知识讲解_ 不等式的全章复习与巩固_提高
- 格式:doc
- 大小:883.00 KB
- 文档页数:15
高中不等式知识点的归纳总结高中不等式知识点的归纳总结引言:不等式是高中数学中的重要内容,它在数学问题和实际应用中具有广泛的应用。
掌握不等式的基本概念和解题方法对于学生的数学能力发展至关重要。
本篇文章将对高中不等式的各个知识点进行归纳总结,并提供相关的解题技巧和实例,帮助读者在学习和应用不等式时更加深入理解。
一、不等式基本概念1. 不等式符号:大于、小于、大于等于、小于等于符号的含义和表示方法。
2. 不等式的解集:解集表示不等式中使不等式成立的数值范围。
3. 解不等式的方法:加减法、乘除法、绝对值法等常用的解不等式的方法。
二、一元一次不等式1. 一元一次不等式的定义和性质:介绍一元一次不等式形式、性质和解集的概念。
2. 一元一次不等式的解法:从加减法、乘除法到绝对值法的详细解题步骤和注意事项。
3. 实际问题中的应用:将实际问题转化为一元一次不等式,并求解实际问题。
三、一元二次不等式1. 一元二次不等式的定义和性质:介绍一元二次不等式形式、性质和解集的概念。
2. 一元二次不等式的解法:使用图像法、符号法、区间法等方法解一元二次不等式。
3. 实际问题中的应用:将实际问题转化为一元二次不等式,并求解实际问题。
四、多项式不等式1. 多项式不等式的定义和性质:介绍多项式不等式的定义、性质和解集的概念。
2. 多项式不等式的解法:使用图像法、符号法、区间法等方法解多项式不等式。
3. 实际问题中的应用:将实际问题转化为多项式不等式,并求解实际问题。
五、绝对值不等式1. 绝对值不等式的定义和性质:介绍绝对值不等式的定义、性质和解集的概念。
2. 绝对值不等式的解法:使用绝对值定义、分情况讨论、不等式的性质等方法解绝对值不等式。
3. 实际问题中的应用:将实际问题转化为绝对值不等式,并求解实际问题。
结论:高中不等式知识点的归纳总结对于学生的数学学习和应用具有重要的指导意义。
通过本文的介绍,读者可以清晰地了解不等式的基本概念、解题方法和实际应用,并通过解题实例加深对不等式知识点的理解和掌握。
《不等式与一次不等式》全章复习与巩固(提高)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:a<b,b<c则a<c.这个性质也叫做不等式的传递性.不等式的基本性质2:不等式两边都加上(或减去)同一个数,所得到的不等式仍成立.如果a>b,那么a±c>b±c如果a<b,那么a±c<b±c不等式的基本性质3:不等式两边都乘(或都除以)同一个正数,所得到的不等式仍成立;不等式两边都乘(或都除以)同一个负数,必须改变不等号的方向,所得到的不等式成立.如果a>b,c>0,那么ac>bc,a bc c >;如果a>b,c<0,那么ac<bc,a bc c .要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的语言翻译下列小题:(1)x与9的差是正数或0;(2)b与-5的和既不是正数也不是负数;(3)y的5倍既大于x又小于3x+2;(4)a的2倍与-4的差小于5或大于7;(5)102y x -≥; (6)12302x -<-<;(7)(8) 【答案与解析】解:(1)x -9≥0; (2)b+(-5)=0; (3)x<5y<3x+2;(4)2a-(-4)<5或2a-(-4)>7; (5)y 的一半与x 的差非负;(6)x 的一半与3的差既大于-2又小于0; (7)x>-3或写作:大于-3的数;(8)2<x ≤3或写作:既大于2又小于等于3的数. 【总结升华】对“既……又……”,“既是……也是……”,“是……或是……”等连接词也要逐步领会积累.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
不等式知识点详解不等式是数学中的一种重要的表示关系的方式,它利用不等号(大于号、小于号、大于等于号、小于等于号等)来表示数之间的大小关系。
不等式在数学中的运用广泛,特别在代数、几何、经济学等领域中起到了重要的作用。
下面将详细介绍一些有关不等式的基本知识点。
一、不等式的基本形式1. 一元一次不等式:形如ax+b>0(或<0)、ax+b≥0(或≤0)的不等式,其中a、b为已知的实数,x为未知数。
2. 一元二次不等式:形如ax^2+bx+c>0(或<0)、ax^2+bx+c≥0(或≤0)的不等式,其中a、b、c为已知的实数,x为未知数。
3.绝对值不等式:形如,f(x),>g(x)(或,f(x),<g(x),f(x),≥g(x),f(x),≤g(x))的不等式,其中f(x)和g(x)均为含有x的函数。
4.分式不等式:形如f(x)/g(x)>0(或<0、≥0、≤0)的不等式,其中f(x)和g(x)均为含有x的函数。
二、不等式的性质1.基本性质:不等式在数轴上表示一组数,一般情况下是一个区间或它的余区间。
对于不等式来说,如果它的一个解是真解,则它关于这个解的两边均成立。
2.四则运算性质:对于不等式,可以进行加减乘除等四则运算,但需要注意乘除以负数时不等号的方向要翻转。
