高三数学函数
- 格式:pdf
- 大小:3.09 MB
- 文档页数:16
高三数学知识点目录一、函数与方程1.1 一元一次方程1.2 一元二次方程1.3 二元一次方程组1.4 函数的概念1.5 函数的性质二、三角函数2.1 正弦函数2.2 余弦函数2.3 正切函数2.4 倒数关系2.5 三角函数的图像三、平面向量3.1 向量的概念3.2 向量的运算3.3 向量的坐标表示3.4 向量的共线与垂直3.5 平面向量的应用四、立体几何4.1 空间直线与平面4.2 空间坐标系4.3 空间向量4.4 空间图形的投影4.5 空间图形的旋转与镜像五、导数与微分5.1 导数的定义5.2 导数的运算法则5.3 高阶导数5.4 隐函数与参数方程的导数5.5 微分的定义与应用六、不等式与极限6.1 不等式的性质6.2 不等式的解析法6.3 极限的概念6.4 极限的性质6.5 极限的计算方法七、概率与统计7.1 随机事件的概念7.2 概率的计算7.3 条件概率与独立性7.4 概率分布函数7.5 统计图表的绘制与分析八、数列与数学归纳法8.1 数列的概念8.2 等差数列8.3 等比数列8.4 通项公式与求和公式8.5 数学归纳法的应用九、平面解析几何9.1 点、直线、平面的坐标表示9.2 直线的性质与方程9.3 圆的方程与性质9.4 双曲线的方程与性质9.5 解析几何的应用十、立体几何10.1 体积与表面积的概念10.2 正方体、长方体、正方锥的体积与表面积10.3 球的体积与表面积10.4 圆柱、圆锥、棱锥的体积与表面积10.5 立体几何的应用十一、复数11.1 复数的定义与运算11.2 复数平面与复数表示11.3 复数的模与幅角11.4 复数方程与不等式11.5 复数的应用总结:高三数学知识点目录包括了函数与方程、三角函数、平面向量、立体几何、导数与微分、不等式与极限、概率与统计、数列与数学归纳法、平面解析几何、立体几何、复数等重要知识点。
通过掌握这些知识,学生可以全面提升数学素养,为高考取得好成绩奠定坚实基础。
高三数学必背公式大全1. 二次函数的顶点公式:二次函数y=ax²+bx+c的顶点坐标为 (-b/2a, -Δ/4a) (其中Δ=b²-4ac)2. 二次方程的根公式:若ax²+bx+c=0(a≠0),则x=[-b±√(b²-4ac)]/2a3. 平面直角坐标系中两点之间的距离:设两点A(x₁, y₁)和B(x₂, y₂),则AB的距离为√[(x₂-x₁)²+(y₂-y₁)²]4. 两点之间的中点坐标:设两点A(x₁, y₁)和B(x₂, y₂),则AB的中点坐标为[(x₁+x₂)/2, (y₁+y₂)/2]5. 二次函数的判别式:对于二次函数y=ax²+bx+c,判别式Δ=b²-4ac可以判断二次函数的图象与x轴的交点情况- 当Δ>0时,函数有两个不相等的实根- 当Δ=0时,函数有两个相等的实根- 当Δ<0时,函数没有实根6. 直线的斜率公式:设直线L过点A(x₁, y₁)且斜率为k,设点B(x, y)在直线L上,则直线L的斜率为k=(y-y₁)/(x-x₁)7. 直线的点斜式:设直线L过点A(x₁, y₁)且斜率为k,直线L的点斜式方程为y-y₁=k(x-x₁)8. 平行线斜率性质:若直线L₁与直线L₂平行,则它们的斜率相等9. 垂直线斜率性质:若直线L₁与直线L₂垂直,则它们的斜率乘积为-110. 三角函数和三角恒等式:- sin²θ+cos²θ=1- tan²θ+1=sec²θ- 1+cot²θ=csc²θ11. 三角函数和三角和差公式:- sin(A±B)=sinAcosB±cosAsinB- cos(A±B)=cosAcosB∓sinAsinB- tan(A±B)=(tanA±tanB)/(1∓tanAtanB)12. 三角函数和二倍角公式:- sin2θ=2sinθcosθ- cos2θ=cos²θ-sin²θ=2cos²θ-1=1-2sin²θ - tan2θ=(2tanθ)/(1-tan²θ)13. 