2019上海高三数学崇明一模
- 格式:doc
- 大小:445.00 KB
- 文档页数:5
上海市崇明区2019届高三上学期期末(一模)考试数学试题(解析版)一、选择题(本大题共4小题,共20.0分)1.若a<0<b,则下列不等式恒成立的是()A. 1a >1bB. −a>bC. a2>b2D. a3<b3【答案】D【解析】解:∵a<0<b,若a=−1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确,故选:D.若a=−1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确.本题考查了不等式的大小比较,特殊值法是常用的方法,属于基础题.2.“p<2”是“关于x的实系数方程x2+px+1=0有虚数根”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】解:关于x的实系数方程x2+px+1=0有虚数根的充要条件为:△=p2−4<0,即−2<p<2,又“p<2”不能推出“−2<p<2”,“−2<p<2”能推出“p<2”,即“p<2”是“关于x的实系数方程x2+px+1=0有虚数根”的必要不充分条件,故选:B.先求出关于x的实系数方程x2+px+1=0有虚数根的充要条件为:△=p2−4<0,即−2<p<2,再由“p<2”与“−2<p<2”的关系得解,本题考查了充分条件、必要条件、充要条件及简易逻辑知识,属简单题3.已知a⃗,b⃗ ,c⃗满足a⃗+b⃗ +c⃗=0⃗,且a⃗2<b⃗ 2<c⃗2,则a⃗⋅b⃗ ,b⃗ ⋅c⃗,a⃗⋅c⃗中最小的值是()A. a⃗⋅b⃗B. b⃗ ⋅c⃗C. a⃗⋅c⃗D. 不能确定【答案】B【解析】解:∵a⃗+b⃗ +c⃗=0⃗,∴c⃗=−(a⃗+b⃗ ),两边同时平方可得,c⃗2=a⃗2+b2⃗⃗⃗⃗ +2a⃗⋅b⃗ ,∴2a⃗⋅b⃗ =c⃗2−(a⃗2+b⃗ 2),同理可得,2a⃗⋅c⃗=b⃗ 2−(a⃗2+c⃗2),2b⃗ ⋅c⃗=a⃗2−(b⃗ 2+c⃗2),∵a ⃗ 2<b ⃗ 2<c ⃗ 2,∴2a ⃗ ⋅b ⃗ >2a ⃗ ⋅c ⃗ >2b ⃗ ⋅c ⃗即a ⃗ ⋅b ⃗ >2a ⃗ ⋅c ⃗ >2b ⃗ ⋅c ⃗ 故最小的为b ⃗ ⋅c ⃗ 故选:B .由已知可得∴c ⃗ =−(a ⃗ +b ⃗ ),两边同时平方可得2a ⃗ ⋅b ⃗ =c ⃗ 2−(a ⃗ 2+b ⃗ 2),同理可得,2a ⃗ ⋅c ⃗ =b ⃗ 2−(a ⃗ 2+c ⃗ 2),2b ⃗ ⋅c ⃗ =a ⃗ 2−(b ⃗ 2+c ⃗ 2),结合a ⃗ 2<b ⃗ 2<c ⃗ 2,即可判断本题主要考查了向量的数量积的性质的简单应用,属于基础试题.4. 函数f(x)=x ,g(x)=x 2−x +2.若存在x 1,x 2,…,x n ∈[0,92],使得f(x 1)+f(x 2)+⋯+f(x n−1)+g(x n )=g(x 1)+g(x 2)+⋯+g(x n−1)+f(x n ),则n 的最大值是( ) A. 11 B. 13 C. 14 D. 18 【答案】C【解析】解:∵f(x 1)+f(x 2)+⋯+f(x n−1)+g(x n )=x 1+x 2+⋯+x n−1+x n 2−x n +2,g(x 1)+g(x 2)+⋯+g(x n−1)+f(x n )=x 12+x 22+⋯+x n−12−(x 1+x 2+⋯+x n−1)+2(n −1)+x n , ∴(x 1−1)2+(x 2−1)2+⋯+(x n−1−1)2+(n −2)=(x n −1)2,∴n −2=(x n −1)2−[(x 1−1)2+(x 2−1)2+⋯+(x n−1−1)2] 当x 1=x 2=⋯=x n−1=1,x n =92时,(n −2)max =(92−1)2=494,∴n −2≤494,又∵n ∈N ,∴n max =14.故选:C .由已知得n −2=(x n −1)2−[(x 1−1)2+(x 2−1)2+⋯+(x n−1−1)2],又x 1,x 2,…,x n ∈[0,92],可求n 的最大值.本题考查参数的最值,配方是关键,考查推理能力和计算能力,属中档题.二、填空题(本大题共12小题,共54.0分) 5. n →∞limn+203n+1=______.【答案】13【解析】解:n →∞limn+203n+1=n →∞lim1+20n 3+1n =1+n →∞lim 20n 3+n →∞1n =1+03+0=13, 故答案为:13.将分式n+203n+1分子、分母同时除以n ,再利用n →∞lim20n=0,n →∞lim1n=0,可求解.本题考查了极限的运算,属简单题.6. 已知集合A ={x|−1<x <2},B ={−1,0,1,2,3},则A ∩B =______. 【答案】{0,1}【解析】解:A ∩B ={0,1}. 故答案为:{0,1}.直接利用交集运算得答案.本题考查了交集及其运算,是基础题.7. 若复数z 满足2z +z =3−2i ,其中i 为虚数单位,则z =______. 