2.2 拓扑空间和连续映射
- 格式:doc
- 大小:1.10 MB
- 文档页数:13
第二章 拓扑空间与连续映射一、教学目的与要求本章是点集拓扑学的基础知识,在本章中建立了点集拓扑学许多最基本的概念,为学习点集拓扑学的核心内容打下基础。
本章应掌握的概念有:度量空间、开集、邻域、拓扑空间、映射在一点连续、连续映射、度量诱导的拓扑、可度量化空间、同胚、拓扑不变性质、邻域系、聚点、孤立点、闭集、闭包、内点、内部、边界点、边界、基、子基、邻域基、邻域子基、序列、序列的极限点、收敛、子序列。
学生还应该掌握:典型的拓扑和度量空间的例子、开集和邻域的性质、连续映射和同胚映射的性质、(集合的)内部的性质内部和边界和闭包之间关系、连续映射的等价条件(分别用开集、闭集、邻域来描述)、邻域系的性质和判定方法、基的判定法和子集族成为基(或子基)的条件、映射在一点连续的性质和判定法则、拓扑空间和度量空间中序列的性质。
二、教学重点与难点教学重点:拓扑空间和连续映射、导集、闭集、闭包、基与子基、拓扑空间中的序列。
教学难点:拓扑空间概念的建立、导集概念和基与子基概念的建立等。
三、课时安排与教学方法教学内容 (计划/实际)课时数课程类型/教学方法2.1,2.2 4/4 理论/讲授2.3,2.4 4/4 理论/讲授2.5,习题课 4/4 理论/讲授、讨论2.6,2.7 4/4 理论/讲授习题课 4/4 练习/讲授、讨论四、教学过程在这一章中我们首先将连续函数的定义域和值域的主要特征抽象出来用以定义度量空间, 将连续函数的主要特征抽象出来用以定义度量空间之间的连续映射. 然后将两者再度抽象, 给出拓扑空间和拓扑空间之间的连续映射. 随后再逐步提出拓扑空间中的一些基本问题如邻域, 闭包, 内部, 边界, 基和子基, 序列等等.2.1度量空间与连续映射首先,我们从在数学分析中学过的连续函数出发, 抽象出度量和度量空间的概念.定义2.1.1 设是一个集合, X :X X R ρ×→.如果对于任何,,x y z X ∈,有(1) (正定性) (,)0,x y ρ≥并且(,)0x y ρ=当且仅当x y = ;(2) (对称性)(,)(,)x y y x ρρ=;(3) (三角不等式)(,)x z ρ≤(,)(,),x y y z ρρ+则称ρ是集合X 的一个度量.如果ρ是集合X 的一个度量,则称偶对(,)X ρ是一个度量空间或称,X 是一个对于度量ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已有交代,不提它不至于引起混淆,这时我们称X 是一个度量空间. 此外对于任意两点 ,,,x y ∈X 实数(,)x y ρ称为从点到点的距离.例2.1.1 实数空间 R .对于实数集合定义,R :R R Rρ×→如下:对于任意,,x y R ∈令(,).x y x y ρ−=容易验证ρ是的一个度量因此偶对R ,(,)R ρ是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量,ρ称为的通常度量,并且常常略而不提,称为实数空间.R 例2.1.2维欧氏空间n .n R对于任意1212,,,,,,(),()nn n x x x x ,y y y y R ==∈……令(,)x y ρ=容易验证ρ是的一个度量,因此偶对nR (,)nRρ是一个度量空间.这个度量空间特别地成为维欧式空间.这里定义的度量n ,ρ称为的通常度量,并且称为维欧氏空间.nR nR n 例2.1.3Hilbert 空间H .记为平方收敛的所有实数序列的集合,即H2121,,,;{()}i i i x R i Z x H x x x ∞+=∈∈<∞==∑…定义:H H R ρ×→如下:对于任意1212,,,,(),()x x x y y y H ==……∈令(,)x y ρ=则偶对(,)H ρ是一个度量空间.这个空间特别地称为Hilbert 空间.例2.1.4 离散的度量空间.设(,)X ρ是一个度量空间.称(,)X ρ是离散的,或者称ρ是的一个离散度量,如果对于每一个X ,x X ∈存在一个实数0x δ>使得(,)xx y ρδ>对于任何,.y X y x ∈≠例如我们假定是一个集合,定义X:X X Rρ×→使得对于任何,,x y X ∈有(,)0,x y x y ρ==或(,)1,x y x y ρ=≠容易验证ρ是的一个离散的度量,因此度量空间是离散空间.X 定义2.1.2 设(,)X ρ是一个度量空间,.x X ∈对于任意给定的0,ε>集合(,){}x y y X ρε<∈记作(,),B x ε或,称为一个以()B x εx 为中心,以ε为半径的球形邻域,简称为x 的一个球形邻域,有时也称为x 的一个ε−邻域.定理2.1.1 度量空间(,)X ρ的球形邻域具有以下基本性质:(1)每一点x X ∈至少有一个球形邻域,并且点属于它的每一个球形邻域; x (2)对于点x X ∈的任意两个球形邻域,存在的一个球形邻域同时包含于两者;x (3) 如果y X ∈属于x X ∈的某一个球形邻域,则y 有一个球形邻域包含于的x那个球形邻域.定义2.1.3 设A 是度量空间的一个子集.如果X A 中的每一个点有一个球形邻域包含于A (即对于每一个存在实数,a A ∈0ε>使得(,)B a A ε⊂),则称A 是度量空间中的一个开集.X 例2.1.5 实数空间中的开区间都是开集. R 定理2.1.2 度量空间中的开集具有以下性质:X (1) 集合本身和空集Φ都是开集; X (2) 任意两个开集的交是一个开集;(3) 任意一个开集族(即有开集构成的族)的并是一个开集。
《点集拓扑学教案》一、引言1.1 点集拓扑学的定义:研究在给定的拓扑空间中,点集的性质、结构以及点集之间的相互关系。
1.2 点集拓扑学的重要性:点集拓扑学是拓扑学的基础,对其他数学分支如代数、分析、微分几何等有重要的影响。
1.3 点集拓扑学与其他学科的联系:与计算机科学、物理学、经济学等领域有密切的联系。
二、拓扑空间的基本概念2.1 拓扑空间的定义:一个拓扑空间是一个集合,along with a collection of subsets of called a topology, which satisfies certn properties.2.2 拓扑空间的性质:拓扑空间具有三个基本性质:开集、闭集和连续性。
2.3 常见拓扑空间:欧几里得空间、度量空间、仿射空间、辛空间等。
三、拓扑空间的连通性3.1 连通性的定义:一个拓扑空间是连通的,如果它可以通过连续变换连通起来。
3.2 连通性的性质:连通的拓扑空间是自相似的,即它可以通过连续变换变成自身。
3.3 连通性与曲率的关系:通过曲率的定义,可以判断拓扑空间的连通性。
四、拓扑空间的紧性4.1 紧性的定义:一个拓扑空间是紧的,如果它的任何开覆盖都有一个有限子覆盖。
4.2 紧性的性质:紧的拓扑空间是可分的,即它可以被分成有限个开集的并集。
4.3 紧性与连续变换的关系:紧的拓扑空间可以通过连续变换变成自身。
五、拓扑空间的度量5.1 度量的定义:度量是一个函数,它为每个点集赋予一个非负实数,称为度量。
5.2 度量的性质:度量具有正定性、对称性和三角不等式性质。
5.3 度量空间:具有度量的拓扑空间称为度量空间,度量空间中的点集可以通过度量来度量它们之间的距离。
六、连通拓扑空间的同伦6.1 同伦的定义:两个连通拓扑空间之间的同伦是指一个连续映射可以将一个空间连续地变形到另一个空间。
6.2 同伦的性质:同伦关系是等价关系,满足自反性、对称性和传递性。
6.3 同伦的应用:同伦关系可以用来研究连通拓扑空间的性质和结构,例如通过同伦变换可以将一个空间变形为另一个空间。
点集拓扑学教案为聊城大学数学科学学院数学与应用数学专业三年级本科生开设《点集拓扑》课程。
按熊金城《点集拓扑讲义》(第三版,北京:高等教育出版社, 2003)第一至七章编写的教案。
本科生授课 64学时,教学内容与进度安排如下:第一章 朴素集合论点集拓扑学(Point-set Topology)现称一般拓扑学(General Topology), 它的起源与出发点都是 集合论. 作为基本的点集拓扑学知识, 所需的只是一些朴素集合论的预备知识. 本章介绍本书中 要用到的一些集合论内容, 主要涉及集合及集族的运算、等价关系、映射、可数集、选择公理等. 作为一教材, 讲义对各部分内容均有较系统的论述 , 作为授课, 我们只强调一些基本内容, 而对 已有过了解的知识不提或少提.记号: Z, Z +, R, Q 分别表示整数集, 正整数集, 实数集和有理数集.教学重点:集合的基本概念、运算,映射的概念;教学难点:选择公理一. 集合的运算幂集 P )(X , 交∩ 、并∪、差-(补, 余/,A A c).运算律: De Morgan 律: (1) C)-(A B)-(A C)(B -A ⋂=⋃. (2) C)-(A B)-(A C) (B -A ⋃=⋂A-(B∩ C)=(A -B)∪(A-C) 利用集合的包含关系证明(1).类似可定义任意有限个集的交或并, 如记Y Y n i ni i i n n n A A A A A A A A ≤=-==⋃⋃⋃=⋃⋃⋃11121)...(...A i . 规定 0 个集之并是φ, 不用 0 个集之交.二. 关系R 是集合X 的一个关系, 即R y x X X R ∈⨯⊂),(,记为 xRy , 称 x 与 y 是 R 相关的. R 称为自反的, 若X x ∈∀, xRx; R 称为对称的, 若 xRy, 则 yRx; R 称为传递的, 若 xRy, yRz, 则 xRz. 等价关系: 自反、对称、传递的关系.如, Δ(X)={(x, x )|x ∈X}, 恒同关系, 它是等价关系; y} x R,y x,|y) {(x,<∈,小于关系, 它是传递 的, 但不是对称的、不是自反的.设 R 是 X 上等价关系,X x ∈∀, x 的 R 等价类或等价类R [x ]或[x]为 xRy}| X {y ∈,R [x ] 的元称为R [x ] 的代表元; 商集 X} x | {[x]R X/R ∈=.定理 1.4.1 设 R 是非空集合 X 的等价关系, 则(1)R [x ] x X,x ∈∈∀;(2)X y x, ∈∀,或者[x]R =[y]R , 或者φ=⋂R R [y] [x ]证(2). 