(完整版)弹塑性力学习题题库加答案
- 格式:doc
- 大小:1004.01 KB
- 文档页数:10
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及30106.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x y xy MPa MPa σστατα--=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x y xy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+⨯=----+=-⋅+=-⋅+=+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:题图1-3c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及30106.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x y xy MPa MPa σστατα--=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x y xy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+⨯=----+=-⋅+=-⋅+=+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:题图1-3c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
解:由2—11题计算结果知该题的三个主应力分别为:1σ=20σ=;3σ=设σ2与三个坐标轴x 、y 、z 的方向余弦为:l 21、l 22、l 23,于是将方向余弦和σ2值代入下式即可求出σ2的主方向来。
()()()()()()21222232321222232321222322122010203x yx xz xz yx y yz zy zx zy z yx zy l l l l l l l l l l l l l σσττττσσττττσσττ⎧-++==⎪⎪+-+==⎨⎪++-=+=⎪⎩以及:()22221222314l l l ++=由(1)(2)得:l 23=0 由(3)得:2122l a l b =-;2221l b l a=-; 将以上结果代入(4)式分别得:21l ===;22l ===;2122al l b =-22l ∴==同理21l = 于是主应力σ2的一组方向余弦为:(,22b a b+,0);σ3的一组方向余弦为(2±); 2—20.证明下列等式: (1):J 2=I 2+2113I ; (3):()212ii kk ik ik I σσσσ=--; 证明(1):等式的右端为:()()22211223311231133I I σσσσσσσσσ+=-+++++()()22212312233112233112223σσσσσσσσσσσσσσσ=+++++-++ ()()()222123122331122331246666σσσσσσσσσσσσσσσ=+++++-++22212312233126σσσσσσσσσ⎡⎤=++---⎣⎦22222211222233331112226σσσσσσσσσσσσ⎡⎤=-++-++-+⎣⎦()()()222122331216J σσσσσσ⎡⎤=-+-+-=⎣⎦故左端=右端 证明(3):()212ii kk ik ik I σσσσ=-- 右端=()12ii kk ik ik σσσσ- ()()()222222122x y z xy yz zx x y z x y z σσστττσσσσσσ⎡⎤=+++++-++++⎣⎦ ()()2222222221222x y z xy yz zx x y z x y y z z x σσστττσσσσσσσσσ⎡⎤=+++++----++⎣⎦()2222x y y z z x xy yz zx I σσσσσστττ=-++---=2—32:试说明下列应变状态是否可能(式中a 、b 、c 均为常数)(1):()22200000ij c x y cxy cxy cy ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2): ()()()()222222222210210211022ij axy ax by ax y az by ax by az by ε⎡⎤+⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++⎢⎥⎣⎦(3): ()22200000ij c x y z cxyz cxyz cy z ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 解(1):由应变张量εij 知:εxz =εyz =εzx =εzy =εz =0 而εx 、εy 、εxy 及εyx 又都是x 、y 坐标的函数,所以这是一个平面应变问题。