任意角的三角函数公式:- sin(-θ)=-sinθ- cos(-θ)=cosθ- tan(-θ)=-tanθ- sin(π/2±θ)=cosθ- cos(π/2±θ)=-sinθ- tan(π/2±θ)=-cotθ14. 三角函数和平方和差公式:- sin²θ+cos²θ=1- cos²θ-cos²θ=cos2θ- sin²θ-cos²θ=-cos2θ- 1+tan²θ=sec²θ- 1+cot²θ=csc²θ15. 相似三角形的性质:- 相似三角形对应角相等,对应边成比例- 相似三角形的两条边之比等于对应边之比- 相似三角形的周长之比等于对应边之比- 相似三角形的面积之比等于对应边平方之比 - 相似三角形的高线之比等于对应边之比16. 直角三角形的性质:- 勾股定理:直角三角形斜边的平方等于两直角边的平方和- 边角关系:直角的两个锐角的正弦值、余弦值、正切值互为倒数- 特殊角函数值:30°∶45°∶60°三角函数值为√3/2∶1/√2∶1/2 - 倍角、半角、和差公式在直角三角形中的特殊性质。
高三知识点归纳数学公式在高三数学学习中,归纳整理数学公式是非常重要的。
通过总结和归纳,可以帮助我们更好地理解和记忆数学知识,提高解题的效率。
下面将对高三数学常见知识点中的公式进行归纳和总结。
一、函数与方程1. 一次函数的一般式:y = kx + b其中,k为斜率,b为截距。
2. 二次函数的顶点式:y = a(x - h)² + k其中,(h, k)为顶点坐标,a为抛物线的开口方向和大小。
3. 平方根函数:y = √(x - h) + k其中,(h, k)为顶点坐标,h为平移量,k为上下平移量。
4. 三角函数:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c² = a² + b² - 2abcosC正切函数:tanA = a/b二、立体几何1. 直线与平面:点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)2. 三棱锥与四棱锥:体积公式:V = Bh/3 ,其中B为底面积,h为高。
侧面积公式:A = Ls + B ,其中L为斜高,s为侧棱长,B为底面积。
3. 圆锥与圆台:体积公式:V = πr²h/3 ,其中r为底面半径,h为高。
曲面积公式:S = πr(r + l) ,其中r为底面半径,l为斜高。
三、微分与积分1. 导数与微分:导数定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h高阶导数:f^n(x) ,表示对函数f(x)连续求导n次。
2. 基本导数公式:(1) 一次函数的导数:f'(x) = k(2) 幂函数的导数:f'(x) = nx^(n-1)(3) 正弦函数的导数:f'(x) = cosx(4) 余弦函数的导数:f'(x) = -sinx(5) 指数函数的导数:f'(x) = a^x * ln(a)3. 不定积分:基本积分公式:∫f(x)dx = F(x) + C积分方法:换元法、分部积分法、分式积分法等。
高三数学函数的单调性、反函数知识精讲一. 本周教学内容: 函数的单调性、反函数【基本知识】一. 函数的单调性1. 函数的单调性及单调区间 (1)增函数:对任意,则为上的增函数。
,,,,x x a b x x f x f x f x a b 121212∈<⇒<[]()()()[] (2)减函数:对任意,则为上的减函数。
,,,,x x a b x x f x f x f x a b 121212∈<⇒>[]()()()[] 单调区间:在某个区间M 上的递增函数或递减函数统称在区间M 上的单调函数,而这个区间M 称为单调区间。
图像特征:单增函数从左至右逐渐上升,单减函数从左至右逐渐下降。
注意:单调性必须以范围为前提,奇偶具有整体性,而单调性具有局部性。
2. 基本函数的单调性(1)一次函数y=kx+b ,当k>0时为定义域上的增函数;当k<0时为定义域上的减函数。
(2)二次函数y=ax 2+bx+c ,当a>0,在()[)-∞--+∞,,单减,在b a ba22 单增,当时,在上单增,在上单减。
