矩阵分析第二章
- 格式:pdf
- 大小:409.27 KB
- 文档页数:55
第二章习题1、 用初等变换把下列矩阵化为标准型 (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭ (2)23100(1)λλ⎛⎫- ⎪-⎝⎭ (3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭(4)2(1)0000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭解: (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭2122()23233235351102033r r λλλλλλλλλλλλλ-⎛⎫+⎛⎫+ ⎪ ⎪⎪--- ⎪⎝⎭⎝⎭32103λλλλ⎛⎫ ⎪--⎝⎭(2)231(1)λλ⎛⎫-⎪-⎝⎭212222(3)32211110331(3)(1)4(1)r r λλλλλλλλλλλ--⎛⎫⎛⎫---- ⎪ ⎪-+-----⎝⎭⎝⎭[因为32331λλλ-+-除以21λ-商为3λ-余式为4(1)λ-]222222114(1)(3)(1)(3)(1)4(1)11λλλλλλλλλλ⎛⎫⎛⎫------ ⎪ ⎪------⎝⎭⎝⎭211(3)(1)42224(1)011(1)(3)(1)(1)4c c λλλλλλλλ+-+-⎛⎫⎪ ⎪--+-+-⎝⎭31(1)(1)λλλ-⎛⎫⎪+-⎝⎭(3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭222101λλλλλλλλ⎛⎫⎪- ⎪ ⎪++⎝⎭222221001(1)(1)λλλλλλλλλλλλ⎛⎫⎪-⎪ ⎪++-++-++⎝⎭43321000λλλλλλ⎛⎫ ⎪- ⎪ ⎪----⎝⎭ 43210002λλλλ⎛⎫⎪ ⎪ ⎪---⎝⎭ 221(1)λλλ⎛⎫⎪⎪ ⎪+⎝⎭(4)2(1)000000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭ 2(1)00021λλλλλλ+⎛⎫⎪⎪⎪++⎝⎭32(2)(1)000(2)1r r λλλλλλλ-++⎛⎫⎪ ⎪ ⎪-+⎝⎭1(2)0000(1)λλλλλλ-+⎛⎫⎪⎪⎪+⎝⎭21(2)00(2)000(1)λλλλλλλ-+⎛⎫ ⎪++ ⎪ ⎪+⎝⎭ 210(1)000(1)λλλλ⎛⎫⎪+⎪⎪+⎝⎭2100(1)000(1)λλλλ⎛⎫⎪+ ⎪ ⎪+⎝⎭2、试证:Jordan 块 10()0100J αααα⎛⎫⎪= ⎪ ⎪⎝⎭相似于0000αεαεα⎛⎫⎪⎪ ⎪⎝⎭,这里0ε≠是任意实数。
第2章范数理论及其应用2.1向量范数及l p范数定义:如果V是数域K上的线性空间,且对于V的任一向量x,对应一个实数值||x||,它满足以下三个条件:1)非负性:||x||≥0,且||x||=0⇔x=0;2)齐次性:||k⋅x||=|k|⋅||x||,k∈K;3)三角不等式:||x+y||≤||x||+||y||.则称||x||为V上向量x的范数,简称为向量范数。
可以看出范数||⋅||为将V映射为非负数的函数。
注意:2)中|k|当K为实数时为绝对值,当K为复数域时为复数的模。
虽然向量范数是定义在一般的线性空间上的,但是由于前面的讨论,我们知道任何n维线性空间在一个基下都代数同构于常用的n维复(或实)列向量空间,因此下面我们仅仅讨论n维复(或实) 列向量空间就足够了。
下面讨论如下:1.设||⋅||为线性空间V n的范数,任取它的一个基x1,x2,…,x n,则对于任意向量x,它可以表示为x=ξ1x1+ξ2x2+…+ξn x n其中,(ξ1,ξ2,…,ξn)T为x的坐标。
由此定义C n(或R n)中的范数如下:||ξ||C =ϕ(ξ)=||ξ1x1+ξ2x2+…+ξn x n||则容易验证||ξ||C确实为C n中的范数.2.反之, 若||ξ||C为C n中的范数,定义V n的范数如下:||x||=φ(x)=||ξ||C其中x=ξ1x1+ξ2x2+…+ξn x n。
则容易验证φ(x)确实为V n的范数。
这个例子充分说明了一般线性空间的范数和n维复(或实)列向量空间的范数之间的关系。
这也是为我们只讨论n维复(或实)列向量空间的范数的理由.范数首先是一个函数,它将线性空间的任意向量映射为非负实数。
范数与函数性质1. 范数是凸函数,即|| (1-λ)x+λy||≤(1-λ)||x||+λ||y||其中0≤λ≤ 1。
向量的范数类似于向量长度。
