但 由于题目灵活多样,在各级各类考试中经常出现,在数学竞赛活动中尤其突出。
其解题方法 也多种多样,归纳起来,我们一般可用下面的方法来解决。
一、列举法:例1、从0、1、2、3、4、5、6、7、8、9这10个数中取出3个数,使其和为不小于10的 偶数,不同的取法有 。
(1998年全国高中数学联赛)解:从10个数中取出3个数,使其和为偶数,则这三个数都为偶数或一个偶数二个奇数。
当三个数都为偶数时,有35C 种取法;当有一个偶数二个奇数时,有15C 25C 种取法。
要使其和为不小于10的偶数。
我们把和为小于10的偶数列举出来,有如下9种不同取法: (0,1,3),(0,1,5),(0,1,7),(0,3,5),(0,2,4),(0,2,6),(1,2,3),(1,2,5),(1,3,4)。
因此,符合题设要求的取法有35C +15C 25C -9=51种。
例2、设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一。
若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也 停止跳动。
那么这只青蛙从开始到停止,可能出现的不同跳法共 种。
(1997年全国高中数学联赛)解:如图:青蛙不能经过跳1次、2次或4次到达D 点。
故青蛙的跳法只有下列两种:(1)青蛙跳3次到达D 点,有ABCD ,AFED 两种跳法。
(2)青蛙一共跳5次后停止,那么,前3次的跳法一定 不到达D ,只能到达B 或F ,则共有AFEF ,AFAF ,ABAF ,ABCB , ABAB ,AFAB 这6种跳法。
随后的两次跳法各有四种,比如由F 出发的有:FEF ,FED ,FAF ,FAB 共四种。
因此这5次跳法共有 6⨯4=24种不同跳法。
排列组合应用举例排列组合是数学中的一个重要概念,它在实际生活中有着广泛的应用。
通过排列组合的计算,我们可以解决很多实际问题,例如概率计算、密码学、组合优化等等。
本文将通过几个具体的例子来说明排列组合在实际生活中的应用。
1. 考试座位安排在学校考试中,为了避免作弊和公平公正地安排考试座位,通常需要进行合理的座位安排。
考虑一个班级有30名学生,需要在一间教室里安排座位。
假设教室有6行5列的座位,那么我们可以通过排列组合来计算共有多少种座位安排方案。
首先,我们需要从30名学生中选择6名学生来坐在第一行,这可以通过组合的方式计算,即C(30, 6)。
然后,从剩下的24名学生中选择5名学生坐在第二行,这可以通过C(24, 5)计算。
以此类推,我们可以计算出将所有30名学生安排到6行5列座位的方案数为:C(30, 6) * C(24, 5) * C(19, 5) * C(14, 5) * C(9, 5) * C(4, 5)这个数值就是可行的座位安排方案数,通过排列组合的计算,我们可以得知一间教室里可以有多少种不同的座位安排方式。
2. 电话号码的组合在电话号码的组合问题中,我们通常需要计算给定一组数字,有多少种不同的电话号码组合方式。
例如,假设电话号码由7个数字组成,每个数字取值范围是0-9。
为了方便理解,我们假设第一个数字不能为0。
那么,第一个数字有9种选择(1-9),第二个数字到第七个数字各有10种选择(0-9)。
因此,将所有数字组合起来的电话号码的组合方式数量为:9 * 10 * 10 * 10 * 10 * 10 * 10通过排列组合的计算,我们可以得到电话号码的组合方式数量,这对于电话号码的生成、处理以及电话号码的统计有着重要的意义。
3. 字符串的排列在计算机科学和密码学中,字符串的排列问题是一个常见的应用。
给定一个字符串,我们需要计算其所有可能的排列方式。
例如,对于字符串"ABC",其可能的排列方式有"ABC"、"ACB"、"BAC"、"BCA"、"CAB"和"CBA"。
组合数学中的排列组合方法组合数学是数学中的一个分支学科,研究的是集合的排列和组合问题。
在实际生活和理论研究中,人们常常会遇到需要计算排列和组合的情况。
在组合数学中,有一些常用的排列组合方法可以帮助我们解决这类问题。
一、排列排列是指从给定的元素集合中选取若干元素,按照一定的顺序排列成一列。
在组合数学中,排列的计算可以使用以下方法:1. 乘法原理:假设有n个元素,则第一个位置可以选择任意一个元素,有n种可能;第二个位置可以选择剩下的n-1个元素中的一个,有n-1种可能;以此类推,总共有n乘以(n-1)乘以(n-2)直到1个位置的排列方式。
因此,n个元素的排列总数为n的阶乘,记作n!。
2. 带限制条件的排列:在一些情况下,我们需要满足一定的条件才能进行排列。
例如,有n个元素中选取m个元素排列,则使用带限制条件的排列公式P(n,m) = n! / (n-m)!。
其中,n!表示n的阶乘,n-m表示从n个元素中剩下的元素个数。
二、组合组合是指从给定的元素集合中选取若干元素,不考虑其顺序排列,将它们组合成一个集合。
在组合数学中,组合的计算可以使用以下方法:1. 组合公式:从n个元素中选取m个元素的组合数可以表示为C(n,m),可以使用如下公式进行计算:C(n,m) = n! / (m! * (n-m)!)。
其中,n!表示n的阶乘,m!表示m的阶乘,(n-m)!表示n-m的阶乘。