【答案】1−2i【解析】解:设z =a +bi ,(a 、b 是实数),则z =a −bi , ∵2z +z =3−2i ,∴2a +2bi +a −bi =3−2i , ∴3a =3,b =−2, 解得a =1,b =−2, 则z =1−2i故答案为:1−2i .设复数z =a +bi ,(a 、b 是实数),则z =a −bi ,代入已知等式,再根据复数相等的含义可得a 、b 的值,从而得到复数z 的值.本题给出一个复数乘以虚数单位后得到的复数,求这个复数的值,着重考查了复数的四则运算和复数相等的含义,属于基础题.8. (x 2−1x )8的展开式中x 7的系数为______(用数字作答) 【答案】−56【解析】解:T r+1=∁8r (x 2)8−r (−1x)r =(−1)r ∁8r x 16−3r, 令16−3r =7,解得r =3.∴(x 2−1x )8的展开式中x 7的系数为(−1)3∁83=−56.故答案为:−56.利用通项公式即可得出.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.9. 角θ的终边经过点P(4,y),且sinθ=−35,则tanθ=______. 【答案】−34【解析】解:角θ的终边经过点P(4,y),且sinθ=−35=√16+y2,∴y=−3,则tanθ=y4=−34,故答案为:−34.由题意利用任意角的三角函数的定义,求得tanθ的值.本题主要考查任意角的三角函数的定义,属于基础题.10.在平面直角坐标系xOy中,已知抛物线y2=4x上一点P到焦点的距离为5,则点P的横坐标是______.【答案】4【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:4.由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|PF|=5,则P到准线的距离也为5,即x+1=5,即可求出x.考查了抛物线的定义、焦半径.到焦点的距离常转化为到准线的距离求解,属于基础题11.圆x2+y2−2x+4y=0的圆心到直线3x+4y+5=0的距离等于______.【答案】0【解析】解:由已知得圆心为:P(1,−2),由点到直线距离公式得:d=√32+42=0,故答案为:0.先求圆的圆心坐标,利用点到直线的距离公式,求解即可.本题以圆为载体考查点到直线的距离公式,考查学生计算能力,是基础题.12.设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于______.【答案】√33π【解析】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高ℎ=√22−12=√3.∴圆锥的体积V=13πr2ℎ=√33π.故答案为:√33π.根据圆锥的侧面展开图的弧长为圆锥底面周长得出圆锥底面半径,从而得出圆锥的高,代入体积公式计算即可.本题考查了圆锥的结构特征,侧面展开图,属于基础题.13.若函数f(x)=log2x−ax+1的反函数的图象过点(−3,7),则a=______【答案】6【解析】解:∵f(x)的反函数图象过点(−3,7),所以原函数f(x)的图象过(7,−3), ∴f(7)=−3,即log 2 7−a7+1=−3,∴7−a 8=2−3,∴a =6.故答案为:6∵f(x)的反函数图象过点(−3,7),所以原函数f(x)的图象过(7,−3),然后将点(7,−3)代入f(x)可解得. 本题考查了反函数.属基础题.14. 2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有______种. 【答案】1518【解析】解:由题意知本题是一个分步计数问题, 解决这个问题得分三步完成, 第一步把三个学生分成两组,第二步从23所学校中取两个学校,第三步,把学生分到两个学校中,共有C 31C 22A 232=1518, 故答案为:1518.解决这个问题得分三步完成,第一步把三个学生分成两组,第二步从23所学校中取两个学校,第三步,把学生分到两个学校中,再用乘法原理求解本题考查分步计数问题,本题解题的关键是把完成题目分成三步,看清每一步所包含的结果数,本题是一个基础题.15. 设f(x)是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足f(π)=1,f(2π)=2,则不等式组{1≤f(x)≤21≤x≤2的解集为______.【答案】[π−2,8−2π]【解析】解:∵f(x)是以2为周期的偶函数,且f(x)在[0,1]上单调递减;∴由f(π)=1,f(2π)=2得,f(4−π)=1,f(2π−6)=2,且4−π,2π−6∈[0,1]; 由1≤x ≤2得,0≤2−x ≤1;∴由{1≤f(x)≤21≤x≤2得,{f(4−π)≤f(2−x)≤f(2π−6)1≤x≤2; ∴{2π−6≤2−x ≤4−π1≤x≤2;解得π−2≤x ≤8−2π;∴原不等式组的解集为[π−2,8−2π]. 故答案为:[π−2,8−2π].