性质2. (范数的乘法)若||⋅||为线性空间V上的向量范数,则k||⋅|| 仍然为向量范数, 其中k > 0.性质3. 设||⋅||comp为R m上的范数,且对x∈ (R+)m为单调增加的(即,若x,y∈(R+)m,且x i≤y i,那么||x||comp≤||y|| comp成立.),那么,对于给定的m个n维线性空间V上的范数||⋅||i,i=1,2,…,m,我们可以定义一个复合范数为||x||=||U(x)|| comp ,其中,U(x)=( ||x||1,||x||2, …,||x||m)T.证明:非负性和齐次性是显然的,仅需证明三角不等式。
(此文档为word格式,下载后您可任意编辑修改!)矩阵的特征值与特征向量分析及应用毕业论文摘要特征值和特征向量是高等代数中的一个重要概念,为对角矩阵的学习奠定了基础.本文在特征值和特征向量定义的基础上进一步阐述了特征值和特征向量的关系.本文还研究矩阵的特征值和特征向量的求解方法.再列举了特征值和特征向量相关的性质.最后给出了阵的特征值与特征向量在生活中的运用,并应用于实例.关键词:矩阵特征值特征向量1AbstractEigenvalues and eigenvectors are important concepts of advanced algebrawhich laid the foundation for the diagonal matrix learning. This paper, on the basis of the definition of eigenvalues and eigenvectors, study the relationship of them. This also study the solution method of eigenvalues and eigenvectors. And then lists the related properties of eigenvalues and eigenvectors. Finally, use the matrixeigenvalues and eigenvectors in ordinary live, and application in real examples. Keywords: matrix ; eigenvalue ; eigenvector目录引言第一章、本征值和本征向量的关系1.1 本征值与本征向量的定义1.2 求解本征值与本征向量的方法探索第二章、矩阵的特征多项式和特征根2.1 矩阵的特征多项式和特征根的定义2.2 求解特征根和特征向量的方法2.3 线性变换的特征根与特征向量的求法第三章、特征值和特征向量在生活中的应用3.1 经济发展与环境污染的增长模型3.2 莱斯利(Leslie)种群模型四、结论引言矩阵是高等代数课程的一个基本概念,是研究高等代数的基本工具.。
第二章内积空间§1 内积空间的概念§2 正交基及子空间的正交关系§3 内积空间的同构§4 正交变换§5 点到子空间的距离与最小二乘法§6 复内积空间(酉空间)§7 正规矩阵§8 厄米特二次型§9 力学系统的小振动()()()()()()()())( ,,,),( )3( )( ,,, 2 ;,, )1( , , V z z y z x z y x R y x y x x y y x y x R V ∈+=+∈==→λλλ满足:向量的内积内积的定义时,等号成立当且仅当,0),( (4)θ=≥x x x 此时的V 就成为(实)内积空间1. 内积空间的概念()()()为一个内积空间。
可正定义内积为中的任二向量维线性空间若对例n n i i i nnn R y x y x R n ,,,,,,,,, 112121∑==⋅⋅⋅=⋅⋅⋅=ηξηηηξξξ()()()()()()()()()0,,3;,,,)2(;,, )1(,==+=+=y x z x y x z y x y x y x y x θθλλ的性质:内积内积空间之例例1 n 维线性空间R n ()()∑====ni ii n n y x y x 12121),( ,ηξηηηξξξ 此称为欧几里德空间(欧氏空间)()()()为一个内积空间。
可正定义内积为中的任二向量维线性空间若对例n n i i i nnn R y x y x R n ,,,,,,,,, 112121∑==⋅⋅⋅=⋅⋅⋅=ηξηηηξξξ()()()()()()()()()0,,3;,,,)2(;,, )1(,==+=+=y x z x y x z y x y x y x y x θθλλ的性质:内积内积空间之例例2 n 2维线性空间R n ×n ∑==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nj i ijij nn n n n n nn n n n n ba B Ab b b b b b b b b B a a a a a a a a a A 1,212222111211212222111211),( ,()()()为一个内积空间。