弹塑性力学复习思考题 (1)
- 格式:doc
- 大小:292.50 KB
- 文档页数:8
本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:假如ijji a a =,如此0ijk jk e a =。
〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有和联系和区别?(10) 论述薄板小挠度弯曲理论的基本假定?二、计算题1、For the following state of stress, determine the principal stresses and directions andfind the traction vector on a plane with unit normal (0,1,1)/n =311102120ij σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2、In suitable units, the stress at a particular point in a solid is found to be214140401ij σ-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。
Plot the variation of the magnitude of the traction vector n T as a function of θ.3、 利用应变协调条件检查其应变状态是否存在存在?,(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数222(),,2x y xy k x y ky kxy εεγ=+== k 为常数(2)222225ij x y xz yz z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦4、The displacements in an elastic material are given by22222(1)(1)(1),(),0224M M M l u xy v y x w EI EI EI νννν-+-=-=+-=where M ,E , I , and l are constant parameters 。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x yxy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+=----+=⋅+=⋅-=--⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zE Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。
研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平而、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量丿2的物理意义是什么?(5) 什么是屈服面、屈服函数? Tresca 屈服条件和Mises 屈服条件的儿何 与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一 Illi 线假定?(9) 什么是平而应力问题?什么是平而应变问题?在弹性范用内这两类问题之间有 和联系和区别?(10) 论述薄板小挠度弯曲理论的基木假定?二、计算题1、已知P 点的应力张量为「3 1 r叭=10 21 2 0求该点的主应力、主方向及最人剪应力2、利用应变协调条件检杳其应变状态是否存在存在?° 红 i f + YP ________ OiLti -------- 二.=0dx idx j dXjdXtt, dx i dx h(1) e x =Axy 2, £y =Bx 2y, y xy =0, A^ B 为常数=k(x 2+ y 2\= ky 2,/vv = 2kxy k 为常数y xz z z2z 25x 2⑵ % = y 23、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标°ly4、正方形薄板三边固定,另一边承受法向压力p = -p. sin —,如图所示,设位移函数为 b利用Ritz 法求位移近似解(泊松比v=0)o5、 悬臂梁在自 由端受亲中力P 作用,如图所示。
试用极小势能原理求最大挠度dP丿 -Z ----------------------------------------- 1z/ X< -------------------- -------------------------- >、'y第5题图提示设梁的挠1111线为2 3vv = a 2x +a 3x6、 对给定的应力函数: (1) (p } = = Cxy 3,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?3F xv 3 P(2) 证明0= —[xy - ^-] + — b 可以作为应力函数,并求在区域xAO,—cYyYc 区4c " 3c~ 4c'域内的应力分量,并分析该应力函数可以解决那类平|何问题。
弹塑性理论思考题⒈ 一点的应力状态?通过一点P 可做无穷多个截面,各个截面上应力状况的集合称为一点的应力状态。
(通过一点P 的各个面上应力状况的集合。
) ⒉ 一点应变状态?代表一点 P 的邻域内线段与线段间夹角的改变。
(过P 点所有方向上的线应变和角应变的集合。
) ⒊ (1)应力张量?应力张量是应力状态的数学表示。
数学上应力为二阶张量,三维空间中需九个分量(三个正应力分量和六个剪应力分量)来确定。
在静力平衡(无力矩)状态下,剪应力关于对角对称,九个量中只有六个独立分量。
(p17-p18)(2)应力张量的不变量?应力张量是二阶对称张量,因此它同样存在三个不变量,分别用J1,J2,J3表示。
(3)应力球张量?应力偏张量?应力球张量只能使物体产生体积变化应力偏张量使物体产生形状变化,而不能产生体积变化,材料的塑性变形就是由应力偏张量引起的 (4)体积应力?对弹性体施加一个整体的压强p ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。
由体积应力和体积应变的关系,可得由上述公式可知,如果体力为常量,体积应力和体积应变均满足拉普拉斯(Laplace )方程,即体积应力函数和体积应变函数均为调和函数。
(5)平均应力?交变应力中,最大应力和最小应力的平均值。
(6)偏应力第二不变量J2的物理意义? 第二不变量是三个主应力两两相乘的和 (7)单向应力状态?如果有两个主应力等于零称为单向应力状态 (8)纯剪应力状态的应力张量?给出应力分量,计算第一,第二不变量。
应力偏张量是二阶对称张量,因此它同样存在三个不变量,分别用J1、J2、J3表示。
对于主轴坐标系则: =+++-+-+-=+++++-==-+-+-=++=')](6)()()[(61)''''''('0)()()(''''322222222212J J J zx yz xy x z z y y x zxyz xy x z z y y x m z m y m x z y x τττσσσσσστττσσσσσσσσσσσσσσσ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''z zy zx yz y yxxz xy x στττστττσ应力偏张量是第一不变量J`1=0表明应力分量中已经没有静水应力成分。
研究生弹塑性力学复习思考题
1. 简答题:
(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?