设R R [y] [x ]z ⋂∈, 则zRy ZRx ,, 于是R R [y] [x ]⊂且R R [y] [x ]⊃, 于是R R [y] [x ]=.三. 映射函数:Y X f →:.像:}|)({)(,A x x f A f X A ∈=⊂∀; 原像:})(|{)(,1B x f X x B f Y B ∈∈=⊂∀-满射、单射、一一映射(双射)、可逆映射、常值映射、恒同映射X i 、限制A f |、扩张、内射X A i A X →:|集合n i X i ≤,, 笛卡儿积∏∏=≤≤≤∈===⨯⨯⨯ni i i n i n i i n n i X x x x x X X X X X 121121},)...,{(...到第i 个坐标集iX 的投射i i X X p →: 定义为i x x p =)(, 其中),..,(1n x x x =.对等价关系,R 集合X 到商集R X /的自然投射R X X p /:→定义为 R x x p ][)(=. 四. 集族数列+∈=Z n n n }{x }{x , 有标集族τγγ∈}{A , 指标集 Γ, 与}{τγγ∈A 不同, 可记有标集族A A A ∈=γγ}{; 类似地, 定义其并Y τγλ∈A (或∪A )、交Iτγλ∈A (或∩ A ),不定义 0 个集的交. 与有限集族有相同的运 算律, 如 De Morgan 律Y IIY τγγτγγτγγτγγ∈∈∈∈=--=-A A A A A A A ,)(,映射对应的集族性质: I Y I Y τγγτγτγγγτγγ∈∈∈∈==)()(),()(A f A f A f A f ,I Y IY τγγτγτγγγτγγ∈-∈∈--∈-==)()(),()(1111B f B f B f B f五. 无限集通过一一映射来确定两集合的个数的多少.有限集(φ或与某{1, 2, … , n}有一一映射), 无限集, 可数集(φ或存在X 到 Z +的单射),不可数集.易验证: 有限集是可数集, 可数集的子集是可数集, 可数集的映像是可数集. 定理 1.7.3X 是可数集X ⇔是 Z +的映像.由此, Q 是可数集, 两可数集的笛卡儿积集是可数集, 可数个可数集之并集是可数集. 定理 1.7.8 R 是不可数集.利用 Cantor 对角线法证明开区间(0, 1)中的实数不可数 .直观上, 集合 A 中元素的个数称为该集合的基数, 记为card A, 或|A|. |Z +|=a , |R|=c . 若存在 从集合 A 到集合 B 的单射, 则定义|A|≤ |B|.连续统假设: 不存在基数α, 使得c a <<α.选择公理: 若 A 是由非空集构成的集族, 则∈∀A A , 可取定.)(A A ∈ε.由选择公理可证明, 若βα,是基数, 则下述三式中有且仅有一成立: βαβαβα>=<,,第二章 拓扑空间与连续映射本章是点集拓扑学基础中之基础, 从度量空间及其连续映射导入一般拓扑学中最基本的两 个概念: 拓扑空间、连续映射, 分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边 界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.教学重点:拓扑空间与连续映射,邻域与邻域系; 教学难点:基与子基;可度量化空间2.1 度量空间与连续映射在 R 上, |x-y|表示点 x 与 y 之间的距离. 绝对值是一非负函数, 具有三条重要性质. 定义 2.1.1 设 X 是一集合 ,R X X →⨯:ρ. 如果满足正定性、对称性和三角不等式, 则称ρ是X 的一个度量.),(ρX 称为度量空间, y) (x,ρ表示两点 x, y 之间的距离.例 2.1.1 实数空间 R. (x,y)=|x -y|, R 的通常度量.例 2.1.2 n 维欧氏空间 R R R R n⨯⨯⨯=.... 对于nR x ∈, 记 n i i x x ≤≤=1)( 定义∑=-=ni i iy xy x 12)(),(ρ 为 R n 的通常度量, n 维欧氏空间. R 2 称为欧氏平面或平面.例 2.1.3 Hilbert 空间 H.},...),..,({1221∑∞=∞<==i i n x x x x x H∑∞=-=→→⨯12)(),(),(:i i iy xy x y x R H H ρρ定义, 易证ρ为度量 则度量空间 ),(ρH 称为 Hilbert 空间.例 2.1.4 离散度量空间.度量空间),(ρX 称为离散的, 若0,>∃∈x X x δ, 使得不存在X 中的点x y ≠, 满足xy x δρ<),(如对集合X , 按如下方式定义R X X →⨯:ρ 是X 上的离散度量:⎩⎨⎧≠==y x y x y x ,1,0),(ρ定义2.1.2 设),(ρX 是度量空间}),({),(ερε<∈=y x X y x B 称为以x 为心,ε为半径的球形邻域或ε邻域, 或球形邻域. 对(R, |.|), )+x ,-(x =) B(x, εεε.定理 2.1.1 度量空间),(ρX 的球形邻域具有性质: (1)).(,0,εεx B x X x ∈>∈∀(2))2,.(),.(),.(,0,0,,313321εεεεεεx B x B x B x X x ⋂⊂∈>∃>∈∀满足则;(3) 若 0),,(>∃∈δεx B y 使),(),(εδx B y B ⊂ ;证 (2)},m in{0213εεε<<;(3)),(),(),,(εδρεδx B y B y x ⊂-=则 定义 2.1.3X 的子集A 称为),(ρX 的开集, 若A x B A a ⊂>∃∈),(,0,εε使. 每一球形邻域是开集.例 2.1.5 R 中的开区间是开集.),(b a x ∈让},min{x b a x --=ε 则 ),(),(b a x B ⊆ε 同样可证, 无限开区也是开集. 闭区间[a, b] 不是开集.定理 2.1.2 度量空间的开集具有以下性质:(1)φ,X 是开集; (2)两开集的交是开集; (3)任意开集族之并是开集. 证 (1)由定理 2.1.1(1); (2), (3)由定理 2.1.1(2).定义 2.1.4 设X 是度量空间, U X U X x ,,⊆∈ 称为x 的邻域, 若有开集V , 使U V x ⊆∈.定理 2.1.3U 是X 中点x 的邻域存在ε>0, 使 B(x, ε) ⊂U.定义 2.1.5 设Y X ,是两度量空间.Y X f →:, X x ∈0, 称f 在0x 连续, 若)(0x f 的球形邻域)0(),),((0>εεx f B存在0x 的球形邻域 B(x 0, δ), 使).),(()),((00εδx f B x B f ⊂ 称f 在X 连续, 若f 在X 的每一点连续.定理 2.1.4 设Y X ,是两度量空间. Y X f →:, X x ∈0, 那么 (1)f 在0x 连续若U 是)(0x f 的邻域, 则)(1U f -是0x 的邻域;(2) f 在X 连续若U 是Y 的开集, 则)(1U f-是X 的开集.证 (1)利用定义 2.1.5, 2.1.4.(2)“”f -1 (U)是每一点的邻域.“”证每一点连续,利用(1).由此可见,度量空间的连续只与邻域或开集有关.它导入建立比度量空间更一般的拓扑空间的概念及其连续性.2.2 拓扑空间与连续映射定义 2.2.1 设 τ是集合 X 的子集族, 若τ 满足:τττττττφ∈⊂∀∈⋂⇒∈∀∈Y 11,)3(;,)2(;,)1(B A B A X称τ是X 的一个拓扑),(τX 是拓扑空间, τ的元称为X 的开集. 空间 X 的拓扑是 X 的全体开集的族.定义 2.2.2),(ρX 度量空间.ρτ由 X 的所有开集构成的族 . (X, ρτ)称为由度量ρ诱导出的拓扑空间. ρτ简称为度量拓扑.度量空间一定是拓扑空间.例 2.2.1 平庸拓扑},{φτX =平庸空间.例 2.2.2 离散拓扑)(X P =τ. 离散空间. X 的每一子集是开集. 由离散度量空间导出的拓扑是 离散拓扑.例 2.2.4 有限补拓扑}{}{/φτ⋃⊂=的有限子集是X U X U . 验证 τ是 X 上的拓扑. (1)显然 . (2)X B A,⊂, 讨论 A ∩B 时分两种情形, 一是 A, B中有一是φ, 二是 A, B 都不是φ ;(3)ττ⊂1,不妨设10τφ∈≠∃A 利用 De Morgan 律.有限补空间.例 2.2.5 可数补拓扑}{}{/φτ⋃⊂=的可数子集是X U X U 定义 2.2.3 可度量化空间.离散空间是可度量化空间. 多于一点的平庸空间不是可度量化空间. 度量化问题是点集拓扑学研究的中心问题之一. 本书将在6.6中给出该问题的一个经典的解 .定义 2.2.4 Y X , 是两拓扑空间. Y X f →:称f 连续, 若 Y 中每一开集 U 的原象 f -1(U)是 X 中的开集.定理 2.2.1 恒同映射连续. 连续函数的复合是连续的.定义 2.2.5 Y X f →:称为同胚或同胚映射, 若f f 是一一映射且f f 及 1-f均连续.定义 2.2.6 称两空间 X 与 Y 同胚, 或 X 同胚于 Y, 若存在从 X 到 Y 的同胚. 定理 2.2.2(2.2.3) 恒同映射同胚(X 与 X 同胚); f 同胚 ⇒1-f同胚 (若 X 与 Y 同胚, 则 Y与 X 同 胚); 同胚的复合是同胚(若 X 与 Y 同胚, 且 Y 与 Z 同胚, 则 X 与 Z 同胚).空间的同胚关系是等价关系.拓扑学的中心任务 :研究拓扑不变性质.抽象化过程:欧氏空间→度量空间→拓扑空间;点距离→度量→开集.2.3 邻域定义 2.3.1 设),(τX 是拓扑空间. X U X x ⊂∈,称为 x 的邻域, 如果存在τ∈V 使U V x ⊆∈; 若 U 是开的, U 称为 x 的开邻域.定理 2.3.1 设U X U .⊂是 X 的开集⇔U 是它的每一点的邻域 .证 由定义得“⇒”; 利用开集之并为开得“⇐”.x 在 X 的所有邻域构成的族称为 x 的邻域系, 记为 U x .定理 2.3.2 U x 的性质:(1) X ∈U x ; U ∈U x , x ∈U;(2) U, V ∈U x U∩ V ∈U x ;(3) U ∈U x 且 U ⊂V ⇒V ∈U x ;(4) U ∈U x ∃⇒V ∈U x 使 V ⊂U 且 V y ∈∀, V ∈U y .