根据f(x)是以2为周期的偶函数,并且在[0,1]上单调递减,便可由f(π)=1,f(2π)=2得出f(4−π)=1,f(2π−6)=2,并且由1≤x ≤2得出0≤2−x ≤1,从而由1≤f(x)≤2得出f(4−π)≤f(2−x)≤f(2π−6),进而得出{2π−6≤2−x ≤4−π1≤x≤2,解该不等式组即可.考查周期函数和偶函数的定义,以及减函数的定义,不等式的性质.16. 已知数列{a n }满足:①a 1=0,②对任意的n ∈N ∗都有a n+1>a n 成立.函数f n (x)=|sin 1n (x −a n )|,x ∈[a n ,a n+1]满足:对于任意的实数m ∈[0,1),f n (x)=m 总有两个不同的根,则{a n }的通项公式是______.【答案】a n=n(n−1)2π【解析】解:∵a1=0,当n=1时,f1(x)=|sin(x−a1)|=|sinx|,x∈[0,a2],又∵对任意的m∈[0,1),f1(x)=m总有两个不同的根,∴a2=π,∴f1(x)=sinx,x∈[0,π],a2=π,又f2(x)=|sin12(x−a2)|=|sin12(x−π)|=|cos x2|,x∈[π,a3],∵对任意的m∈[0,1),f1(x)=m总有两个不同的根,∴a3=3π,又f3(x)=|sin13(x−a3)|=|sin13(x−3π)|=|sin13π|,x∈[3π,a4],∵对任意的b∈[0,1),f1(x)=m总有两个不同的根,∴a4=6π,由此可得a n+1−a n=nπ,∴a n=a1+(a2−a1)+⋯+(a n−a n−1)=0+π+⋯+(n−1)π=n(n−1)2π,故答案为:a n=n(n−1)2π,利用三角函数的图象与性质、诱导公式、数列的递推关系可得a n+1−a n=nπ,再利用“累加求和”方法、等差数列的求和公式即可得出.本题考查了三角函数的图象与性质、诱导公式、数列的递推关系、“累加求和”方法、等差数列的求和公式,考查了推理能力与计算能力,属于中档题三、解答题(本大题共5小题,共76.0分)17.如图,设长方体ABCD−A1B1C1D1中,AB=BC=2,直线A1C与平面ABCD所成角为π4.(1)求三棱锥A−A1BD的体积;(2)求异面直线A1B与B1C所成角的大小.【答案】解:(1)连接AC,则∠A1CA为A1C与平面ABCD所成的角,∴∠A1CA=π4,∵AB=BC=2,∴AC=2√2,∴AA1=2√2∴V A−A1BD =V A1−ABD=13×12AB×AD×AA1=4√23,(2)连接A1D,易知A1D//B1C,∴∠BA1D(或其补角)即为所求,连接BD,在△A1DB中,A1D=2√3,A1B=2√3,BD=2√2,由余弦定理得:cos∠BA1D=12+12−8 2×2√3×2√3=23,∠BA1D=arccos23,故异面直线A1B,B1C所成角的大小为arccos23.【解析】(1)转换顶点,以A1为顶点,易求体积;(2)B1C平移至A1D,化异面直线为共面直线,利用余弦定理求解.此题考查了三棱锥体积,异面直线所成角的求法等,难度不大.18.已知函数f(x)=cosx⋅sinx+√3cos2x−√32.(1)求函数f(x)的单调递增区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=12,a=3,b=4.求△ABC的面积.【答案】解:(1)函数f(x)=cosx⋅sinx+√3cos2x−√32=12sin2x+√32cos2x=sin(2x+π3)令2kπ−π2≤2x+π3≤2kπ+π2,得kπ−5π12≤x≤kπ+π12,∴f(x)的单调递增区间为[kπ−5π12,kπ+π12];k∈Z;(2)由f(A)=12,即sin(2A+π3)=12,△ABC是锐角三角形,∴2A+π3=5π6可得A=π4余弦定理:cosA=b2+c2−a22bc =√22解得:c=2√2+1△ABC的面积S=12bcsinA=4+√2.【解析】(1)利用二倍角,辅助角公式化简,结合三角函数的单调性即可求解f(x)的单调递增区间;(2)根据f(A)=12,求解A,a=3,b=4.利用余弦定理求解c,即可求解△ABC的面积.本题主要考查三角函数的图象和性质,余弦定理的应用,利用三角函数公式将函数进行化简是解决本题的关键.19.某创业投资公司拟投资开发某种新能源产品,估计能活得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f(x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f(x)≤75恒成立;(3)f(x)≤x5恒成立.)(1)判断函数f(x)=x30+10是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数g(x)=a√x−5(a≥1)符合公司奖励方案函数模型要求,求实数a的取值范围.