(完整版)波动方程
- 格式:ppt
- 大小:753.01 KB
- 文档页数:19
第二章 波动方程一、小结本章主要提供了波动方程初值问题与混合问题的求解方法。
对于不同的方程或同一类方程,由于维数的不同,定解条件的不同,它的定解问题的求解方法往往也是不同的。
1.波动方程的初值问题20(0,)(I)(,0)(),(,0)()tt xx t u a u t x u x x u x x ϕψ⎧-=>-∞<<∞⎪⎨==⎪⎩可用达朗贝尔方法求解,得到解的表达式为11(,)[()()]()22x atx atu x t x at x at d a ϕϕψξξ+-=++-+⎰当21(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,利用上面公式可直接验证问题(I )是适定的。
(2)半无弦自由振动的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t u a u t x u x x u x x u t ϕψ⎧-=>>⎪==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作奇延拓,把问题(II )化为问题(I )。
对于第二边值的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t xu a u t x u x x u x x u t ϕψ⎧-=>>⎪'==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作偶延拓,也可把问题化为问题(I )。
(3)三维齐次波动方程的初值问题2312312312300(0,(,,))(III)(,,),(,,),tt t t t u a u t x x x R u x x x u x x x ϕψ==⎧=∆>∈⎪⎨==⎪⎩用球平均法求解,得到解的表达式(泊松公式)为:1232211(,,,)[]44x xatatat at S S u x x x t dS dS t a t a t ϕψππ∂=+∂⎰⎰⎰⎰ 当32(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,由上式确定的123(,,,)u x x x t 是问题(III)的解。
helmholtz equation 波动方程
波动方程(Helmholtz equation)是一个常见的偏微分方程,描述了波动现象的传播过程。
它通常用于描述声波、光波、电磁波等在空间中的传播。
一维波动方程的数学形式为:
∂²u/∂x² + k²u = 0
其中,u是波函数,k是波数,x是空间坐标。
二维波动方程的数学形式为:
∂²u/∂x² + ∂²u/∂y² + k²u = 0
其中,u是波函数,k是波数,x、y是空间坐标。
三维波动方程的数学形式为:
∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z² + k²u = 0
其中,u是波函数,k是波数,x、y、z是空间坐标。
波动方程描述了在各个坐标轴方向上的二阶偏导数之和与波函数自身之间的关系,表达了波动现象的传播规律。
它是研究波动现象的基础方程,在物理学、工程学中有广泛的应用。
第1篇一、波动方程波动方程是描述波动在连续介质中传播的偏微分方程。
常见的波动方程有弦振动方程、声波方程、光波方程等。
以下列举几种常见的波动方程及其表达式:1. 弦振动方程弦振动方程描述了弦在受到外力作用下的振动规律。
假设弦的线密度为λ,张力为T,弦上某点的位移为y(x,t),则弦振动方程可表示为:∂²y/∂t² = (T/λ)∂²y/∂x²其中,x表示弦的长度,t表示时间,y(x,t)表示弦上某点的位移。
2. 声波方程声波方程描述了声波在介质中的传播规律。
假设介质的密度为ρ,声速为c,声波在介质中的波动函数为p(x,t),则声波方程可表示为:∂²p/∂t² = c²∂²p/∂x²其中,x表示声波传播的距离,t表示时间,p(x,t)表示声波在介质中的波动函数。
3. 光波方程光波方程描述了光波在介质中的传播规律。
假设光波在介质中的波动函数为E(x,t),介质的折射率为n,则光波方程可表示为:∂²E/∂t² = (n²/c²)∂²E/∂x²其中,x表示光波传播的距离,t表示时间,E(x,t)表示光波在介质中的波动函数。