3.取绝对值性质:对于不等式中的绝对值,可以将其加上取非的表示方式,即,a,>b等价于a>b或a<-b。
4.平方性质:对于一元不等式中的平方项,当平方项为正时,等号成立时解可能为空集;当平方项为负时,等号成立时解为全集;当平方项与常数同号时,等号成立时解由其他项决定。
三、不等式的求解方法1.绝对值不等式的求解方法:-对于,f(x),>g(x)的不等式,可以考虑f(x)>g(x)和f(x)<-g(x)两个不等式,然后求解得出解集。
-对于,f(x),<g(x)的不等式,可以考虑-f(x)<g(x)和f(x)<g(x)两个不等式,然后求解得出解集。
高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
不等式知识点总结不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。
下面我们来对不等式的相关知识点进行一个全面的总结。
一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。
例如:3x + 2 > 5 ,y 1 ≤ 4 等都是不等式。
二、不等式的基本性质1、对称性:如果 a > b ,那么 b < a ;如果 a < b ,那么 b > a 。
例如:若 5 > 3 ,则 3 < 5 。
2、传递性:如果 a > b 且 b > c ,那么 a > c ;如果 a < b 且 b< c ,那么 a < c 。
比如:已知 7 > 5 ,5 > 3 ,则 7 > 3 ;若 2 < 4 ,4 < 6 ,则 2< 6 。
3、加法性质:如果 a > b ,那么 a + c > b + c ;如果 a < b ,那么 a + c < b + c 。
例如:因为 8 > 5 ,所以 8 + 2 > 5 + 2 ,即 10 > 7 。
4、乘法性质:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a < b 且 c > 0 ,那么ac < bc 。
如果 a > b 且 c < 0 ,那么 ac < bc ;如果 a < b 且 c < 0 ,那么ac > bc 。
例如:若 3 > 1 ,且 2 > 0 ,则 3×2 > 1×2 ,即 6 > 2 ;若 3 > 1 ,但-2 < 0 ,则 3×(-2) < 1×(-2) ,即-6 <-2 。
三、一元一次不等式1、定义:含有一个未知数,且未知数的次数是 1 的不等式叫做一元一次不等式。
例如:2x 5 > 0 。
2、解法:去分母(若有分母)。
去括号。
移项:将含有未知数的项移到一边,常数项移到另一边。
合并同类项。
系数化为 1 :注意当系数为负数时,不等号方向要改变。
初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
高三不等式复习知识点在高三数学中,不等式是一个重要的知识点,它在解决实际问题和推理推导中有广泛的应用。
接下来,我们将回顾一些高三不等式的基本概念和解题方法。
一、不等式的基本概念不等式是一种数学表达式,它描述了两个数之间的大小关系。
常见的不等式符号有"<"(小于)、">"(大于)、"≤"(小于等于)和"≥"(大于等于)。
例如,对于实数a和b,如果a<b,则我们可以写作a<b;如果a≤b,则表示a小于或等于b。
二、不等式的性质1. 等式性质:不等式两边同时加(减)一个相同的数,不等式保持不变。
例如,对于不等式a<b,如果两边同时加上一个相同的数c,则不等式变为a+c<b+c。
2. 倍数性质:不等式两边同时乘以(或除以)一个正数,不等式的方向保持不变;如果乘以(或除以)一个负数,不等式的方向则反向。
例如,对于不等式a<b,如果两边同时乘以一个正数c,则不等式变为ac<bc;如果乘以一个负数c,则不等式变为ac>bc。
3. 倒置性质:不等式两边同时取倒数,不等式的方向需要反向。
例如,对于不等式a<b,如果两边同时取倒数,则不等式变为1/a>1/b。
三、不等式的解法1. 图解法:对于一元一次不等式,我们可以将其在数轴上进行图解。
根据不等式的形式,判断出解的范围。
2. 等效变形法:通过一系列的等式性质和倍数性质的变形,将不等式转化为更简单的形式,从而得到解。
例如,对于不等式3x-5<2x+7,我们可以通过将同类项合并,得到x<12。
3. 区间法:对于一些复杂的不等式,我们可以通过设定合适的区间范围来求解。
例如,对于不等式2x^2-7x+3>0,我们可以通过解二次方程2x^2-7x+3=0得到其零点,然后通过分析函数图像和函数值的正负来确定解的范围。
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。
本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。
一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。
当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。
在不等式中,表示关系的符号“<”和“>”称为不等号。