,,a b a ba<-∞--+∞022()[)()反比例函数,当,在单减,在上单减,当,上,3000y kxk =>-∞+∞()()k<0,在(-∞,0)单增,在(0,+∞)单增。
(4)指数函数y=a x ,当a>1时,在R 上单增,当0<a<1时,在R 上单减。
(5)对数函数y=log a x ,当a>1时,在(0,+∞)单增,当0<a<1时,在(0,+∞)单减。
(6)幂函数y=x a ,当a<0时,在(0,+∞)上单减,当a>0时,在(0,+∞)上单减,x ∈(-∞,0)上的情形可借助函数的定义域和奇偶性判断。
3. 复合函数的单调性(不要求证明)4. 单调性的判断与证明:(1)范围是前提(先明确在某区域内)(2)定义即方法(用定义证明) (3)步骤:第一步:任取且,,;x x a b x x 1212∈<[] 第二步:证明(或)f x f x f x f x ()()()()1212<> 第三步:由定义得结论其中关键在于第二步证明,常用方法是作差→变形→判断符号。
高三数学知识点公式总结大全高三是每个学生都经历过的一个重要的阶段,而数学则是其中最为关键和复杂的科目之一。
为了帮助高三学生们更好地复习数学知识,我将在本文中总结一些重要的数学知识点公式,希望对学生们有所帮助。
一、代数与函数1. 一元二次方程的求解公式:对于一元二次方程ax²+bx+c=0,它的解可以通过以下公式求得:x=(-b±√(b²-4ac))/(2a)2. 因式分解公式:(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²a²-b²=(a+b)(a-b)3. 二次函数的顶点坐标公式:对于一般式的二次函数y=ax²+bx+c,它的顶点坐标可以通过以下公式计算:x=-b/(2a)y=f(x)=-∆/(4a),其中∆表示抛物线的判别式。
二、三角学1. 三角函数的定义:sinθ=opposite/hypotenusecosθ=adjacent/hypotenusetanθ=opposite/adjacent2. 三角函数的基本关系:sin²θ+cos²θ=1tanθ=sinθ/cosθ3. 三角函数的和差公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ∓sinαsinβ三、数列与数列极限1. 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中a1表示首项,d表示公差,an表示第n项。
2. 等比数列通项公式:对于等比数列an=a1×r^(n-1),其中a1表示首项,r表示公比,an表示第n项。
3. 常用数列求和公式:等差数列前n项和:Sn=(a1+an)n/2等差数列前n项和:Sn=a1(r^n-1)/(r-1)四、微积分1. 导数的定义:导数是函数在某一点上的变化率,记作f'(x)或dy/dx。
高三数学公式及知识点汇总一、函数和方程1. 一元一次方程一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。
它的解可以通过移项和合并同类项得到。
2. 二次函数的顶点坐标对于二次函数y=ax^2+bx+c,其顶点坐标可以通过公式x=-b/2a来求得。
3. 一元二次方程的求解一元二次方程的一般形式为ax^2+bx+c=0。
可以通过求解方程的根来得到解,根的求解可以使用求根公式x=(-b±√(b^2-4ac))/2a。
4. 不等式不等式是数学中常见的一种关系式。
如x>3,表示x大于3。
不等式的解可以通过解集的形式表示。
二、立体几何1. 平行四边形面积公式平行四边形的面积公式为S=a*b*sinθ,其中a和b分别为平行四边形的两条邻边的长度,θ为它们之间的夹角。
2. 长方体体积公式长方体的体积公式为V=a*b*c,其中a、b和c分别为长方体的三条边的长度。
3. 圆的面积公式圆的面积公式为S=π*r^2,其中r为圆的半径。
4. 球的表面积公式球的表面积公式为S=4π*r^2,其中r为球的半径。