【答案】解:(1)对于函数模型f(x)=x30+10,当x∈[25,1600]时,f(x)是单调递增函数,则f(x)≤f(1600)=160310≤75,显然恒成立,若函数f(x)=x30+10−x5≤0恒成立,即x≥60∴f(x)=x30+10不恒成立,综上所述,函数模型f(x)=x30+10,满足基本要求①②,但是不满足③,故函数模型f(x)=x30+10,不符合公司要求;(2)x∈[25,1600]时,g(x)=a√x−5有意义,∴g(x)max=a√1600−5≤75,∴a≤2,设a√x−5≤x5恒成立,∴ax≤(5+x5)2恒成立,即a≤25x +2+x25,∵25x +x25≥2√25x⋅x25=2,当且仅当x=25时取等号,∴a≤2∵a ≥1, ∴1≤a ≤2,故a 的取值范围为[1,2]【解析】(1)研究它的单调性和恒成立问题,即可判断是否符合的基本要求;(2)先求出g(x)max =a √1600−5≤75,此时a 的范围,再求出满足f(x)≤x5恒成立a 的范围,即可求出 本题主要考查函数模型的选择,其实质是考查函数的基本性质,同时,确定函数关系实质就是将文字语言转化为数学符号语言--数学化,再用数学方法定量计算得出所要求的结果,关键是理解题意,将变量的实际意义符号化.20. 已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0),B 1,B 2分别是椭圆短轴的上下两个端点,F 1是椭圆的左焦点,P是椭圆上异于点B 1,B 2的点,若△B 1F 1B 2的边长为4的等边三角形. (1)写出椭圆的标准方程;(2)当直线PB 1的一个方向向量是(1,1)时,求以PB 1为直径的圆的标准方程;(3)设点R 满足:RB 1⊥PB 1,RB 2⊥PB 2,求证:△PB 1B 2与△RB 1B 2的面积之比为定值. 【答案】(1)解:如图,由△B 1F 1B 2的边长为4的等边三角形,得a =4,且b =2. ∴椭圆的标准方程为x 216+y 24=1;(2)解:∵直线PB 1的一个方向向量是(1,1),∴直线PB 1所在直线的斜率k =1,则直线PB 1的方程为y =x +2, 联立{y =x +2x 216+y 24=1,得5x 2+16x =0,解得x P =−165,∴y P =−65.则PB 1的中点坐标为(−85,25),|PB 1|=√(−165)2+(−65−2)2=165√2.则以PB 1为直径的圆的半径r =8√25. ∴以PB 1为直径的圆的标准方程为(x +85)2+(y −25)2=12825;(3)证明:方法一、设P(x 0,y 0),R(x 1,y 1). 直线PB 1的斜率为k PB 1=y 0−2x 0,由RB 1⊥PB 1,得直线RB 1的斜率为k RB 1=xy 0−2.于是直线RB 1的方程为:y =−x 0y0−2x +2.同理,RB 2的方程为:y =−xy 0+2x −2.联立两直线方程,消去y ,得x 1=y 02−4x 0.∵P(x 0,y 0)在椭圆x 216+y 24=1上,∴x 0216+y 024=1,从而y 02−4=−x 024.∴x 1=−x04, ∴S △PB 1B 2S△RB 1B 2=|x0x 1|=4.方法二、设直线PB 1,PB 2的斜率为k ,,则直线PB 1的方程为y =kx +2.由RB 1⊥PB 1,直线RB 1的方程为y =−1k x +2, 将y =kx +2代入x 216+y 24=1,得(4k 2+1)x 2+16kx =0,∵P 是椭圆上异于点B 1,B 2的点,∴x 0≠0,从而x 0=−16k4k 2+1. ∵P(x 0,y 0)在椭圆x 216+y 24=1上,∴x 0216+y 024=1,从而y 02−4=−x 024. ∴k ⋅k′=y 0−2x 0⋅y 0+2x 0=y 02−4x 02=−14,得k′=−14k.∵RB 2⊥PB 2,∴直线RB 2的方程为y =4kx −2. 联立{y =−1k x +2y =4kx −2,解得x =4k 4k 2+1,即x 1=4k4k 2+1.∴S △PB 1B 2S△RB 1B 2=|x 0x 1|=|−16k 4k 2+14k 4k 2+1|=4.【解析】(1)由△B 1F 1B 2是边长为4的等边三角形得a =4,进一步求得b =2,则椭圆方程可求;(2)由直线PB 1的一个方向向量是(1,1),可得直线PB 1所在直线的斜率k =1,得到直线PB 1的方程,由椭圆方程联立,求得P 点坐标,得到PB 1的中点坐标,再求出|PB 1|,可得以PB 1为直径的圆的半径,则以PB 1为直径的圆的标准方程可求;(3)方法一、设P(x 0,y 0),R(x 1,y 1)求出直线PB 1的斜率,进一步得到直线RB 1的斜率,得到直线RB 1的方程,同理求得直线RB 2的方程,联立两直线方程求得R 的横坐标,再结合P(x 0,y 0)在椭圆x 216+y 24=1上可得x 1 与x 0 的关系,由S △PB 1B 2S△RB 1B 2=|x 0x 1|求解;方法二、设直线PB 1,PB 2的斜率为k ,,得直线PB 1的方程为y =kx +2.