证 由定义 2.3.1 得(1); 由开集的交是开集得 (2); 由定义 2.3.1 得(3); 取V 为满足U v x ⊂∈的开集.由邻域系出发可建立拓扑空间的理论, 显得自然 , 但不流行. 利用邻域与开集的关系 (定理2.3.1)导出开集, 从 U x )(X x ∈∀具有定理 2.3.2 的性质的(1)-(4)出发, 定义∈∈∀⊂=U U x X U ,{τU x }, 则),(τX 是拓扑空间, 且这空间中每一点 x 的邻域系恰是 U x . 详见定理 2.3.3.定义 2.3.2(点连续) 映射Y X f →:称为在点 x ∈X 连续, 如果 U 是 f(x)在 Y 中的邻域, 则 f -1(U)是 x 在 X 中的邻域.定理 2.1.4 保证了在度量空间中点的连续性与由度量导出的拓扑空间中的点的连续性的一致 . 另一方面 , 关于点的连续性 , 易验证(定理 2.3.4), 恒等映射在每一点连续, 两点连续的函数之复 合仍是点连续的. 定义 2.2.4 与定义 2.3.2 所定义的“整体”连续与每一“点”连续是一致的.定理 2.3.5 设 Y X f →: 则 f 连续⇔f 在每一 x ∈X 连续.证 “⇒”若 U 是 f(x)的邻域,∃开集 V 使U V x f ⊂∈)(, x )()(11U f V f x --⊂∈ “⇐”若 U 是 Y 的开集,)(1U f x -∈, U 是 f(x)的邻域, f -1 (U)是 x 的邻域, 所以 f -1 (U)在 X 中开.2.4 导集、闭集 、闭包定义 2.4.1 设x X A ,⊂称为 A 的聚点(凝聚点, 极限点), 如果 x 的每一邻域 U 中有 A 中异于 x 的点, 即 U∩ (A -{x})φ≠. A 的全体聚点之集称为 A 的导集, 记为 d(A). x 称为 A 的孤立点, 若 x 不 是 A 的聚点, 即存在 x 的邻域 U 使 U∩ (A -{x})=φ, 即 U∩ A ⊂{x}.例 2.4.1 X 是离散空间. 若X A ⊂, 则.φ=)(A d,X x ∈∀取 U={x}, 则 U∩ A ⊆{x}, 所以)(A d x ∉.例 2.4.2 X 是平庸空间, X A ⊂若 A=φ, 则φ=)(A d ; 若|A|=1, 则 d(A)=X-A; 若|A|>1,则X A d =)(.对于,X x ∈∀, 若 U 是 x 的邻域, 则 U=X, 于是 U ∩(A-{x})}{}{}){(x A x A x A U ⊄⇔≠-⇔≠-⋂φφ由此, 易计算 d(A). 定理 2.4.1X B A ⊂,, 则(1)φφ=)(d ;(2))()(B d A d B A ⊂⇒⊂;(3) )()()(B d A d B A d ⋃=⋃; (4) )())((A d A A d d ⋃⊆证 由定义 2.4.1 得(1)和(2).关于(3). 由(2)得)()()(B A d B d A d ⋃⊂⋃. 设)()(B d A d x ⋃∉, 分别存在x 的邻域 V U ,使得}{},{x B V x A U ⊂⋂⊂⋂, 令V U D ⋂=, 则}{)(x B A D ⊂⋃⋂.关于(4). 设)(A d A x ⋃∉, 存在x 的邻域U , 使得},{x A U ⊂⋂取x 的开邻域U V ⊂, 则)).((,)(),(,}){(,,A d d x A d V A d y y A V V y A V ∉=⋂∉=-⋂∈∀=⋂φφφ.定义 2.4.2 X A ⊂称为 X 的闭集 , 如果 A d(A)⊂.定理 2.4.2 A 闭⇔/A 开 .证 “⇒”A x ∈∀ ,由于A A d ⊂)(, 存在x 的邻域U 使φ=⋂A U, 于是/A U ⊂.“⇐”),(,,//A d x A A A x ∉=⋂∈∀φ所以 A A d ⊂)(’ 例 2.4.3 R 的闭区间是闭集.),(),(],[/+∞⋃-∞=b a b a 开集.),(b a 不是闭集, 因为a 是聚点.定理 2.4.3 记 F 是空间X 的全部闭集族, 则(1) ∈φ,X F ;(2) ∈B A ,F ∈⇒B A Y F ;(3) F 对任意交封闭.证 利用 De Morgan 定律及拓扑的定义. F }{/τ∈=U U 直接验证可得(1)、(2)、(3)Cantor 集(例 2.4.4)是集合论、点集拓扑或实变函数论中是具有特别意义的例子 , 它说明 R 中 的闭集可以是很复杂的, 在此不介绍.定义 2.4.3 A ∪ d(A)称为 A 的闭包, 记为-A A ,_.定理 2.4.5 对X B A ⊂,, 有(1) φφ=-;(2) -⊂A A ;(3)---⋃=⋃B A B A )( ;(4)---=A A )( .证 (3) ---⋃=⋃⋃⋃=⋃⋃⋃=⋃B A B d B A d A B A d B A B A )()()()(.(4) .))(()()())(()(------=⋃=⋃=⋃=A A d d A d A A d A A d A A Y . 上述 4 条确定了闭包运算, 称为 Kuratowski 闭包公理, 由此可建立拓扑空间的概念. 事实上阿记此运算为)(A c , 定义 }U )c(U | X {U //=⊂=τ , 则),(τX 是拓扑空间, 且这空间中每一-=A A c )( , 详见定理 2.4.8.关于闭包的几个相关结果:(1) ⇔∈-A x 对 x 的任一邻域有φ≠⋂A U . (定义 2.4.3 后)(2) --=}){()(x A A d ;(3) A 闭 -=⇔⊂⇔A A A A d )( . (定理 2.4.4)(4 )-A 是闭集. (定理 2.4.6)(5 ) -A 是包含A 的所有闭集之交, 是包含A 的最小闭集. (定理 2.4.7: 设 F 是包含A 的所有闭 集之交, 则F A A F A ⊂⊂⊂--,, 所以-=A F .)定义2.4.5),(ρX 是度量空间.对非空的X x X A ∈⊂,定义}),(inf{),(A y y x A x ∈=ρρ.定理 2.4.9 对度量空间),(ρX 的非空子集 A(1)0),(=⇔∈-A x A x ρ;(2) 0}){,()(=-⇔∈x A x A d x ρ.证明:⇔≠⋂⇔<∈∃>∀⇔=φεερερA x B y x A y A x ),(),(,,00),(-∈⇔≠⋂∈∀A x A U U U x φ,定理 2.4.10 设 Y X f →:, 则下述等价(1)f 连续;(2) 若B 闭于Y , 则)(1B f-闭于X ; (3) --⊂⊂∀)()(,A f A f X A证明;B )2()1(⇒是Y 的闭集,/B 是Y 的开集,/1/1)()(B f B f--=是 X 的开集, f -1(B)是 X 的闭集. )3()2(⇒ --------⊂⊂⊂⊂)()(),)((),)((,)()(1A f A f A f fA A f f A A f A f )1()3(⇒设U 是Y 的开集,/U 是Y 的闭集且/1/1/1/1//1/1)()(),()(,))(())((U f U f U f U f U U f f U f f ----------=⊂⊂⊂是闭,)(1U f -是开2.5 内部、边界定义 2.5.1 若A 是x 的邻域, 则称x 是A 的内点. A 的所有内点的集合称为A 的内部, 记为0A .定理2.5.1对/0///0,,A A A A X A ==⊂--证明:,0A x ∈由于,/φ=⋂A A 于是,/-∉A x 从而.//-∈A x反之x A x A x ∃∉∈--,,.///的邻域0/,,A x A V A V ∈⊆=⋂φ,因此,//0-=A A .从而---===A A A A A /0/////0/,.定理 2.5.3 对X B A ⊂,, 有(1)0X X =; A A ⊂0)2(;000)()3(B A B A ⋂=⋂000)4(A A =.证明:(1),(2)是显然的.00///////0)()(B A B A B A B A ⋂=⋂=⋃=⋂---而0//////00A A A A ===---关于内部的几个结果:(1)A 是x 的邻域0A x ∈⇔;(2)0A 是开集;(3)A 是开集;(4)0A 是A 所包含的所有开集之并,是含于A 内的最大开集.证明://0)2(-=AA 是开集 (3)A 开/A ⇔闭0////A A A A A ==⇔=⇔--(4)设O 是含于A 内的所有开集之并,O A A O A o o ⊃⊂⊂,所以O A o =定义 2.5.2 x 称为A 的边界点, 若x 的每一邻域, 既含有A 中的点又有 /A 中 的点. A 的边界点 之集称为边界, 记为A ∂.定理2.5.6 对X A ⊂,有A A A A A A A AA A o o ∂-=∂⋃=∂=⋂=∂----)3(;)2();()1(// 证明:;)()()()2(/-----=⋃⋂⋃=⋂⋃=∂⋃A A A A A A A A A A o o o o o(3)o A A A A A A A A A A =⋂=-=⋂-=∂---------///)(2.6 基与子基度量空间→球形邻域→ 开集→ 拓扑 . 在度量空间中球形邻域的作用就是拓扑空间中基的作用.定义 2.6.1 设 τ是空间 X 的拓扑, B τ⊂, 如果τ中每一元是B 中某子集族之并, 称B 是 X 的基.所有单点集的族是离散空间的基.定理 2.6.2 设B τ⊂ ,B 为 X 的基X x ∈∀⇔ 及x 的邻域 U x ,x V ∃ 使x x U V x ⊂∈. 证 “⇒”存在开集 W x 使得 Ux Wx x ⊂∈, ∃B 1⊂B 使得Y =x W B 1, ∈∃x V B 1 ⊂B 1使x x U V x ⊂∈;“⇐” 设τ∈U ,∈∃∈∀x V U x ,B 使x x U V x ⊂∈, 从而⊂∈}|{U x V x B 且 Y U x x V U ∈=在度量空间中, 所有球形邻域的族是度量拓扑的基(定理 2.6.1). 所有开区间的族是 R 的基.定理 2.6.3 拓扑空间X 的基B 满足:(i) ⋃B X =; (ii) ∈∀21,B B B ,∈∃⋂∈∀321,B B B x B , ,213B B B x ⋂⊂∈∀. 