解不等式可以用图像法、正推反证法和直接法等方法。
图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。
正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。
直接法:对不等式进行变形、化简和运算,得出解的过程。
不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。
2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。
3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。
二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。
2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
《不等式》全章复习与巩固【学习目标】1.能正确的记忆和灵活运用不等式的性质;2.会从实际情境中抽象出一元二次不等式模型和二元一次不等式组,提高数学建模能力;3.掌握一元二次方程,二次函数,一元二次不等式,这三个“二次”的联系,会解一元二次不等式;4.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;5.会用基本不等式解决简单的最大(小)值问题,注意基本不等式适用的条件. 【知识网络】【要点梳理】要点一:不等式的主要性质 (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,, bd ac d c b a >⇒>>>>0,0(5) 乘方法则:0nna b a b >>⇒>(*1)n N n ∈>且 (6) 开方法则:0a b >>⇒>(*1)n N n ∈>且要点诠释:不等式性质中要注意等价双向推出和单向推出关系的不同.不等式不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与平面区域基本不等式最大(小)值问题简单的线性规划要点二:三个“二次”的关系一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集:设相应的一元二次方程20ax bx c ++=(0)a >的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数:2A ax bx c =++(0)a > (2)计算判别式∆,分析不等式的解的情况:①0∆>时,求根12,x x (注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解 (3)写出解集.要点诠释:若0a <,可以转化为0a >的情形解决. 要点三:线性规划用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)线性规划的有关概念: ①线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by(a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:在线性规划问题中,满足线性约束条件的解(x,y )叫可行解.由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:求线性目标函数在线性约束条件下的最优解的步骤 (1)设变量,建立线性约束条件及线性目标函数; (2) 由二元一次不等式表示的平面区域做出可行域; (3)求出线性目标函数在可行域内的最值(即最优解); (4)作答.要点四:基本不等式 两个重要不等式①,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”);②基本不等式:如果,a b 是正数,那么2a b+≥(当且仅当a b =时取等号“=”). 算术平均数和几何平均数 算术平均数:2ba +称为,ab 的算术平均数; 几何平均数:ab 称为,a b 的几何平均数;因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 基本不等式的应用,(0,)x y ∈+∞,且xy P =(定值),那么当x y =时,x y +有最小值 ,(0,)x y ∈+∞,且x y S +=(定值),那么当x y =时,xy 有最大值2S 41.要点诠释 :在用基本不等式求函数的最值时,应具备的三个条件① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 几个常用变形不等式:①222()a b 2a b ++≥(当且仅当a=b 时等号成立);②(a+b )2≥4ab (当且仅当a=b 时等号成立); ③()02>⋅≥+b a abb a ;特别地:()021>≥+a aa ;④ba ab ab b a b a +≥≥+≥+22222 (),a b R +∈. 