结合RB 1⊥PB 1,可得直线RB 1的方程为y =−1k x +2,把y =kx +2与椭圆方程联立可得x 0=−16k4k 2+1,再由P(x 0,y 0)在椭圆x 216+y 24=1上,得到y 02−4=−x 024,从而得到k ⋅k′=y 0−2x 0⋅y 0+2x 0=y 02−4x 02=−14,得k′=−14k.结合RB 2⊥PB 2,可得直线RB 2的方程为y =4kx −2.与线RB 1的方程联立求得x 1=4k4k 2+1.再由S △PB 1B 2S△RB 1B 2=|x0x 1|求解.本题考查椭圆方程的求法,考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.21. 已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n+1b n =S n +1(n ∈N ∗).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q(q ≠1)的等比数列,求证:数列{b n +11−q }为等比数列;(3)若{a n }的各项都不为零,{b n }是公差为d 的等差数列,求证:a 2,a 3,…,a n ,…成等差数列的充要条件是d =12.【答案】解:(1)∵a n+1b n =S n +1,a 1=1,b n =n 2,∴a 2=a 1+1b 1=1+112=4,1+4+6+132a 3=S 2+1b 2=1+4+11=6,a 4=S 3+1b 3=1+4+6+132=8,证明:(2)设a n =a 1q n−1(q ≠1),则S n =a1(1−q n )1−q ,∵a n+1b n =S n +1,∴b n =S n +1a n+1=a 1(1−q n )1−q +1a 1q n =a 1−a 1q n +1−q (1−q)a 1q n, ∴b n +11−q =a 1−a 1q n +1−q (1−q)a 1q n +11−q =a 1+1−q(1−q)a 1q n∴b n+1+11−q =a1+1−q(1−q)a 1q n+1∴b n+1b n =q ,(q 为常数)∴数列{b n +11−q }为等比数列,(3)∵数列{b n }是公差为d 的等差数列,∴当n ≥2时,a n+1b n −a n (b n −d)=a n ,即(a n+1−a n )b n =(1−d)a n ,∵数列{a n }的各项都不为零,∴a n+1−a n ≠0,1−d ≠0,∴当n ≥2时,b n 1−d =a na n+1−a n ,当n ≥3时,b n−11−d =a n−1a n −a n−1,两式相减得:当n ≥3时,a n a n+1−a n −a n−1a n −a n−1=b n −b n−11−d =d 1−d .先证充分性:由d =12可知a n a n+1−a n −a n−1a n −a n−1=1,∴当n ≥3时,a n−1a n −a n−1+1=a na n+1−a n ,又∵a n ≠0,∴a n+1−a n =a n −a n−1,即a 2,a 3,…,a n …成等差数列;再证必要性:∵a 2,a 3,…,a n …成等差数列,∴当n ≥3时,a n+1−a n =a n −a n−1,∴a na n+1−a n −a n−1a n−a n−1=a n−1a n−a n−1−a n−1a n−a n−1=1=d1−d,∴d=12.综上所述,a2,a3,…,a n…成等差数列的充要条件是d=12【解析】(1)直接代入计算即可;(2)通过设a n=a1q n−1(q≠1),利用等比数列的求和公式及a n+1b n=S n+1,计算可知b n,进而化简即得结论;(3)通过数列{b n}是公差为d的等差数列,对a n+1b n−a n(b n−d)=a n变形可知a na n+1−a n −a n−1a n−a n−1=b n−b n−11−d=d1−d,然后分别证明充分性、必要性即可.本题考查数列的递推式,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
崇明区2020届第一次高考模拟考试试卷数 学考生注意:1. 本试卷共4页,21道试题,满分150分,考试时间120分钟.2. 本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,其中1~6题每题4分,7~12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果.】1.已知集合0123{}A =,,,,02{|}B x x =<≤,则A B =I . 2.不等式21x -<的解集是 . 3.半径为1的球的表面积是 .4.已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S = . 5.函数()1f x x =+的反函数是 .6.计算:112323lim -+∞→+-n n n n n = .7.二项式62x x ⎛⎫+ ⎪⎝⎭的展开式中常数项的值等于 .8.