三、概率与统计1. 排列组合排列是指从n个元素中取出m个元素,且考虑元素的顺序,排列数可以使用公式P(n,m)=n!/(n-m)!来计算。
组合是指从n个元素中取出m个元素,不考虑元素的顺序,组合数可以使用公式C(n,m)=n!/m!(n-m)!来计算。
2. 事件的概率计算事件的概率可以用该事件发生的次数除以试验总次数来计算。
概率的范围在0到1之间,概率为1表示肯定发生,概率为0表示不可能发生。
3. 正态分布正态分布是一种常见的连续性概率分布。
其概率密度函数为f(x)=(1/(σ√2π)) * e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
四、导数与积分1. 函数的导数函数的导数描述了函数在某一点上的变化率。
导数可以通过求极限的方式来计算,也可以使用基本导数公式对常见函数进行求导。
最新高考高三数学知识点总结5篇第一篇:高三数学知识点总结-函数函数是高中数学的基础,高三数学中也是重中之重。
重要的函数知识点有:函数的定义、函数的分类、函数的性质、函数的图像和函数的应用等。
1. 函数的定义函数是数学中一个非常基本和重要的概念,它是一种对应关系,将一个自变量对应一个因变量。
一个函数通常写作f(x) = y,其中x为自变量,y为因变量,f(x)表示函数名称。
函数的定义域是指所有能够被输入到函数中的自变量的值,而值域则是函数所有可能的因变量的值。
2. 函数的分类函数可以按照其输入和输出的类型分类为以下几种:一次函数、二次函数、指数函数、对数函数、三角函数以及复合函数等。
3. 函数的图像函数的图像就是在平面直角坐标系内把对应关系中的自变量和因变量的值画出来的结果。
通过画出函数的图像,我们可以更容易地理解函数的性质。
例子:考虑函数f(x) = x²,其图像可以描述为一个抛物线,开口朝上,顶点坐标为(0, 0)。
第二篇:高三数学知识点总结-三角函数三角函数是高中数学中另一个重要的知识点。
三角函数包括正弦、余弦、正切、余切、正割和余割等。
1. 正弦、余弦和正切函数正弦、余弦和正切函数是最基本的三角函数。
它们可以用三角形中各条边的比例去定义。
正弦函数f(x) = sin(x)定义为对边(x)除以斜边(h),余弦函数f(x)=cos(x)定义为邻边(a)除以斜边(h),正切函数f(x)=tan(x)定义为对边(x)除以邻边(a)。
2. 逆三角函数可以通过三角函数的函数关系,如sin²(x)+cos²(x)=1,推出三角函数的逆函数。
这些逆三角函数的命名包括反正弦、反余弦、反正切和反余切函数等。
用记号arcsin(x)、arccos(x)、arctan(x)和arcctan(x)等表示。
例子:cos(π/4) = sin(π/4) = 1/√2,因为90度的等腰直角三角形斜边长和两边之一的长度是相等的。
高三数学都学哪些知识点高三数学主要学习以下知识点:一、函数与图像1. 函数的定义与性质:定义域、值域、奇偶性、周期性等。
2. 基本函数的性质:线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等。
3. 函数的图像与变换:平移、伸缩、翻转等。
4. 复合函数与反函数的性质:复合函数的定义、反函数的特性。
二、数列与数列极限1. 等差数列与等差数列的求和:通项公式、前n项和公式。
2. 等比数列与等比数列的求和:通项公式、前n项和公式。
3. 递推数列与递推数列的求和:通项公式、前n项和公式。
4. 数列极限的概念与性质:数列收敛、数列发散等。
5. 无穷级数与无穷级数求和:收敛级数、发散级数等。
三、三角恒等式与解三角形1. 三角函数的基本关系式:正弦、余弦、正切、余切等。
2. 三角函数的诱导公式与化简公式:和差化积、积化和差等。
3. 三角方程与解三角形:利用三角恒等式求解三角方程、解三角形等。
四、平面向量与空间向量1. 平面向量的基本概念与表示方法:坐标表示、模长、方向等。
2. 向量的运算:加法、减法、数量积、向量积等。