2. 杨辉三角:杨辉三角是一个由数字排列成三角形的数表,它展示了组合数的规律。
第n行的第m个数字等于C(n-1,m-1)。
通过使用杨辉三角,我们可以很容易地找到组合数的数值。
三、应用举例下面以实际应用的方式,简要介绍一些排列组合在实际问题中的应用:1. 抽奖问题:假设有n个人参加抽奖活动,中奖序号为m,我们可以使用排列公式P(n,m)来计算获奖的方案数。
这个问题中不存在先后顺序,我们可以使用组合公式C(n,m)来计算中奖的方案数。
2. 选课问题:假设有n门课程供学生选择,一个学生需要选择m门课程,我们可以使用组合公式C(n,m)来计算不同选课方案的数目。
排列组合举例说明
例1:有4个人(A、B、C、D)参加篮球比赛,其中只能选
取2个人组成一队。
那么可以组成的所有可能的队伍有哪些?
解答:根据排列组合的原理,我们可以从4个人中选取2个人,共有4*3=12种不同的选择。
具体的队伍组合如下:
1. A、B组成队伍
2. A、C组成队伍
3. A、D组成队伍
4. B、A组成队伍
5. B、C组成队伍
6. B、D组成队伍
7. C、A组成队伍
8. C、B组成队伍
9. C、D组成队伍
10. D、A组成队伍
11. D、B组成队伍
12. D、C组成队伍
例2:某超市有4种口味的冰淇淋,小明要买3个冰淇淋,每
个口味可以重复购买。
那么小明有多少种购买方式?
解答:根据排列组合的原理,小明可以从4种冰淇淋中选取3
个冰淇淋,共有4*4*4=64种不同的购买方式。
具体的购买方
式如下:
1. 选取第一种口味,选取第一种口味,选取第一种口味
2. 选取第一种口味,选取第一种口味,选取第二种口味
3. 选取第一种口味,选取第一种口味,选取第三种口味
4. ...
64. 选取第四种口味,选取第四种口味,选取第四种口味
以上是排列组合的两个例子,它们都涉及从给定的元素集合中选取若干元素组成集合的问题。
在实际应用中,排列组合用于解决不同的组合问题,例如选取人员、购买商品、组合食物等。
排列组合应用题基本解法举例〔关键词〕排列;组合;间接法;捆绑法;插空法;消序法虽然关于排列、组合的应用题是千变万化的,但其解题思路却离不开“分步相乘,分类相加,有序排列,无序组合”的原则.要熟练掌握解题技巧,我们还必须掌握处理排列、组合问题的一些基本技巧、方法.下面举列说明.1. 特殊位置法例1:从10人中选3人站成一排,其中甲不站首位,共有多少种不同排法?分析:首位是特殊位置,先排首位有A种排法,再排其余两位有A种排法,分步相乘得AA=648.2. 间接法例2:有7人站成一排,其中甲不站首位,且乙不站末位,共有多少种不同排法?分析:可用间接法得A-2A+A.其中甲站首位的方法有A种,乙站末位的方法有A种,包含甲站首位且乙站末位的情况有A种.3. 捆绑法例3:6件不同商品排成一排,其中甲、乙、丙3件商品一定要排在一起,共有多少种不同排法?分析:先把甲、乙、丙捆绑起来当一个元素参加排列有A种排法,然后这3件商品内部再排列有A种排法.分步相乘得AA=144.对于有相邻要求的排列组合题,可用此法.4. 插空法例4:有5个男生和4个女生排成一排,其中女生不能相邻,有多少种不同排法?分析:第一步,先排5个男生有A种排法;第二步,5个男生之间(包括两端)的6个空位中插入4个女生有A种排法.由分步相乘法得AA=43200.5. 先选后排法例5:从8个男生和4个女生中选3个男生2个女生,担任5种不同的工作,有多少种方法?分析:AA为错解,因为漏掉了男、女生的混合排列.正确解法用先选后排法,即先按要求选出5人有CC种方法,后进行排列有A种方法,由分步相乘法得CCA=40320.6. 消序法例6:有身高各不相同的10个人站成一排,要求甲、乙、丙3人从左边顺次一个比一个低(可以不相邻),共有多少种不同排法?分析:首先不考虑限制条件,共有A种不同排法;其次对甲、乙、丙3人的排列消序得:=604800,即共有604800种排法.7. 平均分组法例7:A、B、C、D、E、F 6人平均分成三组下棋,有多少种不同分法?分析:CCC为错解,其中有重复.如:6人中先选A、B为一组,再在剩余4人中选C、E为一组,最后剩余2人D、F为一组;6人中先选C、E为一组,再在剩余4人中选A、B为一组,最后剩余2人D、F为一组.以上两种不同分法得到的结果是完全相同的,即A、B为一组,C、E为一组,D、F为一组.不难发现,错解对这一种分法算了6次.故易得,正确解法为=15.8. 查字典法例8:由0、1、2、3、4、5六个数字,可以组成多少个没有重复数字且比324105大的六位数?分析:从高位排查如下:(1)查首位有4×××××、5×××××,故有2A个数;(2)查前两位有34××××、35××××,故有2A个数;(3)查前三位有325×××,故有A个数;(4)查前四位有3245××,故有A个数;(5)查前五位有324150,故有1个数.故共有:2A+2A+A+A+1=297个数.。