将εx 、εy 、εxy 代入二维情况下,应变分量所应满足的变形协调条件知:22222y xyx y x x yεγε∂∂∂+=∂∂∂∂ 也即:2c +0=2c 知满足。
所以说,该应变状态是可能的。
解(2):将己知各应变分量代入空间问题所应满足的变形协调方程得:222222222222222222222y xyx y yzz x zxz xy yz zx x xy yz y zx yz xy zx z y x x yz y y z x z z x x y z x y z y z x y z x z x y z x y εγεεγεεγεγγγεγγεγγγγε⎫∂∂∂+=⎪∂∂∂∂⎪⎪∂∂∂⎪+=∂∂∂∂⎪⎪∂∂∂+=∂∂∂∂⎬∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂∂⎛⎫∂∂+-=⎪∂∂∂∂∂∂⎝⎭∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭………………………………(1) 202000002220cz cz cy cy cx +=⎫⎪+≠⎪⎪=⎬⎪=⎪≠⎪⎭不满足,因此该点的应变状态是不可能的。
第三章:弹性变形及其本构方程3-10.直径为D=40mm 的铝圆柱体,紧密地放入厚度为=δ2mm 的钢套中,圆柱受轴向压力P =40KN 。
若铝的弹性常数据E 1=70G a p .V 1=0.35,钢的弹性常数E =210G a p 。
试求筒内的周向应力。
钢钢钢E q q E 10102.02104122=⨯⨯⨯⨯=--ε∵ 钢铝εε= q =2.8MN /m 2钢套 228/2qDMN m t θσ==t qv r 2=σ ; tqr=θσ ; 0=z σ ; 1εσ⋅=E r ;4-14.试证明在弹性范围内剪应力不产生体积应变,并由纯剪状态说明v =0。
证明:在外力作用下,物体将产生变形,也即将产生体积的改变和形状的改变。
前者称为体变,后者称为形变。
并且可将一点的应力张量σij 和应变张量εij 分解为,球应力张量、球应变张量和偏应力张量、偏应变张量。
ij m ij ijijm ij ij s e σσδεεδ=+⎧⎨=+⎩ 而球应变张量只产生体变,偏应变张量只引起形变。
通过推导,我们在小变形的前提下,对于各向同性的线弹体建立了用球应力、球应变分量和偏应力分量,偏应变分量表示的广义胡克定律:()()3122m m e ij ijk k s Ge σε⎧==⎪⎨=⎪⎩ (1) 式中:e 为体积应变 1231x y z e I εεεεεε'=++=++= 由(1)式可知,物体的体积应变是由平均正力σm 确定,由e ij 中的三个正应力之和为令,以及(2)式知,应变偏量只引起形变,而与体变无关。
这说明物体产生体变时,只能是平均正应力σm 作用的结果,而与偏应力张量无关进一步说就是与剪应力无关。
物体的体积变形只能是并且完全是由球应力张量引起的。
由单位体积的应变比能公式:3122o ov od m m ij ij u u u s e σε=+=+;也可说明物体的体变只能是由球应力分量引起的。
当某一单元体处于纯剪切应力状态时:其弹性应变比能为:221102o ov od xy xy v u u u G Eττ+=+=+= 由u o 的正定性知:E >0,1+v >0.得:v >-1。
由于到目前为止还没有v <0的材料,所以,v 必须大于零。
即得:v >0。
3-16.给定单向拉伸曲线如图所示,εs 、E 、E ′均为已知,当知道B 点的应变为ε时,试求该点的塑性应变。
解:由该材料的σ—ε曲线图可知,该种材料为线性强化弹塑性材料。
由于B 点的应变已进入弹塑性阶段,故该点的应变应为:εB =ε=εe +εp 故:εp =ε-εe()()11e e s s E E E EE Eσεεσεεεεεε''=-=-+-=-+-⎡⎤⎡⎤⎣⎦⎣⎦ 111s s s E E E E E E E E E E εεεεεε'''⎛⎫⎛⎫=--+=--- ⎪ ⎪⎝⎭⎝⎭()1s E E εε'⎛⎫=-- ⎪⎝⎭;3-19.已知藻壁圆筒承受拉应力2sz σσ=及扭矩的作用,若使用Mises 条件,试求屈服时扭转应力应为多大?并求出此时塑性应变增量的比值。
解:由于是藻壁圆筒,所可认圆筒上各点的应力状态是均匀分布的。
据题意圆筒内任意一点的应力状态为:(采用柱坐标表示)0θσ=,0r σ=,2sz σσ=;0r θτ=,z θττ=;0zr τ=;于是据miess 屈服条件知,当该藻壁圆筒在轴向拉力(固定不变)ρ及扭矩M (遂渐增大,直到材料产生屈服)的作用下,产生屈服时,有:()()()()122222226s r z z r r z zr θθθθσσσσσσστττ⎡⎤=-+-+-+++⎣⎦11222222266222s s sσσσττ⎡⎤⎡⎤⎛⎫⎛⎫=-++=+⎢⎥⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎦⎣⎦解出τ得:2sστ=;τ就是当圆筒屈服时其横截面上的扭转应力。