3. 向量的数量积与向量积的应用:向量的投影、向量的夹角、面积等。
4. 平面与空间中的向量问题:直线与平面的位置关系、平面与平面的位置关系等。
五、导数与微分1. 导数的定义与性质:导数的几何意义、导数与函数的关系等。
2. 基本导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 导数的运算法则:和差法则、乘积法则、商法则、复合函数法则等。
4. 高阶导数与隐函数求导:高阶导数的定义、隐函数的导数等。
5. 微分的概念与性质:微分近似、微分中值定理等。
六、极限与连续1. 函数极限的定义与性质:左极限、右极限、无穷极限等。
2. 无穷小量与无穷大量:无穷小量的定义、无穷大量的定义等。
3. 函数连续与间断点:连续函数的定义、间断点的分类等。
4. 极限运算法则:四则运算法则、复合函数的极限等。
高三数学知识点公式总结归纳一、数与函数1. 数的性质a) 基本运算法则:- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 乘法交换律:ab = ba- 乘法结合律:(ab)c = a(bc)b) 数的特殊性质:- 零元素:a + 0 = 0 + a = a- 单位元素:a × 1 = 1 × a = a2. 函数的概念函数是一种特殊的关系,将一个自变量的值域映射到一个因变量的值域。
记作:y = f(x),其中x为自变量,y为因变量。
3. 基本函数a) 常数函数:y = c,其中c为常数。
b) 线性函数:y = kx + b,其中k和b为常数。
c) 幂函数:y = x^n,其中n为正整数。
d) 指数函数:y = a^x,其中a为正数且不等于1。
e) 对数函数:y = loga(x),其中a为正数且不等于1。
二、三角函数1. 常用三角函数a) 正弦函数:sinθ = 对边/斜边b) 余弦函数:cosθ = 邻边/斜边c) 正切函数:tanθ = 对边/邻边d) 余切函数:cotθ = 邻边/对边2. 三角函数的性质a) 基本关系:sin^2θ + cos^2θ = 1b) 诱导公式:- sin(α + β) = sinαcosβ + cosαsinβ- cos(α + β) = cosαcosβ - sinαsinβ- tan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三、导数与积分1. 导数的定义导数表示函数在某一点处的变化率,定义如下:f'(x) = lim(h→0) [f(x + h) - f(x)] / h2. 常见函数的导数a) 幂函数:f(x) = ax^n,导数为f'(x) = anx^(n-1)b) 指数函数:f(x) = a^x,导数为f'(x) = ln(a) * a^xc) 对数函数:f(x) = loga(x),导数为f'(x) = 1 / (xln(a))d) 三角函数:f(x) = sin(x),导数为f'(x) = cos(x)3. 积分的定义积分表示函数在一定区间上的累积变化量,定义如下:∫[a,b] f(x) dx = lim(n→∞) Σf(x*)Δx,其中Δx = (b-a)/n,x*为区间上的任意一点。
高三函数的图像知识点函数是数学中非常重要的概念,而在高三数学学习中,关于函数的图像尤为重要。
本文将介绍高三函数的图像知识点。
一、函数的图像及其性质函数的图像是函数在直角坐标系中的几何表示,它能够直观地反映函数的性质。
常见的函数图像有线性函数、二次函数、指数函数、对数函数等。
1. 线性函数图像线性函数的图像是一条直线,表现为函数图像上的所有点都在线性关系 y = kx + b 上。
其中 k 表示斜率,b 表示截距。
2. 二次函数图像二次函数的图像是抛物线,分为开口向上和开口向下两种情况。
开口向上的抛物线表现为函数图像上的点低于顶点,并随着 x 的增大而增大。
开口向下的抛物线则相反。
3. 指数函数图像指数函数的图像是以底数大于 1 的指数函数图像。