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是 . 9.已知,a b R +∈,若直线230x y ++=与直线(1)2a x by -+=互相垂直,则ab 的最大值等于 .10.已知函数()f x 是定义在R 上的周期为2的奇函数.当01x <≤时,3(1)f x x ax =-+,则实数a 的值等于 .11.某组委会要从五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲不能从事翻译工作,乙不能从事导游工作,其余三人均能从事这四项工作,则不同的选派方案共有 种.12.正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足2(1)OP OB OC λλ=+-u u u r u u u r u u u r ,则PM PN ⋅u u u u r u u u r 的最小值为 .二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.若0a b <<,则下列不等式恒成立的是A .11a b> B .a b ->C .33a b <D .22a b >14.已知z C ∈,“0z z +=”是“z 为纯虚数”的 A .充分非必要条件 B .必要非充要条件C .充要条件D .既非充分也非必要条件15.如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点.已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于 A .12 B .1C .104D .5216.若不等式()sin 06x a b x ππ⎛⎫--+ ⎪⎝⎭≤对[1,1]x ∈-恒成立,则a b +的值等于A .23B .56C .1D .2三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分) 在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =. (1)求异面直线11B C 与1A C 所成角的大小; (2)求点1B 与平面1A BC 的距离.18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)已知函数231()sin 2cos 22f x x x =--. (1)求函数()f x 的最小正周期及单调增区间;(2)设ABC △的内角,,A B C 所对的边分别为,,a b c ,且3c =,()0f C =,若sin 2sin B A =,求,a b 的值.P ECODBAA 1B 1C 1A BC19.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)某辆汽车以 x 公里/小时速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120x ≤≤)时,每小时的油耗(所需要的汽油量)为145001005x x ⎛⎫-+ ⎪⎝⎭升.(1)欲使每小时的油耗不超过9升,求 x 的取值范围;(2)求该汽车行驶100 公里的油耗y 关于汽车行驶速度 x 的函数,并求y 的最小值.20.(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分)已知椭圆22:14x y Γ+=,其左右顶点分别为A ,B ,上下顶点分别为C ,D .圆O 是以线段AB 为直径的圆.(1)求圆O 的方程;(2)若点,E F 是椭圆上关于y 轴对称的两个不同的点,直线,CE DF 分别交x 轴于点M N 、,求证:OM ON ⋅u u u u r u u u r为定值; (3)若点P 是椭圆Γ上不同于点A 的点,直线AP 与圆O 的另一个交点为Q .是否存在点P ,使得13AP PQ =u u u r u u u r?若存在,求出点P 的坐标,若不存在,说明理由.21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知无穷数列{}n a ,{}n b ,{}n c 满足:对任意的n *∈N ,都有1||||n n n a b c +=-,1||||n n n b c a +=-,1||||n n n c a b +=-.记max{||,||,||}n n n n d a b c =({}max ,,x y z 表示3个实数,,x y z 中的最大值).(1)若11a =,12b =,14c =,求4a ,4b ,4c 的值; (2)若11a =,12b =,求满足23d d =的1c 的所有值;(3)设1a ,1b ,1c 是非零整数,且1||a ,1||b ,1||c 互不相等,证明:存在正整数k ,使得数列{}n a ,{}n b ,{}n c 中有且只有一个数列自第k 项起各项均为0.参考答案一、填空题1.{1, 2} 2.(1,3) 3.4π4.n25.f-1 (x) =x2 -1(x ≥0)6.37.160 8.y2-=1 9.10.2 11.78 12.-7 2。