反之, 若集合 X 的子集族 B 满足(1)、(2), 定义}B {11B B ⊂⋃=τ, 则τ是X 的以 B 作为基的唯一拓扑.证 验证 τ是X 的拓扑. (1) φφ⋃=. (2) 先设∈21,B B B , 21B B x ⋂∈ , ∈∃x w B 使21B B W x x ⋂⊂∈,于是τ∈⋂∈=⋂}|{2121B B x W B B x . 如果τ∈21,A A , 设⋃=1A B 1 , ⋃=2A B 2,则∈⋂⋃=⋂12121|{B B B A A B 1, ∈1B B 2}τ∈..(3) 设∃∈∀⊂,,11τττA B A ⊂B , 使得⋃=A B A , 那么{(1⋃⋃=⋃τB A | })1τ∈A .较强于(ii)且易于验证的条件是 (ii)∈∀21,B B B , ∈⋂21B B B . 例 2.6.1 实数下限拓扑空间.令 B b}a R,b a,|b) {[a,<∈=,则B 为 R 上一拓扑的基. 这空间称为实数下限拓扑空间, 记为 R l . 开区间是 R l 中的开集, 因为Y +∈+=Z i b i a b a ),1[),(.定义 2.6.2 设),(τX 是拓扑空间, S τ⊂. 若 S 的元之所有有限交构成的族是τ的基, 则称 S 是τ的子基.S 的元之有限交构成的族∈⋂⋂⋂i n S S S S |...{21S ,}+∈≤Z n i . 显然, 空间X 的基是子基.例 2.6.2 S }|),{(}|),{(R b b R a a ∈-∞⋃∈+∞=是R 的子基.对照定理 2.6.3, 集合 X 的子集族 S 要作为子基生成X 上的拓扑的充要条件是∪S X =. (定理2.6.4)映射的连续性可用基、子基来刻画或验证.定理 2.6.5 设Y X ,是两拓扑空间, Y X f →:, 下述等价:(1)f 连续;(2) Y 基 B , 使得 B 中每一元的原像在X 中开;(3) Y 有子基 S , 使得 S 中每一元的原像在X 中开.证 (3)⇒ (2) 设 B 是 S 的元之所有有限交构成的族 , 则 B 满足(2).(2)⇒ (1) 设U 在Y 中开,则⋃=U B 1 , 于是∈=--B B f U f |)({)(11B 1 }在X 中开. 类似地, 可定义点的邻域基与邻域子基的概念, 同时用它们来验证映射的连续性等. 在第五章中定义第一可数性时再介绍这些概念.2.7 拓扑空间中的序列可以与R 中一样地定义序列、常值序列、子序列, 见定义 2.7.1, 2.7.3..定义 2.7.2 X 中序列x x i →极限 , 收敛序列 .平庸空间中任意序列收敛于空间中的任一点. 数学分析中的一些收敛性质还是保留的, 如常 值序列收敛, 收敛序列的子序列也收敛 . (定理 2.7.1)定理 2.7.2 {x}-A 中序列)(A d x x x i ∈⇒→证x ∀的邻域,}){(,φ≡-x A U U 所以.)(A d x ∈定理 2.7.3f 在 x 0 连续且)()(00x f x f x x i i →⇒→证 设 U 是)(0x f 的邻域, 则)(1U f -是0x 的邻域, +∈∃Z n , 当n i >时有)(1U f x i -∈, 从而U x f i ∈)(.上述两定理的逆命题均不成立.例 2.7.1 设 X 是不可数集赋予可数补拓扑, 则(1)在X 中+∈∃⇔→Z n x x i , 当n i > 时有.x x i =;(2)若A 是X 的不可数子集, 则X A d =)(.证(1)的必要性,令},|{+∈≠=Z i x x x D i i ,则/D 是x 的邻域,n i Z n >∀∈∃+,时有/D x i ∈,即x x i =证x ∀)2(的邻域/}{,U x A U ⊄-(可数集),所以).(,}){(A d x x A U ∈≠-⋂φ 定理 2.7.2 的逆命题不真. 如例 2.7.1, 取定X x ∈0, 让}{0x X A -=, 则)(0A d x ∈, 但A 中没有序列收敛于0x .定理 2.7.3 的逆命题不真. 取X 是实数集赋予可数补拓扑, 让R X i →:是恒等映射, 若在X 中x x i → , 则在R 中)()(x f x f i →, 但 i 在 x 不连续, 因为x x 在R R 的开邻域)1,1(+-x x 的原像)1,1())1,1((1+-=+--x x x x i 在X 中不是开的.定理 2.7.4 设{x i }是度量空间),(τX 中的序列, 则0),(→⇔→x x x x i i ρ. 证 x x x i ∀⇔→的邻域+∈∃Z n U ,, 当 i>n 时有+∈∃>∀⇔∈Z n U x i ,0ε当 i>n 时有+∈∃>∀⇔∈Z n x B x i .0),(εε当n i >时有0),(→x x i ρ.第三章 子空间、积空间、商空间介绍三种从原有的拓扑空间或拓扑空间族构造新空间的经典方法, 引入遗传性、可积性、可 商性等概念, 这些是研究拓扑性质的基本构架.教学重点:子空间与积空间;教学难点:子空间、(有限)积空间和商空间3.1 子空间对于空间 X 的子集族 A 及X Y ⊂, A 在 Y 上的限制 A |Y ∈⋂=A Y A |{A }.(定义 3.1.2) 引理 3.1.2 设Y 是空间),(τX 的子集, 则是Y 上的拓扑.证 按拓扑的三个条件逐一验证. 如, 设ττττ∈∃∈∀⊂A Y B A ,,1|1, 使得Y B A A ⋂=, 于是Y A A Y A B A Y B |111})|{(}|{ττττ∈⋂∈⋃=∈⋂⋃=⋃定义 3.1.3 对),(,|Y Y X Y τ⊂称为),(τX 的子空间, Y |τ称为相对拓扑.“子空间”= “子集”+ “相对拓扑”.易验证, 若Z 是Y 的子空间, 且 Y 是X 的子空间, 则Z 是X 的子空间. (定理 3.1.4), 定理 3.1.5(3.1.7) 设 Y 是X 的子空间, Y y ∈, 则(1)若*,ττ分别为Y X ,的拓扑, 则Y |*ττ=; (2)若 F , F *分别为Y X ,的全体闭集族, 则 F *=F |Y ;(3)若 U y , U y *分别为y 在 Y X , 中的邻域系, 则 U y *=U Y y |;(4)若 B 是X 的基, 则 B |Y 是Y 的基.证 (2) ∈*F F *,**Y U F Y F Y Y ⋂=-⇔∈-⇔τ Y F U Y U X F U |**,)(τττ∈⇔∈⋂-=⇔∈. (4) U 开于Y , 存在X 的开集V , 使得Y V U ⋂=, B 1 ⊂B , 满足⋃=V B 1, 则 ⋃=U (B 1 |Y ).在 R 的子空间),0(+∞中]1.0(是闭集.定理 3.1.6 设Y 是X 的子空间,Y A ⊂, 则Y A c A c Y A d A d X Y X Y ⋂=⋂=)()()2(;)()()1(证 (1) )(A d y X ∈在X 中的邻域φ≠-⋂⋂⊃-⋂}){()(}){(,y A Y U y A U U , 所以 Y A d y X ⋂∈)(. 反 之 , 设Y A d y X ⋂∈)(, y 在Y 中 的 邻 域y V ∃,在 X 中 的 邻 域U 使Y U V ⋂=, 于 是φ≠-⋂=⋂-=-}){(})){((}){(y A U Y y A U y A V I I , 所以).(A d y ∈.(2)Y A c Y A A d A Y A d A A d A A c X X X Y Y ⋂=⋃⋂⋃=⋂⋃=⋃=)()())(())(()()(.3.2 有限积空间就平面的球形邻域),(εx B d 而言, 我们知道球形邻域内含有方形邻域 , 方形邻域内含有球形邻域 . 从基的角度而言,形如),(),(222111εεx B x B ⨯的集合就是平面拓扑的基了. 对于两个拓扑空间Y X ,, 在笛卡儿积集Y X ⨯中可考虑形如V U ⨯的集合之全体, 其中 U, V 分别是 X, Y 的开集. 对于有限个空间n X X X ,...,,21, 可考虑形如n U U U ⨯⨯⨯...21的集合. 定理 3.2.2 设),(i i X τ是 n 个拓扑空间, 则n X X X X ⨯⨯⨯=...21 有唯一的拓扑, 以 X 的子集族 B n i U U U U i i n ≤∈⨯⨯⨯=,|...{21τ为它的一个基 .证 验证 B 满足定理 2.6.3 的条件(i), (ii). (1) ∈⨯⨯⨯=n X X X X ...21B ,∪B =X;(2) 若 ∈⨯⨯⨯⨯⨯⨯n n V V V U U U ...,...2121B , 则∈⋂⨯⨯⋂⨯⋂=⨯⨯⨯⋂⨯⨯⨯)(...)()()...()...(22112121n n n n V U V U V U V V V U U U B . 定义 3.2.2 以定理 3.2.2 中 B 为基生成n X X X X ⨯⨯⨯=...21 上的唯一拓扑, 称为拓扑n τττ,...,21的积拓扑.),(τX 称为),,),...(,(),,(2211n n X X X τττ的(有限 )积空间. 定理 3.2.4设n X X X X ⨯⨯⨯=...21是积空间, B i 是i X 的基, 则 B ∈⨯⨯⨯=i n B B B B |...{21Bi,}n i ≤是 积拓扑τ的基.证 利用定理 2.6.2. 设i i U U x ττ∈∃∈∈,使∈∃⊂⨯⨯⨯∈i n B U U U U x ,...21B i 使 i i i U B x ⊂∈, 那么.......2121U U U U B B B x n n ⊂⨯⨯⨯⊂⨯⨯⨯∈.例 3.2.1 形如),(...),(),(2211n n b a b a b a ⨯⨯⨯的集合构成n R 的基.设),(),,(2211ρρX X 是两个度量空间.令22222111),(),(),(y x y x y x ρρρ+=,则ρ是21X X ⨯上的度量, 导出X 上的度量拓扑τ. 对于n 个度量空间之积可类似地定义. (定义3.2.1)定理 3.2.1 度量空间的有限积: 积拓扑与度量拓扑一致.验证2=n 的情形. 