有关排队问题的排列组合题解法举例例1:三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有种不同的排法.解法2:(间接法)3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有种不同的排法.解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排活,其余5个位置又都有种不同的排法,所以共有种不同的排法,(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法.因此共有种不同的排法.解法2:3个女生和5个男生排成一排有种排法,从中扣去两端都是女生排法种,就能得到两端不都是女生的排法种数.因此共有种不同的排法.说明:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.若以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.例27名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?3名女生,(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法?3分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A7种排法;第二步,347剩下的4人排在后排,有A4种排法,故一共有A7种排法.事实上排两排与排成 A4 A77一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A7,相当于7个人的4全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.解:(1)A7 A4 A75040种.1(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在5剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有115A3 A4 A51440种.1347(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的53全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法.由分步计53数原理得,共有A5 A3720种排法.4(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名3男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法.由分步计数原理得,43符合条件的排法共有:A4 A51440种.说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.例3八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:215215A4 A2 A5 A4 A4 A58640(种).解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八17人坐法数”看成“总方法数”,这个数目是A4.在这种前提下,不合题意的方法是“甲 A711115坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A4.其中第一个因数 C2 A3 A4 A5111表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出A4的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排5的方法数,A5就是其他五人的坐法数,于是总的方法数为1711115A4 A7 A4 C2 A3 A4 A58640(种).1例4一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位…共有六种2号,则另一空位可以在4、可能,再安排另一空位,此时需看到,如果空位在1、5、6、7号7号位,亦如此.如果相邻空位在2、3号位,另一空位可位,有4种可能,相邻空位在6、4号,4、5号,5、6号亦如此,所以必以在5、6、7号位,只有3种可能,相邻空位在3、须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.解答一:就两相邻空位的位置分类:42或6、7,共有24 A4若两相邻空位在1、192(种)坐法.43,3、4,4、5或5、6,共有43 A4若两相邻空位在2、288(种)不同坐法,所以所有坐法总数为192288480(种).解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有42A4 A5480(种)不同坐法.解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相4邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,5直接将三个空位看成一个元素与其它座位一起排列,共有A5种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A410种不同方454法,所以,所有满足条件的不同坐法种数为A7 A510A4480(种).4。