2(2019杨浦一模). 已知扇形的半径为6,圆心角为3π,则扇形的面积为 5(2019普陀一模). 若一个球的体积是其半径的43倍,则该球的表面积为 5(2019长嘉一模). 若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为 5(2019虹口一模). 若一个球的表面积为4π,则它的体积为5(2019青浦一模). 已知直角三角形△ABC 中,90A ∠=︒,3AB =,4AC =,则△ABC 绕直线AC 旋转一周所得几何体的体积为6(2019杨浦一模). 若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于 3()cm8(2019浦东一模). ,母线与底面所成角为3π,则该圆锥的表面积为8(2019崇明一模). 设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于 9(2019普陀一模). 如图,正四棱柱1111ABCD A B C D -的底面边长为4,记1111AC B D F =I ,11BC B C E =I ,若AE BF ⊥,则此棱柱的体积为9(2019闵行一模). 如图,在过正方体1111ABCD A B C D -的任意两个顶点的所有直线中,与直线1AC 异面的直线的条数为10(2019金山一模). 在120︒的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A 、B 两点,则这两个点在球面上的距离是10(2019静安一模). 已知球的半径为24cm ,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是 3cm (结果保留圆周率π)10(2019宝山一模). 将函数y =y 轴旋转一周所得的几何容器的容积是14(2019徐汇一模). 魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:4π,若正方体的棱长为2,则“牟合方盖”的体积为( )A. 16B. 163C. 163D. 128314(2019金山一模). 给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14(2019虹口一模). 关于三个不同平面α、β、γ与直线l ,下来命题中的假命题是( ) A. 若αβ⊥,则α内一定存在直线平行于βB. 若α与β不垂直,则α内一定不存在直线垂直于βC. 若αγ⊥,βγ⊥,l αβ=I ,则l γ⊥D. 若αβ⊥,则α内所有直线垂直于β14(2019奉贤一模). 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件14(2019闵行一模). 已知a 、b 为两条不同的直线,α、β为两个不同的平面,a αβ=I ,a ∥b ,则下列结论不可能成立的是( )A. b β,且b ∥αB. b α,且b ∥βC. b ∥α,且b ∥βD. b 与α、β都相交14(2019浦东一模). 下列命题正确的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两条直线垂直于同一条直线,那么这两条直线平行C. 如果两条直线垂直于同一条直线,那么这两条直线平行D. 如果两条直线垂直于同一条直线,那么这两条直线平行15(2019黄浦一模). 如图,在正方体1111ABCD A B C D -的八个顶点中任取两个点作直线,与直线1A B 异面且夹角成60︒的直线的条数为( )A. 3B. 4C. 5D. 615(2019青浦一模). 对于两条不同的直线m 、n 和两个不同的平面α、β,以下结论正确的是( )A. 若m α,n ∥β,m 、n 是异面直线,则α、β相交B. 若m α⊥,m β⊥,n ∥α,则n ∥βC. mα,n ∥α,m 、n 共面于β,则m ∥n D. 若m α⊥,n β⊥,α、β不平行,则m 、n 为异面直线15(2019普陀一模). 若a 、b 、c 表示直线,α、β表示平面,则“a ∥b ”成立的一个充分非必要条件是( )A. a b ⊥,b c ⊥B. a ∥α,b ∥αC. a β⊥,b β⊥D. a ∥c ,b c ⊥17(2019浦东一模). 已知直三棱柱111A B C ABC -中,11AB AC AA ===,90BAC ︒∠=.(1)求异面直线1A B 与11B C 所成角;(2)求点1B 到平面1A BC 的距离.17(2019金山一模). 如图,三棱锥P ABC -中,PA ⊥底面ABC ,M 是 BC 的中点,若底面ABC 是边长为2的正三角形,且PB 与底面ABC 所成的角为3π. 求: (1)三棱锥P ABC -的体积;(2)异面直线PM 与AC 所成角的大小.(结果用反三角函数值表示)17(2019黄浦一模). 