易验证),(),(),()2/,()2/,(22112211εεεεεx B x B x B x B x B ⨯⊂⊂⨯于是每一),(εx B 是积拓扑的开集, 且每一),(),(2211εεx B x B ⨯是度量拓扑的开集, 所以导出相同的拓扑.定理 3.2.5 有限积空间n X X X X ⨯⨯⨯=...21以 S },)({1n i U U p i i i i ≤∈=-τ为子基, 其中i τ是i X 的拓扑, i i X X p →:是投射.仅证2=n 的情形.2121221111)(,)(U X U p X U U p ⨯=⨯=--, 所以∈⨯=⋂--21212111)()(U U U p U p B .定义 3.2.3 Y X f →:称为开(闭)映射, 若U 开(闭)于X , 则)(U f 开(闭)于Y . 定理 3.2.6 i i X X p →:是满、连续、开映射, 未必是闭映射.由于n i i i X U X X U p ⨯⨯⨯⨯⨯=-......)(211, 所以i p 连续. 由于i n i i U U U U U p =⨯⨯⨯⨯⨯)......(21, 所以是i p 开的. 但是R R p →21:不是闭的.定理 3.2.7 设映射X Y f →:其中X 是积空间n X X X ⨯⨯⨯..21. 则f 连续i i X Y f p n i →≤∀⇔:,ο连续.证 充分性. 对X 的子基 S )()())((},,)({1111i i i i i i i i U f p U p fn i U U p ----=≤∈=οτ开于Y .多元函数连续当且仅当它的每一分量连续.定理 3.2.8 积拓扑是使每一投射都连续的最小拓扑 . 即设τ是积空间n X X X X ⨯⨯⨯=...21的积拓扑, 若集合 X 的拓扑*τ满足: 每一投射i i X X p →),(:*τ连续, 则*ττ⊂.证 由于*1},)({ττ⊆≤∈-n i U U p i i i i , 所以*ττ⊂.3.3 商空间回忆, 商集R X /, 及自然投射R X X p /:→定义为R x x p ][)(=. 问题: 设X 是拓扑空间, 要在R X /上定义拓扑, 使p 连续的最大的拓扑.讨论更一般的情形, 设),(τX 是拓扑空间且YX f →:是满射. 赋予集合Y 什么拓扑, 使f 连续的最大的拓扑. 若f 连续, 且U 是Y 的开集, 则)(1U f -是X 的开集. 让})(|{11ττ⋃⊂=-U f Y U , 易验 证1τ是Y 上的拓扑.定义 3.3.1(3.3.2) 称1τ 是 Y 的相对于f 满射而言的商拓扑, ),(),(:1ττY X f →称为商映射. 这时, U 在 Y 中开)(1U f -⇔在X 中开;F 在Y 中闭)(1F f -⇔在X 中闭. 定理 3.3.1 商拓扑是使f 连续的最大拓扑.证 设),(),(:1ττY X f →是商映射. 显然, f 是连续的. 如果2τ是Y 的拓扑使),(),(:1ττY X f →连续, 则ττ∈∈∀-)(,12U fU , 于是,1τ∈U 即,12ττ⊂, 所以1τ 是使 f 连续的最大拓扑. 定理 3.3.2 设Y X f →:是商映射. 对于空间Z , 映射Z Y g →:连续⇔映射Z X f g →:ο连续.证 设Z X f g →:ο连续,W ∀开于))(()()(,111W g fW f g Z ---=ο开于,X 由于f 是商映射, 所以)(1W g -开于Y , 故g 连续.定理 3.3.3 连续, 满开(闭)映射⇒商映射.证 设),(),(:Y X Y X f ττ→是连续的满开(闭)映射, 1τ是Y 的相对于f 而言的商拓扑, 要证Y ττ=1. 由定理 3.3.1, Y ττ⊃1 . 反之,X V f V ττ∈∈∀-)(,11. 对于开映射的情形Y V f f V τ∈=-))((1,; 对于闭映 射的情形, Y V f X f Y V τ∈--=-))((1, 所以总有Y ττ⊂1.定义 3.3.3 设R 是空间),(τX 的等价关系, 由自然投射R X X p i /:→确定了 X/R 的商拓扑, 称),/(R R X τ为商空间, 这时R X X p i /:→是商映射.例 3.3.1 在R 中定义等价关系~: ⇔∈∀y x R y x ~,,或者Q y x ∈,, 或者Q y x ∉,商空间 R/~是由两点组成的平庸空间. 由于 Q 在 R 中既是开集, 也不是闭集, 所以单点集[Q]在 R/~中既不是开集,也不是闭集. 习惯上, 把 R/~说成是在 R 中将所有有理点和所有无理点分别粘合为一点所得到的商空间.例 3.3.2 在1] [0,上定义等价关系⇔∈∀y x y x ~],1,0[,~:或者y x =, 或者~/]1,0}.[1,0{},{=y x 是 在1] [0,中粘合 0, 1 两点所得到的商空间, 这商空间同胚于单位圆周1S .第四章 连通性本章起的四章介绍 4 类重要的拓扑不变性质. 本章讨论连通性、道路连通性、局部连通性及 其在实分析中的一些简单的应用.教学重点:连通空间、局部连通空间;教学难点:连通分支.4.1 连通空间在拓扑中怎样定义连通, 分隔区间(0, 1), (1, 2)的关系与(0, 1), [1, 2)的关系不同, 虽然他们都 不相交, 但相连的程度不一样.定义 4.1.1 设,,X B A ⊂ 若φ=⋂=⋂--B A B A , 则称B A ,是隔离的.区间(0, 1)与(1, 2)隔离, 但区间(0, 1)与[1, 2)不隔离.几个基本事实: (1)两不交的开集是隔离 的; (2)两不交的闭集是隔离的; (3)隔离子集的子集是隔离的 .定义 4.1.2X 称为不连通的, 若X 中有非空的隔离子集B A ,使B A X ⋃=, 即X 可表为两非空 隔离集之并. 否则X 称为连通的.包含多于一个点的离散空间不连通, 平庸空间是连通的.定理 4.1.1 对空间X , 下述等价:(1) X 是不连通的;(2) X 可表为两非空不交闭集之并;(3) X 可表为两非空不交开集之并;(4) X 存在既开又闭的非空真子集.证 (1)⇒(2)设隔离集B A ,之并是B B B A B B A B B X =⋂⋃⋂=⋃⋂=----)()()(,. 同理, A 也是闭的.(2)⇒(3)设X 是两非空不交闭集B A ,之并, 则X 是两非空不交开集B A ,之 并.(3)⇒(4)设X 是两非空不交开集B A , 之并, 则B A , 都是X 的既开又闭的非空真子集.(4)⇒ (1)若A 是X 的开闭集, 则A X A -,隔离.例 4.1.1 Q 不是R 的连通子空间, 因为)),())(,((+∞⋂-∞⋂=ππQ Q Q .定理 4.1.2 R 是连通的.证 若R 不连通, 则R 是两非空不交闭集B A , 之并 . 取定,,B b A a ∈∈ 不妨设b a <. 令B b a B A b a A ⋂=⋂=],[,],[**则**,B A 是R 两非空不交闭集且**],[B A b a ⋃=.让 *sup A c =. 因*A 是闭的, **],(,,B b c b c A c ⊂<∈, 因*B 是闭的, *B c ∈, 从而φ≠⋂**B A , 矛盾.定义 4.1.3 若X 的子空间Y 是连通的, 则称Y 为连通子集, 否则, 称为不连通子集. 定理 4.1.3 设,,X Y B A ⊂⊂, 则B A ,是Y 的隔离集B A ,⇔ 是X 的隔离集. 证 B A c Y B A c B A c X X Y ⋂=⋂⋂=⋂)()()(; 同理, A B c A B c X Y ⋂=⋂)()(.定理 4.1.4 设Y 是X 的连通子集. 如果X 有隔离子集B A ,使B A Y ⋃⊂, 则A Y ⊂ 或B Y ⊂.证Y B Y A ⋂⋂,是Y 的隔离集, 所以φ=⋂Y A , 或 φ=⋂Y B , 于是A Y ⊂ 或B Y ⊂.定理 4.1.5 若Y 是X 的连通子集且-⊂⊂Y Z Y , 则Z 是连通的.证 若Z 不连通, X 的非空隔离集B A , 使Y B A Z ⊃⋃=, 于是A Y ⊂ 或B Y ⊂, 不妨设A Y ⊂, 那 么--⊂⊂A Y Z , 于是 φ=⋂=B Z B , 矛盾.定理 4.1.6 设τγλ∈}{Y 是空间X 的连通子集族. 如果φτγλ≠∈I Y , 则X 连通. 证 若Y τγλ∈Y 是 X 中隔离集B A ,之并, 取定φτγλ≠∈∈I Y x , 不妨设A x ∈, 则A Y ⊂∈∀γτγ,, 所以A Y ⊂∈Y τγλ,于是φ=B .定理 4.1.7 设X Y ⊂. 若X Y y x ∃∈∀,,的连通子集 Y xy 使 Y Y y x xy ⊂∈,, 则Y 连通. 证 设φ≠Y ,取定Y a ∈, 则A Y ay ⊂∈Y τγ且I τγ∈∈ay Y a , 所以Y 连通.定理 4.1.8(连续映射保持) 设Y X f →:连续. 若X 连通, 则)(X f 连通.证 若)(X f 不连通, 则)(X f 含有非空的开闭真子集A . 由于)(:X f X f →连续, 于是)(1A f -是X 的 非空开闭真子集. 连续映射保持性可商性拓扑不变性.有限可积性. 对于拓扑性质 P, 要证有限可积性, 因为n X X X ⨯⨯⨯...21同胚于n n X X X ⨯⨯⨯-11..., 所以只须证: 若Y X ,具性质 P, 则Y X ⨯具有性质 P.定理 4.1.9 (有限可积性) 设n X X X ,...,,21 连通, 则n X X X ⨯⨯⨯...21连通. 证 仅证若Y X , 连通, 则 Y X ⨯连通. 取定Y X y x Y X b a ⨯∈∀⨯∈),(.),( 令 )}})({{(Y a y X S xy ⨯⨯=由于}{y X ⨯同胚于Y a X ⨯}{, 同胚于Y , 所以}{y X ⨯,Y a ⨯}{, 都 连通且)}({}){(),(Y a y X y a ⨯⋂⨯∈, 由定理41.6, xy S 连 通 且xy S y x ∈),(, 再 由 定 理 4.1.7}),(|{Y X y x S Y X xy ⨯∈=⨯连通.4.2 连通性的应用利用 R 连通性的证明(定理 4.1.2)知, 区间都是连通的. 区间有 9 类:无限区间 5 类:],,(),,(),,[),,(),,(b b a a -∞-∞+∞+∞+∞-∞有限区间 4 类:(a, b), [a, b), (a, b], [a, b].