当底数大于1 时,指数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,指数函数图像表现为随着 x 的增大,函数图像逐渐下降。
4. 对数函数图像对数函数的图像是以底数大于 1 的对数函数图像。
对数函数图像与指数函数图像是互逆的关系。
当底数大于 1 时,对数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,对数函数图像表现为随着 x 的增大,函数图像逐渐下降。
二、函数图像的平移、伸缩和翻折除了基本的函数图像形状外,我们还可以通过平移、伸缩和翻折等变换来改变函数图像。
1. 平移函数图像的平移是指将函数图像沿着 x 轴或 y 轴的方向移动一定的距离。
沿着 x 轴方向平移表示为 y = f(x - a),其中 a 表示平移的距离;沿着 y 轴方向平移表示为 y = f(x) + b,其中 b 表示平移的距离。
2. 伸缩函数图像的伸缩是指将函数图像在 x 轴或 y 轴的方向上进行拉伸或压缩,改变函数图像的幅度。
沿着 x 轴方向伸缩表示为 y = f(kx),其中 k 表示水平方向上的伸缩比例;沿着 y 轴方向伸缩表示为 y = kf(x),其中 k 表示垂直方向上的伸缩比例。
高三数学奇偶性及周期性知识点整理高三数学函数的奇偶性、周期性知识点一函数的奇偶性、周期性函数的奇偶性定义:偶函数:一般地,如果对于函数fx的定义域内任意一个x,都有f-x=fx,则称函数fx为偶函数。
奇函数:一般地,如果对于函数fx的定义域内任意一个x,都有f-x=-fx,那么函数fx是奇函数。
函数的周期性:1定义:若T为非零常数,对于定义域内的任一x,使fx+T=fx恒成立,则fx叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
2若T是周期,则k·Tk≠0,k∈Z也是周期,所有周期中最小的正数叫最小正周期。
一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数fx=C。
奇函数与偶函数性质:1奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
3在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。
注:定义域在数轴上关于原点对称是函数fx为奇函数或偶函数的必要但不充分条件.1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数fx为奇函数或偶函数的必要但不充分条件.2、函数的周期性令a,b均不为零,若:1函数y=fx存在fx=fx+a==>函数最小正周期T=|a|2函数y=fx存在fa+x=fb+x==>函数最小正周期T=|b-a|3函数y=fx存在fx=-fx+a==>函数最小正周期T=|2a|4函数y=fx存在fx+a===>函数最小正周期T=|2a|5函数y=fx存在fx+a===>函数最小正周期T=|4a|高三数学函数的奇偶性、周期性知识点二一、函数的奇偶性二、周期性1、周期函数对于函数y=fx,如果存在一个非零常数T,使得当x取定义域内的任何值时,都有fx+T=fx,那么就称函数y=fx为周期函数,称T为这个函数的周期.2、最小正周期如果在周期函数fx的所有周期中存在一个最小的正数,那么这个最小正数就叫做fx 的最小正周期.三、奇、偶函数的有关性质:1定义域关于原点对称,这是函数具有奇偶性的必要不充分条件;2奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反之亦然;3若奇函数fx在x=0处有定义,则f0=0;4利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.5若函数满足fx+T=fx,由函数周期性的定义可知T是函数的一个周期;应注意nTn∈Z 且n≠0也是函数的周期.