【典型例题】 类型一:不等式的性质例1.若,a b 为实数,则下列结论中正确的是( )A. 若01ab <<,则1a b <或1b a > B. 若01ab <<,则1a b >或1b a<C. 若1a b <或1b a >,则01ab <<D. 若1a b >或1b a<,则01ab <<【思路点拨】利用不等式的性质,逐项进行判断. 【解析】若01ab <<,则,a b 同号.当0,0a b >>时,由1ab <得1a b <; 当0,0a b <<时,由1ab <得1b a>.所以A 项正确,B 项错误. 由1a b <得10a b -<,即10ab b -<,所以0,1.b ab >⎧⎨<⎩或0,1.b ab <⎧⎨>⎩同理,由1b a >得0,1.a ab >⎧⎨>⎩或0,1.a ab <⎧⎨<⎩ 显然C 项不正确. 同理D 项也不正确.【总结升华】解答此类问题应注意一下几个方面: (1)准确理解不等式的性质;(2)掌握作差法比较大小这种最基本的方法; (3)了解符号的运算规律;(4)灵活利用特殊数值对结论进行检验. 举一反三:【变式1】已知0,0,a b c >><求证c c a b >。
【答案】因为0a b >>,所以ab>0,10ab>. 于是 11a b ab ab ⨯>⨯,即11b a > 由c<0 ,得c ca b>【变式2】已知,m n R ∈,则11m n>成立的一个充要条件是( )A.0m n >>B.0n m >>C.()0mn m n -<D.0m n << 【答案】C例2.已知函数2()f x ax c =-,满足4(1)1f -≤≤-,1(2)5f -≤≤,那么(3)f 的取值范围是 .【思路点拨】将(3)f 用(1)f 及(2)f 表示出来,再利用不等式性质求得正确的范围. 【解析】解法一:方程思想(换元):由⎩⎨⎧=-=-)2(4)1(f c a f c a ,求得[]1(2)(1)341(1)(2)33a f f c f f ⎧=-⎪⎪⎨⎪=-+⎪⎩∴ )2(38)1(359)3(f f c a f +-=-= 又 340)2(3838,320)1(3535≤≤-≤-≤f f∴ 20)2(38)1(351≤+-≤-f f ,即20)3(1≤≤-f 。
解法二:待定系数法设f(3)=9a-c=mf(1)+nf(2)=m(a-c)+n(4a-c)5-493()---183m m n m n n ⎧=⎪+=⎧⎪⇒⇒⎨⎨=⎩⎪=⎪⎩下略 解法三:数形结合(线性规划)-4(1)-1-4--1-1(2)5-14-5f a c f a c ≤≤≤≤⎧⎧⇒⎨⎨≤≤≤≤⎩⎩ 所确定区域如图:设9-z a c =,将边界点(0,1)(3,7)代入即求出.【总结升华】利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.举一反三:【变式】已知15a b -≤+≤,13a b -≤-≤,求32a b -的取值范围。
【答案】[-3,10] 类型二:不等式的求解例3.已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_______.【解析】2()f x x ax b =++的值域为[0,)+∞,204a b ∴-=,222()()42a a f x x ax x ∴=++=+, 又()f x c <的解集为(,6)m m +,6m m a ∴++=-,132m a ∴=--,2211()(3)(3)9224a c f m a a a ∴==--+--+=.【总结升华】解决本题的关键是(1)准确把握一元二次不等式的解法;(2)掌握一元二次不等式的解集、一元二次方程的根与一元二次函数的零点三者之间的关系,根据需要进行彼此的互化.【高清课堂:不等式综合392606 例2】例4. 已知关于x 的方程220x ax --=的两根为12,x x ,试问是否存在实数m ,使得不等式21m lm ++≥ 12x x -对任意实数a ∈[-1,1]及l ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,说明理由.12121212212222||[1,1]||1||[1,1][1,1]13[1,1]20[1,1]x x a x x x x a x x m lm x x a l m lm l m lm l ∈≥∈∈≥∈≥∈【解析】由题意有+=,=-,所以-因为-,所以-要使不等式++-对任意-及-恒成立,当且仅当++对任意-恒成立,即+-对任意-恒成立.()222212(2)1201202 2.1||[1,1][1,1](2][2)g l ml m g m m g m m m m m m lm x x a l m ⎧(-)=--≥⎨()=+-≥⎩≤≥≥∈∈∞∞设=+-.由,解得-或故存在实数,使得不等式++-对任意实数-及-恒成立,且的取值范围是-,-,+.【总结升华】①在含参不等式问题中,二次不等式恒成立的充要条件的理论依据: ax 2+bx+c>0对任何x ∈R 恒成立⇔a>0且Δ=b 2-4ac<0; ax 2+bx+c<0对任何x ∈R 恒成立⇔a<0且Δ=b 2-4ac<0。