定理 4.2.1 设R E ⊂, 则E 连通⇔E 是区间.证 若 E 不是区间,b c a <<∃ , 使E b a ∈,但E c ∉令),(,),(+∞=⋂-∞=c B E c A 则 E 是不交的 非空开集B A , 之并.定理 4.2.2 设X 连通, R X f →:连续, 则)(X f 是 R 的一个区间.注X y x ∈,, 如果 t 介于)(x f 与)(y f 之间, 则X z ∈∃, 使t z f =)(. 事实上, 不妨设)()(y f t x f ≤≤则)()](),([X f y f x f t ⊂∈所以Xz ∈∃, 使t z f =)(. 定理 4.2.3(介值定理) 设R b a f →],[:连续, 若r 介于)(a f 与)(b f 之间, 则],[b a z ∈∃使r z f =)(.定理 4.2.4(不动点定理) 设]1,0[]1,0[:→f 连续, 则]1,0[∈z 使z z f =)(.证 不妨设 1)1(),0(0<<f f .定义R F →]1,0[:使)()(x f x x F -=, 则F 连续且 ]1,0[),1(0)0(∈<<z F F 使得0)(=z F , 即z z f =)(.定义2:R R f →为)2sin ,2(cos )(t t t f ππ=, 则f 连续且1)(S R f =, 于是1S 是连通的. 对121121),(,),(S x x x S x x x ∈--=-∈=称为x 的对径点, 映射11:S S r →定义为x x r -=)(称为对径映射, 则 r 连续.定理 4.2.5(Borsuk-Ulam 定理) 设R S f →1:连续, 则1S x ∈, 使)()(x f x f -=. 证 定义R S F →1:为)()()(x f x f x F --=, 则F 连续. 若1S a ∈ , 使得)()(a f a f -≠ 则0)()(<-⋅a F a F , 由定理 4.2.2,1S z ∈∃, 使得0)(=z F , 即)()(z f z f -=. 定理 4.2.6}0{-n R 连通, 其中.)0,...,0,0(0,1n R n ∈=>证 只证 n=2 的情形. 令})0{(]0,(}),0{(),0[-⨯-∞-⨯+∞=R B R A , 则}0{-=⋃n R B A . 由于})0{(),0[})0{(),0(-⨯+∞⊂⊂-⨯+∞R A R , 所以A 连通. 同理B 连通, 从而B A ,连通.定理 4.2.7 2R 与 R 不同胚.证 若存在同胚R R f →2:, 令R R f g R →-=-}0{:2}0{2, 则g 连续, 从而}0{})0{(22-=-R R g 连通, 矛盾.4.3 连通分支将不连通集分解为一些“最大”连通子集(“连通分支”)之并.定义 4.3.1 X y x ∈,称为连通的, 若X 的连通子集同时含y x ,, 记为y x ~. 点的连通关系~是等 价关系: z x z y y x x y y x x x ~~,~)3(;~~)2(;~)1(⇒⇔. 定义 4.3.2 空间X 关于点的连通关系的每一等价类称为X 的一个连通分支. x~y ⇔x, y 属于X 的同一连通分支. X 是X 的全体连通分支的互不相交并. 定理 4.3.1 设 C 是空间X 的连通分支, 则(1)若Y 是X 的连通子集且φ≠⋂C Y , 则C Y ⊂;(2)C 是连通的闭集.证 (1)取定Y y C Y x ∈∀⋂∈, 则y x ~所以 .C y ∈(2)取定X C x C c ∃∈∀∈,,的连通集),(x x Y x c Y ∈,由于C Y C Y x x ⊂≠⋂,φ,于是}|{C x Y C x ∈⋃=且}|{C x Y c x ∈⋂∈, 所以 C 是连通的. 从而 -C 连通且φ≠⋂-C C , 于是C C ⊂-, 故 C 闭.以上说明:连通分支是最大的连通子集.连通分支可以不是开集. Q 的连通分支都是单点集, 不是Q 的开子集Q y x ∈∀,, 由定理4.2.1, 不存在Q 的连通子集同时含有y x ,,所以Q 的连通分支都是单点集 .4.4 局部连通空间例 4.4.1 (拓扑学家的正弦曲线 ) 令T S S T x x x S ⋃=-⨯=∈=1],1,1[}0{]},1,0(|)/1sin(,{(,则1S S =-, 于是 S, S 1 连通. 在 S 1 中, S 中点与 T 中点的“较小的”邻域表现出不同的连通性 .S S 1=S ∪T=ST定义 4.4.1 设X x ∈若x 的每一邻域U 中都含有x 的某一连通的邻域V , 称X 在x 是局部连 通的. 空间X 称为局部连通的, 若X 在每一点是局部连通的.S 1 是连通, 非局部连通的. 多于一点的离散空间是局部连通, 非连通的.定理 4.4.1 对空间X , 下述等价:(1) X 是局部连通;(2) X 的任一开集的任一连通分支是开集;(3) X 有一个基, 每一元是连通的.证 (1)⇒(2)设 C 是X 的开集U 的连通分支. x C x ∃∈∀,的连通的邻域 U V ⊂, 于是 C V C V ⊂≠⋂,φ, 所以 C 是x 的邻域, 故 C 开.(2)⇒ (3)令 B C X C |{⊂= 是X 的开集U 的连通分支}, 则 B 是X 的基.(3)⇒ (1)设U 是x 的邻域, 存在开集V 使U V x ⊂∈, 连通开集 C 使U V C x ⊂⊂∈, 所以X 局部连通.定理 4.4.2 设Y X f →:是连续开映射. 若X 局部连通, 则)(X f 局部连通. 证 )(X f y ∈∀, 及 y 在)(X f 中的邻域U , 取)(1y fx -∈, 则 0(1U f -是x 的邻域, X 的连通开集V 使)(1U f V x -⊂∈, 于是 U V f x f y ⊂∈=)()(.定理 4.4.3 局部连通性是有限可积性, 即设n X X X ,...,,21局部连通, 则n X X X ⨯⨯⨯...21局部连通.证 仅证若21,X X 局部连通, 则21X X ⨯局部连通. 设 B 1, B 2 分别是21,X X 的由连通证 y 1, y 2 f(X), x 1, x 2X 使 f(x 1)=y 1, f(x 2)=y 2,开集组成的基, 则{ 121|B B B ⨯ ∈B 1, ∈2B B 2}是21X X ⨯的由连通开集组成的基(定理 3.2.4).4.5 道路连通空间定义 4.5.1 设X 是拓扑空间, 连续映射 X f →]1,0[:称为X 中的一条道路,)1(),0(f f 分别称为f 的起点和终点, f 称为从)0(f 到)1(f 的一条道路,])1,0([f 称为X 中的一条曲线. 若)1()0(f f =, f 称为闭路.定义 4.5.2 对空间X , 如果X X y x ∃∈∀,, 中从x 到y 的道路, 则称X 是道路连通的.类似可定义道路连通子集.R 是道路连通的, R y x ∈∀,, 定义R f →]1,0[:为ty x t t f +-=)1()(.定理 4.5.1 道路连通⇒连通.证 设 X 道路连通. X X y x ∃∈∀,,中从x 到y 的道路X f →]1,0[:, 这时])1,0([f 是X 中含y x ,的连通子集, 所以X 连通.拓扑学家正弦曲线 S 1 是连通, 非道路连通的空间.定理 4.5.2 设Y X f →:连续. 若X 道路连通, 则)(X f 道路连通.证X x x X f y y ∈∃∈∀2121,),(,使)(),(2211x f y x f y ==,存在道路X g →]1,0[: 使21)1(,)0(x g x g ==, 则 f◦g: [0, 1]→ Y 是 f(X)中从1y 到2y 的道路.定理 4.5.3 道路连通性是有限可积性.证 仅证若21,X X 是道路连通, 则21X X ⨯道路连通.212121),(),,(X X y y y x x x ⨯∈==∀, 则存在道路21]1,0[:X X f i ⨯→使i i i i y f x f ==)1(,)0(,定义21]1,0[:X X f ⨯→为))(),(()(21t f t f t f =, 则 f 是从 x 到 y 的道路.可引进局部道路连通空间的概念. 同时, 与连通分支类似 , 可建立道路连通分支: 空间中最大的道路连通子集.第五章 可数性公理本章主要介绍 4 种与可数性相关的拓扑性质, 它们与度量空间性质、下章要讨论的分离性公 理都是密切相关的. 本章的要点是给出它们之间的基本关系.教学重点:第一与第二可数性公理;教学难点:分离性公理.5.1 第一与第二可数性定理第二章介绍的空间的基, 在生成拓扑空间, 描述局部连通性, 刻画连续性等方面都发挥了积 极的作用. 较少的基元对于进一步讨论空间的属性是重要的.定义 5.1.1 若X 有可数基, 称X 满足第二可数(性)公理, 或是第二可数空间, 简称2A 空间.定理 5.1.1 . 2A R ⇒证 令 B },|),{(Q b a b a ∈=, 定理 2.6.2, B 是 R 的可数基. 离散空间X 具有可数基X 是可数集.下面讨论“局部基”性质. (定义 2.6.3)对X x ∈, 设 U x 是x 的邻域系, 若 V x ⊂U x 满足: ∈∀U U x , ∈∃V V x 使U V ⊂, 则称 V x 是 x 的邻域基, 若更设 V x 中每一元都是开的,则称 V x 是 x 的开邻域基或 局部基. 易验证, (1) 若 V x 是x 在X 的邻域基, 则∈V V o |{V x }是x 在 X 的局部基; (2)(定理 2.6.7) 若 B 是空间X 的基, X x ∈, 则 B x ∈=B {B }B x ∈是x 的局部基.定义 5.1.2 若X 的每一点有可数邻域基, 称X 满足第一可数(性)公理, 或是第一可数空间, 简 称1A 空间.定理 5.1.2 度量空间1A ⇒.证}|)/1,({+∈=Z n n x B B x 是x 的可数邻域基.例 5.1.1 不可数多个点的可数补空间X , 非1A证X x ∈有可数局部基V ,∈∃-∈∀y V x X y },{V 使//}{,}{y y V y y V ⊂⊂从而不可数集}{}{//y V x ⋃⊂可数集, 矛盾.定理 5.1.3 12A A ⇒.证 若 B 是X 的可数基, 则 B x ∈=B {B }|B x ∈是X x ∈的可数邻域基.。