二、振动方程振动方程描述了物体在受到外力作用下的振动规律。
常见的振动方程有单摆运动方程、弹簧振动方程等。
以下列举几种常见的振动方程及其表达式:1. 单摆运动方程单摆运动方程描述了单摆在重力作用下的振动规律。
假设单摆的摆长为L,摆球质量为m,摆球偏离平衡位置的角度为θ,则单摆运动方程可表示为:mL²θ'' = -mgLsinθ其中,θ'表示摆球偏离平衡位置的角度对时间的导数,θ''表示摆球偏离平衡位置的角度对时间的二阶导数。
2. 弹簧振动方程弹簧振动方程描述了弹簧在受到外力作用下的振动规律。
假设弹簧的劲度系数为k,弹簧的位移为x,则弹簧振动方程可表示为:mω²x = -kx其中,ω表示弹簧振动的角频率,m表示弹簧的质量。
波动方程的公式分为正弦和余弦,其中正弦表达式为Y=Asin(ωt-kz+φ),余弦表达式为为Y=ACOS[ω(t-kz)+φ],其中z代表位移,φ是初相位。
波动方程也称波方程,是一种描述波动现象的偏微分方程,它通常表述所有种类的波,例如声波,光波和水波等,在不同领域都有涉及,例如声学,电磁学,和流体力学等。
波动方程就是描述波动现象的偏微分方程,它的物理意义就太宽泛了。
不过波动方程一个很重要的性质是传播速度有限(不像热传导方程)。
电磁场的运动方程是波动方程这说明电磁相互作用只能以有限的速度传播(光速c),而没有瞬时的作用(即超距作用)。
这是导致狭义相对论建立的一个重要思想。
1.1 波动方程的形式一维波动方程(描述弦的振动或波动现象的)()t x f x u a t u ,22222=∂∂-∂∂ 二维波动方程(例如薄膜振动)()t y x f y u x u a t u ,,2222222+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂ 三维波动方程(例如电磁波、声波的传播)()t z y x f z u y u xu a t u ,,,222222222+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂ 1.2 波动方程的定解条件(以一维波动方程为例)(1)边界条件 ①第一类边界条件(又称Dirichlet 边界条件):弦振动问题中,弦的两端被固定在0=x 及l x =两点,因此有()0,0=t u ,()0,=t l u 。
②第二类边界条件(又称Neumann 边界条件):弦的一端(例如0=x )处于自由状态,即可以在垂直于x 轴的直线上自由滑动,未受到垂直方向的外力,此时成立0=∂∂=ox xu。
也可以考虑更普遍的边界条件()t xu x μ=∂∂=0,其中()t μ是t 的已知函数。
③第三类边界条件:弦的一端固定在弹性支承上,不放考虑在l x =的一端,此时边界条件归结为0u =⎪⎭⎫ ⎝⎛+∂∂=l x u x σ。
也可以考虑更普遍的情况()t u x lx v u =⎪⎭⎫⎝⎛+∂∂=σ,其中()t v 是t 的已知函数。
1.3 利用叠加原理求解初值问题 初值问题()()()()⎪⎪⎩⎪⎪⎨⎧+∞<<∞=∂∂==+∞<<∞>=∂∂-∂∂)x -(,,:0t x 0,-t ,,22222x t u x u t x f x u a t u ψϕ (1) 利用叠加原理求解上述初值问题,叠加原理表明由()t x f ,所代表的外力因素和由()()x x ψϕ,所代表的初始振动状态对整个振动过程所产生的综合影响,可以分解为单独只考虑外力因素或只考虑初始振动状态对振动过程所产生的影响的叠加。
波传播所满足的波动方程
波传播所满足的波动方程可以根据具体情况而定。
以下是几个常见的波动方程:
1. 一维波动方程:
∂²u/∂t² = c² ∂²u/∂x²
其中,u(x,t)代表波的位移,c为波速,x为空间坐标,t为时间。
2. 二维波动方程(横波):
∂²u/∂t² = c² (∂²u/∂x² + ∂²u/∂y²)
其中,u(x,y,t)代表波的位移,c为波速,x和y为平面上的空间坐标,t为时间。
3. 三维波动方程(横波):
∂²u/∂t² = c² (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)
其中,u(x,y,z,t)代表波的位移,c为波速,x、y和z为空间坐标,t为时间。
需要注意的是,不同类型的波(例如横波或纵波)以及不同的介质(例如固体、液体或气体)可能有不同的波动方程。
此外,上述方程还是基于经典的波动理论,实际情况可能需要考虑更复杂的因素。