四、利用定义判断函数奇偶性的方法1首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的必要条件;2如果函数的定义域关于原点对称,可进一步判断f-x=-fx或f-x=fx是否对定义域内的每一个x恒成立恒成立要给予证明,否则要举出反例.判断分段函数的奇偶性应分段分别证明f-x与fx的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.【特别提醒】函数奇偶性的应用1已知函数的奇偶性求函数的解析式.利用奇偶性构造关于fx的方程,从而可得fx的解析式.2已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用fx±f-x=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.感谢您的阅读,祝您生活愉快。
高三数学知识点整理目录
第一章:函数与方程
1.1 一次函数 - 定义与性质 - 增减性及应用 - 斜率与截距 - 一次函数的图像
1.2 二次函数 - 标准式及性质 - 抛物线的开口方向 - 顶点坐标及性质 - 二次函数的图像
1.3 三角函数 - 正弦函数 - 余弦函数 - 正切函数 - 图像与周期性
第二章:几何
2.1 三角形 - 三角形的分类 - 外角与内角性质 - 各类三角形的判定方法 - 三角形的面积
2.2 圆 - 圆的性质 - 弧长与扇形面积 - 切线与切线定理 - 圆内接四边形
第三章:空间几何
3.1 空间图形 - 空间坐标系 - 立体图形的表面积 - 立体图形的体积 - 空间几何的解题策略
3.2 空间向量 - 向量的基本概念 - 向量的加法与减法 - 数量积与向量积 - 向量的坐标表示
第四章:概率与统计
4.1 概率 - 随机事件的概念 - 事件的概率 - 互斥事件与独立事件 - 概率的计算方法
4.2 统计 - 数据的收集与整理 - 数据的分布特征 - 统计图的绘制 - 统计推断与假设检验
以上是高三数学知识点的整理目录,希望能对您的学习有所帮助。
函数取值范围知识点高三函数是数学中常见的概念,它在高中数学课程中占有重要地位。
函数取值范围是在给定定义域内,函数可能取得的所有值的集合。
在高三数学学习中,对函数取值范围的理解和计算是十分重要的。
本文将介绍函数取值范围的知识点,包括定义、计算方法和常见的求解技巧。
一、定义函数是一种将一个集合中的每个元素映射到另一个集合中的元素的规则。
一般来说,函数可以表示为y = f(x),其中x为自变量,y为因变量,f为函数的定义域。
在定义域内,函数可能取得的数值即为函数的取值范围。
二、计算方法计算函数的取值范围的方法有两种,分别是代入法和分析法。
1. 代入法代入法是最常见也是最直接的计算函数取值范围的方法。
具体步骤如下:(1)将定义域内的元素依次代入函数表达式中,计算对应的函数值。
(2)将得到的函数值整理为一个集合,即为函数的取值范围。
例如,对于函数f(x) = x^2,如果定义域为实数集R,则可以将R中的所有实数依次代入f(x) = x^2中,并计算对应的函数值。
整理得到的函数值集合为非负实数集[0,+∞),即为函数的取值范围。
2. 分析法分析法是通过对函数的性质进行分析来确定函数的取值范围。
具体步骤如下:(1)首先确定函数的定义域。
(2)根据函数的性质,确定函数的值域。
常见的函数性质包括:- 幂函数的值域与幂次的奇偶性有关。
若幂次为偶数,则值域为非负实数集[0,+∞),若幂次为奇数,则值域为整个实数集R。
- 三角函数的值域为[-1,1]。
- 指数函数的值域为(0,+∞)。
通过对函数性质的分析,可以推导出函数的取值范围。
三、求解技巧在解决函数取值范围的题目中,有一些常见的求解技巧可以帮助我们更好地理解和计算函数的取值范围。
1. 利用平方完成对于一些涉及到平方的函数,可以通过平方完成的方式进行求解。
平方完成后,我们可以得到一个关于平方的不等式,从而得到函数的取值范围。
2. 利用图像函数的图像能够直观地反映函数的性质,通过观察函数的图像,可以初步确定函数的取值范围。