第二章 拓扑空间与连续映射本章是点集拓扑学基础中之基础, 从度量空间及其连续映射导入一般拓扑学中最基本的两个概念: 拓扑空间、连续映射, 分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.教材中先介绍度量空间概念,由于刚刚结束泛函分析课程,所以此节不讲,而补充如下内容。
§ 2-1 数学分析中对连续性的刻画由于映射的连续性是刻画拓扑变换的重要概念,所以,我们先回顾一下数学分析中函数的连续性是如何刻画的。
设11:f E E →是一个函数,10x E ∈,则f 在0x 处连续的定义有如下几种描述方法:(1)序列语言若序列1,2,{}n n x = 收敛于0x ,则序列1,2,{()}n n f x = 收敛于0()f x ;(2)εδ-语言对于0ε∀>,总可以找到0δ>,使当0x x δ-<时,有0()()f x f x ε-<(3)邻域语言若V 是包含0()f x 的邻域(开集),则存在包含0x 的邻域U ,使得()f U V ⊂。
解释:(1)和(2)中用到距离的概念,可用于度量空间映射连续性的描述; 对于没有度量的场合,可以用(3)来描述;所谓拓扑空间就是具有邻域(开集)结构的空间。
§ 2-2 拓扑空间的定义一、 拓扑的定义注:这是关于拓扑结构性的定义定义1 设X 是一非空集,X 的一个子集族2Xτ⊆称为X 的一个拓扑,若它满足(1),X τ∅∈;(2)τ中任意多个元素(即X 的子集)的并仍属于τ;(3) τ中有限多个元素的交仍属于τ。
集合X 和它的一个拓扑τ一起称为一个拓扑空间,记(,)X τ。
τ中的元素称为这个拓扑空间的一个开集。
下面我们解释三个问题:(1)拓扑公理定义的理由; (2) 为什么τ中的元素称为开集;(3) 开集定义的完备性。
● 先解释拓扑定义的理由:① 从εδ-语言看:0x x δ-<和0()()f x f x ε-<分别为1E 上的开区间;② 从邻域语言看:,U V 是邻域,而()f U 是0()f x 的邻域,连续的条件是()f U V ⊂,即一个邻域包含了另一个邻域,也就是说,0()f x 是V 的内点,有内点构成的集合为开集。
拓扑空间与连续映射拓扑空间是数学中一个重要的概念,它描述了集合中的点如何聚集在一起,以及它们之间的关系。
拓扑空间的研究可以帮助我们理解各种数学和物理问题,同时也具有广泛的应用。
而连续映射则是在拓扑空间中描述点之间的映射关系的工具。
一、拓扑空间的基本定义在介绍拓扑空间之前,我们先给出集合和子集的定义。
定义1:集合是由元素组成的一个整体。
定义2:如果一个集合A的所有元素都是另一个集合B的元素,那么称A是B的子集。
在集合的基础上,我们可以定义拓扑空间。
定义3:拓扑空间是一个集合X,它的子集族T满足以下条件:(a)空集∅和整个集合X都是T的元素。
(b)T的任意有限个元素的交集仍然是T的元素。
(c)T的任意多个元素的并集仍然是T的元素。
拓扑空间的定义使得我们可以通过T族定义拓扑空间里的开集。
定义4:集合X的一个子集U是开集,如果U属于T。
定义5:设X是一个拓扑空间,P是X的一个点,邻域是包含P的开集的集合。
二、连续映射的定义在了解了拓扑空间后,我们可以引入连续映射的概念。
定义6:设X和Y是两个拓扑空间,函数f:X→Y是一个映射。
如果对于任意Y的开集V,f的原像f^(-1)(V)是X的开集,那么称f是一个连续映射。
连续映射的定义表明了映射在两个拓扑空间中的关系。
如果一个映射满足原像开集是定义域拓扑的开集,则该映射被称为连续映射。
三、连续映射的性质连续映射具有一些重要的性质,我们来介绍其中两个性质。
性质1:设X、Y、Z是三个拓扑空间,f:X→Y和g:Y→Z是两个连续映射,则复合函数g∘f:X→Z也是连续映射。
这个性质说明了连续映射的复合仍然是连续映射。
如果我们有多个连续映射进行复合,其结果仍然是连续映射。
性质2:设X和Y是两个拓扑空间,f:X→Y是一个连续双射,且f和f^(-1)都是连续映射,则f是一个同胚映射。
这个性质描述了连续双射和同胚映射的关系。
如果一个连续双射的逆映射也是连续映射,则该映射称为同胚映射。
《点集拓扑学》教学大纲课程名称:《点集拓扑学》Point Set Topology课程性质:数学与应用数学专业必修课学时数:36教材:《点集拓扑讲义》熊金城编著.高等教育出版社, 2011年12月第4版.主要参考书:《点集拓扑学》徐森林编著,高等教育出版社,2007年7月第1版.《基础拓扑学》胡适耕编著,华中科技大学出版社,2007年8月第1版.《基础拓扑学讲义》尤承业编著,北京大学出版社,1997年11月第1版.《拓扑学》 [美] 芒克里斯编著,熊金城等翻译,机械工业出版社,2006年4月第1版. 授课方式:课堂讲授为主所属院系:数学学院数学与应用数学系课程基础:《数学分析》、《实变函数论》一、课程简介拓扑学是近代数学的三大基础之一,是研究抽象空间的理论的一门学科,它具有高度的概括性和抽象性.点集拓扑学产生于19世纪.G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果.1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始.泛函分析的兴起,希尔伯特空间和巴拿赫空间的建立,促进了把点集当作空间来研究.数学分析研究的中心问题是极限,而收敛与连续又是极限的基本问题.为把收敛与连续的研究推广到一般集合上,需要在一般集合上描述与点或与集合“邻近”的概念.如何描述“邻近”,可以用“距离”,但“距离”与“邻近”并无必然的联系.1914年F.豪斯道夫开始考虑用“开集”来定义拓扑.对一个非空集合X,规定X的每点有一个包含此点的子集作成的子集族,满足一组开集公理(即仿照欧几里得空间邻域所具特性给出的一组性质).该子集族中的每个集合称为这点的一个邻域,这就给出了X的一个拓扑结构,X连同此拓扑结构称为一个拓扑空间.X的每点有邻域,故可研究一点的邻近,由此可仿照微积分的方法定义两个拓扑空间之间的连续映射的概念.若一个映射连续,且存在逆映射,逆映射也连续,则称此映射为同胚映射.具有同胚映射的两个拓扑空间称为同胚的(直观地说即两个空间相应的图形从一个可连续地形变为另一个).要证明两个空间同胚,只要找到它们之间的同胚映射即可.在欧几里得直线上,作为子空间,两个任意的闭区间同胚;任意两开区间同胚;半开半闭的区间[c,d)与[a,b)同胚;二维球面挖去一个点S2-p与欧几里得平面K2同胚.要证明两个拓扑空间不同胚,需证明它们之间不存在同胚映射.方法是找同胚不变量或拓扑不变性(即在同胚映射下保持不变的性质);第一个空间具有某同胚不变量,另一个空间不具有,则此二空间不同胚.一般拓扑学中常见的拓扑不变性有连通性、道路连通性、紧性、列紧性、分离性等.在历史上F.豪斯多夫提出了分离空间;弗雷歇看出了紧性与列紧性有密切关系;帕维尔·萨穆伊洛维奇·乌雷松对紧空间进行了系统研究,且在拓扑空间可否变量化的问题上作出了贡献;1937年H.嘉当引进了“滤子”的概念,能进一步刻画一致收敛,使收敛的更本质的属性揭示了出来;维数的问题是E.嘉当在研究皮亚诺曲线(一种可填满整个正方形的“曲线”)时提出的,1912年H.庞加莱给出定义,由乌雷松等人加以改进.二、教学目的点集拓扑近代数学的三大基础之一,是研究抽象空间的理论的一门学科.该课程从点集拓扑学的发展简史出发,深入浅出地阐述了点集拓扑学的基本理论、基本问题和基本方法.内容包括:点集拓扑基础、拓扑空间与连续映射、子空间、积空间、商空间及有关可数性的公理等.其中各部分主题鲜明,逻辑性强,通过对各部分内容由浅入深的讲解,使学生透彻地理解基本概念,努力将每个知识点与中学数学的知识及已经学过的大学其它数学课程(例如实变函数论)联系起来,便于学生比较理解,增加对知识背景的认识.三、教学要求本课程研究点集拓扑学的基本理论和基本方法。
拓扑空间与连续映射拓扑空间是数学中一个重要的概念,它在分析、代数和几何学等领域都有广泛的应用。
拓扑学研究的主要对象是拓扑空间及其性质,而连续映射是拓扑空间之间的映射关系。
一、拓扑空间的定义拓扑空间是一个非空集合X,加上X的一个子集族T,满足以下三个条件:1. 空集∅和X本身是T的成员。
2. 任意多个T的成员的交集仍然是T的成员。
3. 有限多个T的成员的并集仍然是T的成员。
二、开集和闭集在拓扑空间中,开集和闭集是比较常用的概念。
对于拓扑空间X中的子集A,如果A的所有元素都是X中的内点,则A是X中的开集。
如果A的所有极限点都属于A,则A是X中的闭集。
三、连续映射的定义设X和Y是两个拓扑空间,映射f:X→Y被称为连续映射,如果对于任意开集V∈Y,其原像f^(-1)(V)是X中的开集。
四、拓扑空间的基本性质1. 如果A是拓扑空间X的子集,则A相对于X的拓扑是一个拓扑空间。
2. 有限个拓扑空间的笛卡尔积仍然是一个拓扑空间。
3. 拓扑空间的维度是一个重要概念,维度较低的拓扑空间具有更简单的性质。
五、连续映射的性质1. 连续映射保持拓扑结构,即如果f:X→Y是连续映射,那么f(X)的相对拓扑和Y的拓扑在映射下是一样的。
2. 连续映射的复合仍然是连续映射。
3. 一个映射f:X→Y是连续映射,当且仅当对于X中的每一个闭集B,f^(-1)(B)在X中也是闭集。
六、连续映射的分类根据连续映射的不同特性,可以将它们分为几类,如同胚映射、同胚等。
1. 同胚:如果映射f:X→Y是一个双射并且连续,同时其逆映射f^(-1):Y→X也是连续的,则称f是X和Y之间的同胚映射,X和Y 也被称为同胚空间。
2. 同伦:如果两个拓扑空间X和Y之间存在一个连续映射f:X×[0,1]→Y,其中[0,1]是区间,使得对于每个t∈[0,1],都有f(x,t)是X 到Y的连续映射,则称X和Y是同伦空间。
3. 同伦等价:如果存在同胚映射将一个拓扑空间X映射到另一个拓扑空间Y,则称X和Y是同伦等价的。
2.2 拓扑空间2.2.1 拓扑空间的基本概念定义2.2.1 设X 是一非空集,τ是X 的某些子集组成的一个集类,若τ满足:(1),X ττ∅∈∈;(2) 若,1,2,,i A i n τ∈= , 则1ni i A τ=∈ ;(3) 若,A I ατα∈∈,则IA αατ∈∈ , 其中指标集I 可以是有限集、可数集或不可数集; 则称τ为X 上的一个拓扑(结构)。