(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?
(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何
与物理意义是什么?
(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?
(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有
和联系和区别?
(10) 论述薄板小挠度弯曲理论的基本假定?
二、计算题
1、For the following state of stress, determine the principal stresses and directions and
find the traction vector on a plane with unit normal (0,1,1)n =
3
111
021
2
0ij σ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
2、In suitable units, the stress at a particular point in a solid is found to be
2
141
404
01ij σ-⎡⎤
⎢⎥=⎢⎥⎢⎥-⎣⎦
Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。
Plot the variation of the magnitude of the traction vector n T as a function of θ.
3、 利用应变协调条件检查其应变状态是否存在存在?
,
(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数
222(),,2x y xy k x y ky kxy εεγ=+== k 为常数
(2)222
22
5ij x y xz y
z z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣
⎦
4、The displacements in an elastic material are given by
222
22(1)(1)(1),(),0224
M M M l u xy v y x w EI EI EI νννν-+-=-=+-=
where M ,E , I , and l are constant parameters 。
Determine the corresponding strain and stress fields and show that this problem represents the pure bending of a rectangular beam in the x,y plane.
5、写出如下问题的边界条件 (a)用直角坐标,(b )用极坐标
P
6、Express all boundary conditions for each of the problems illustrated in the following
figure.
l
θ
θr θ
r
7、
8、
9、
4、 正方形薄板三边固定,另一边承受法向压力b
x
p p π-=sin
0,如图所示,设位移函数为 0=u b
y b x
a v 2sin sin
2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。
y
x
a
b
A B
C
O
(第4题图) (第6题图) 5、悬臂梁在自由端受集中力P 作用,如图所示。
试用极小势能原理求最大挠度
第5题图 提示设梁的挠曲线为
6、对给定的应力函数:
(1)32223123,,Ax y Bx y Cxy ϕϕϕ===,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?
(2)证明32
23[]434F xy P xy y c c c
ϕ=-+可以作为应力函数,并求在区域0,x c y c - 区域内的应力分量,并分析该应力函数可以解决那类平面问题。
7.如图所示矩形截面柱承受偏心载荷作用,且不计其重量,若应力函数3
2
Ax Bx ϕ=+,试 求:
(1)应力分量;(2)应变分量;(3)假设D 点不移动,且该点处截面内线单元不能转动(0,0
0x y u y ==⎛⎫
∂=
⎪
∂⎝⎭),求位移分量 x
23
23w a x a x =+
8、图示三角形截面梁只受重力作用,梁的质量密度为ρ,宽度为1,试用纯三次应力函数求解各应力分梁。
9.如图所示的楔形体两侧面上受有均布切向载荷q ,试求其应力分量。
10.已知一圆形薄管,平均半径为a,厚度为t,在薄管的两端受有拉力p 和扭矩T 作用,写出管内一点处的Tresca 屈服条件和Mises 屈服条件表达式。
y
11.如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。
板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。
试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。
并求挠度和反力。
12.如图所示的矩形板,使用板的挠度表示相应的边界条件。
13、试证明用位移表示的平衡方程为
,,()0i jj i i Gu G X λ++Θ+= 其中 ii u v w x y z
ε∂∂∂Θ=
++=∂∂∂为体积应变 (提示广义胡克定律的另外一种表达形式为
2ij ij kk ij G σελεδ=+)
14、试以矩形薄板(第12题)为例说明自由边等效剪力的含义。
x
y。