并称(,)X τ为拓扑空间,有时简写(,)X τ为X .τ中的元素称为X 的τ-开集,简称开集。
空间X 中的元素称为点。
若开集A (即:A τ∈)含有点x ,则称A 为x 的邻域,任何开集E (即:E τ∈)的余集c E X E =-称为闭集。
若拓扑空间(,)X τ又满足如下条件 (4) 若对,x y X ∀∈,当x y ≠时,必存在,x y 的邻域,U V ,使U V =∅ ,则称(,)X τ是Hausdorff 空间.注 在度量空间中,我们总是把按定义2.2.1的方法定义的开集全体作为拓扑,因此,度量空间自然地成为一个拓扑空间,而且是Hausdorff 空间。
例2.2.1 设τ是1R 中所有开的实数集构成的集族,则τ是1R 上的一个拓扑,并称之为1R上的通常拓扑或标准拓扑(usual topology ).类似地, 2R 平面上所有开集构成的集族τ是2R 上的一个拓扑,也称之为2R 上的通常拓扑或标准拓扑(usual topology ).例2.2.2 设{,,,,}Xa b c d e =,考察X 的子集族123{,,{},{,},{,,},{,,,}},{,,{},{,},{,,},{,,}},{,,{},{,},{,,},{,,,}}X a c d a c d b c d e X a c d a c d b c d X a c d a c d a b d e τττ=∅=∅=∅ 则1τ是X 上的一个拓扑,但2τ和3τ都不是X 上的拓扑。
In fact 虽然22{,,},{,,}a c d b c d ττ∈∈,但是2{,,}{,,}{,,,}a c d b c d a b c d τ=∉ ;虽然33{,,},{,,,}a c d a b d e ττ∈∈,但是3{,,}{,,,}{,}a c d a b d e a d τ=∉ .例2.2.3 设X 是非空集合,{,}X τ=∅,则τ是X 的拓扑,并称τ是X 的平庸拓扑(或平凡拓扑或不可分拓扑),称(,)X τ为平庸(拓扑)空间(或平凡(拓扑)空间或不可分拓扑空间)。
在平庸空间中,有且仅有2个开集:X 和∅.当X 中不止有一点时,X 按照平凡拓扑不是Hausdorff 空间.例2.2.4 设X 是非空集合,2X τ=,则τ是X 的拓扑,并称τ是X 的离散拓扑,称(,)X τ为离散(拓扑)空间。
在离散空间中,X 的每个子集都是开集。
例2.2.5 设τ为集X 的子集族,τ由X 的每个有限集的余集及空集∅组成。
则τ是X 上的一个拓扑,称为X 上的有限余拓扑(cofinite topology )。
定义2.2.2 设(,)X ρ为度量空间,ρτ是X 中所有开集构成的集簇,则ρτ是X 的拓扑,并称ρτ为X 的由度量ρ诱导出来的拓扑, 或:度量拓扑.注1 约定:在称度量空间(,)X ρ为拓扑空间时,指的就是拓扑空间(,)X ρτ. 注2 由定义2.2.2知:度量空间一定是拓扑空间。
注3 X 的不同的度量可以诱导出相同的拓扑。
例2.2.6 度量空间22212(,),(,),(,)ρρρR R R 中的度量22112,,:ρρρ⨯→R R R 的定义分别为:对221212(,),(,)x x y y ∀=∈=∈R R x y ,(,)ρx y ; 11122(,)max{,}x y x y ρ=--x y ;21122(,)x y x y ρ=-+-x y .按ρ定义的度量,球形邻域(,){,(,)}U X ερε=∈<x y y x y 是平面上的开圆盘;按1ρ定义的度量,球形邻域11(,){,(,)}U X ερε=∈<x y y x y 是平面上的开正方形;按2ρ定义的度量,球形邻域22(,){,(,)}U X ερε=∈<x y y x y 是平面上的开菱形, 且21(,)(,)(,)U U U εεε⊂⊂x x x .度量空间22212(,),(,),(,)ρρρR R R 有着完全相同的开集(即:一个集合对于某一度量而言是开集,则对于另一度量而言也是开集)。
定义2.2.3 非空集合X 的度量1ρ和2ρ称为等价的度量,若1ρ和2ρ分别诱导出来的X 的拓扑1ρτ和2ρτ相同,即21ρρττ=.显然,例2.2.6中的3个度量12,,ρρρ是等价的度量.定义2.2.4 设(,)X τ是拓扑空间,若存在X 的度量ρ,使得τ就是由度量ρ诱导出来的X 的拓扑,则称拓扑空间(,)X τ为可度量化的(拓扑)空间.问题:拓扑空间是否比度量空间的范围更广一些?由定义2.2.4,上述问题等价于:是否每一个拓扑空间都是可度量化的空间?例 2.2.7 设(,)X ρ为度量空间,X 是有限集。
若X 的拓扑τ是由度量ρ诱导出来的,则由例2.1.3知:X 的每一个子集都是开集,即(,)X τ是离散(拓扑)空间。
反例1 例2.2.2中的拓扑空间1(,)X τ:{,,,,}X a b c d e =,1{,,{},{,},{,,},{,,,}}X a c d a c d b c d e τ=∅In fact 虽然X 只含有限个点,但由例2.2.7的结论知:1(,)X τ不是离散空间(这是因为至少X 的子集1{,}a b τ∉)。
故例2.2.2中的拓扑空间1(,)X τ不是可度量化的。
反例2 例2.2.3中的平庸拓扑空间(,)X τ, {,}X τ=∅.In fact 设X 是有限集(其元素个数大于1),虽然X 只含有限个点,但(,)X τ不是离散空间(这是因为X 的真子集τ∉)。
故由例2.2.7的结论知:例2.2.3中的平庸拓扑空间(,)X τ不是可度量化的。
注 上述2个例子说明:并非每一个拓扑空间都是可度量化的,即拓扑空间确实比度量空间的范围更广。
定义2.2.5 设1τ和2τ是非空集X 上的两个拓扑,若12ττ⊂,即:每个1τ-开集都是2τ-开集,则称2τ强于(stronger than ) 1τ,或1τ弱于(weaker than )2τ.若1τ和2τ中的任何一个都不强于或弱于另一个,则称1τ和2τ是不可比较的(not comparable )。
例如:{,,}Xa b c =,12{,,{}},{,,{}}X a X b ττ=∅=∅是X 上两个拓扑,但1τ和2τ是不可比较的。
例2.2.8 设τ是2R 上的通常拓扑,1τ是2R 上的有限余拓扑,则1ττ⊂.In fact 设A 是2R 的任意有限子集,则1c A τ∈. 而2R 上的每个有限子集A 是一个τ-闭集,因此cA 是一个τ-开集,即:cAτ∈,于是1ττ⊂.例2.2.9 设1τ和2τ分别是非空集X 上的平庸拓扑和离散拓扑,τ是X 上的任意一个拓扑,则12τττ⊂⊂.定理2.2.1 设()i i I τ∈是集X 上的一簇拓扑,则i i Iτ∈ 也是X 上的拓扑。
注 虽然1τ和2τ是集X 上两个拓扑,但是12ττ 却未必是X 上的拓扑。
例如:{,,}X a b c =,12{,,{}},{,,{}}X a X b ττ=∅=∅是X 上两个拓扑,但是12{,,{},{}}X a b ττ=∅却不是X 上的拓扑,因为12{}{}{,}a b a b ττ=∉ .定义 2.2.6 设(,)X τ是拓扑空间,A X ⊂,则x X ∈称为A 的一个聚点(accumulation point )或极限点(limit point )是指:对B τ∀∈且x B ∈,都有({})B x A -≠∅ .A 的所有极限点组成的集合称为A 的导集(derived set ),记为A '.例2.2.10 设{,,,,}Xa b c d e =,{,,{},{,},{,,},{,,,}}X a c d a c d b c d e τ=∅是X 上的拓扑,{,,}A a b c X =⊂,则b 是A 的一个聚点,因为包含b 的开集只有{,,,}b c d e 和X ,而({,,,}{}){},({}){,}b c d e b A c X b A a c -=≠∅-=≠∅ .同理,,d e 也是A 的聚点。
但是,a c 不是A 的聚点,因为开集{}a 包含a ,但({}{})a a A -=∅ . 开集{,}c d 包含c ,但({,}{})c d c A -=∅ . 故 {,,}A b d e '=.例2.2.11 设(,)X τ是平庸拓扑空间,即:{,}X τ∅=,则,,{},{},,A A X x A x X A ∅=∅⎧⎪'=-=⎨⎪⎩中至少有两个不同的点.定义2.2.7 设(,)X τ是拓扑空间,A X ⊂. 若c A τ∈,则称A 是X 的闭集。
设B X ⊂,则称X 中包含B 的最小闭集为B 的闭包,记作B .即:B 是一切包含B 的闭集的交. ※命题2.2.1 设(,)X τ是拓扑空间,A X ⊂,A 是集A 的闭包,则(1) A 是X 中的闭集;(2) 若B 是X 中包含A 的一个闭集,则A A B ⊂⊂; (3) A 是闭集 ⇔A A =;In fact, (1) 由闭包的定义,立知:A 是X 中的闭集。
(X 中包含B 的最小闭集为B 的闭包。
)(2) 若B 是X 中包含A 的一个闭集,则由闭包的定义,立知:A A B ⊂⊂.(3) 由闭包的定义及(1)、(2),立得:A 是闭集 ⇔A A =. ※例2.2.12 设{,,,,}Xa b c d e =,{,,{},{,},{,,},{,,,}}X a c d a c d b c d e τ=∅是X 上的拓扑,则此拓扑空间的闭集是,,{,,,},{,,},{,},{}X b c d e a b e b e a ∅.注 X 有些子集既是开集,也是闭集。
例如:{}a , {,,,}b c d e .X 有些子集既不是开集,也不是闭集。
例如:{,}a b .例2.2.13 设(,)X τ是离散拓扑空间,2X τ=,则X 所有子集既是开集,也是闭集。
定理2.2.2 A A A'= . 证 (自证!)定理2.2.3 设(,)X τ是拓扑空间,则A X ⊂是闭集⇔A A '⊂.证 “⇒” 若A X ⊂是闭集,则由命题2.2.1(3)(A 是闭集 ⇔A A =)及定理2.2.2知:A A '⊂.“⇐” 若A A '⊂,则由定理2.2.2知:A A A A '== 是闭集。