如图,一个圆锥形量杯的高为12厘米,其母线与轴的夹角为30︒.(1)求该量杯的侧面积S ;(2)若要在该圆锥形量杯的一条母线PA 上,刻上刻度,表示液面到达这个刻度时,量杯里的液体的体积是多少,当液体体积是100立方厘米时,刻度的位置B 与顶点P 之间的距离是多少厘米(精确到0.1厘米)?17(2019奉贤一模). 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC =,D 是BC 的中点.(1)求证:BC ⊥平面11A AD ;(2)若90BAC ︒∠=,4BC =,三棱柱111ABC A B C -的 体积是83,求异面直线1A D 与1AB 所成角的大小.17(2019青浦一模). 已知正四棱柱1111ABCD A B C D -的底面边长为3,15A D =.(1)求该正四棱柱的侧面积与体积;(2)若E 为线段1A D 的中点,求BE 与平面ABCD 所成角的大小.17(2019闵行一模). 如图,正三棱柱111ABC A B C -的各棱长均为2,D 为棱BC 的中点.(1)求该三棱柱的表面积;(2)求异面直线AB 与1C D 所成角的大小.17(2019宝山一模). 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.17(2019崇明一模). 如图,设长方体1111ABCD A B C D -中,2AB BC ==,直线1A C 与平面ABCD 所成的角为4π. (1)求三棱锥1A A BD -的体积;(2)求异面直线1A B 与1B C 所成角的大小.17(2019徐汇一模). 如图,已知正方体ABCD A B C D ''''-的棱长为1.(1)正方体ABCD A B C D ''''-中哪些棱所在的直线与直线A B '是异面直线?(2)若M 、N 分别是A B '、BC '的中点,求异面直线MN 与BC 所成角的大小.17(2019虹口一模). 在如图所示的圆锥中,底面直径与母线长均为4,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积与体积;(2)求异面直线AB 与CD 所成角的大小.17(2019杨浦一模). 如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中心,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .18(2019静安一模). 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,PA AC AB ==,E 、F 分别是CD 、PD 的中点.(1)求证:CD ⊥平面PAE ;(2)求异面直线AF 与PE 所成角的大小.(结果用反三角函数值表示)18(2019长嘉一模). 《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P ABCD -中,PD ⊥底面ABCD .(1)已知4AD CD m ==,斜梁PB 与底面ABCD 所成角为15︒,求立柱PD 的长; (精确到0.01m )(2)求证:四面体PDBC 为鳖臑.19(2019普陀一模). 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O ,钉尖为i A (1,2,3,4i =).(1)记i OA a =(0a >),当1A 、2A 、3A 在同一水平面内时,求1OA 与平面123A A A 所成角的大小(结果用反三角函数值表示);(2)若该“钉”的三个钉尖所确定的三角形的面积为232cm ,要用某种线型材料复制100枚这种“钉”(耗损忽略不计),共需要该种材料多少米?。
2019年上海市高三一模数学考试客观题难题解析2019.01一. 崇明区11. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f ,(2)2f ,则不等式组121()2x f x的解集为【解析】根据题意,画出草图,如图所示,满足不等式组121()2x f x的解集即图中实线部分横坐标的范围,∵(2)(24)(82)2f f f ,()(2)1f f ,并且12822 ,∴数形结合可得解集为[2,82] .12. 已知数列{}n a 满足:① 10a ;② 对任意的n *N ,都有1n n a a 成立.函数1()|sin()|n n f x x a n,1[,]n n x a a 满足:对于任意的实数[0,1)m ,()n f x m 总有两个不同的根,则{}n a 的通项公式是【解析】∵1[,]n n x a a ,∴1[0,]n n n x a a a ,设n x a t ,即()|sin|tg t n在 1[0,]n n t a a 上满足对任意[0,1)m ,()g t m 总有两个不同的根,结合函数()g t 的图像可知,周期为T n ,即1n n a a n ,∴1(1)n n a a n ,累加得(1)2n n n a. 16. 函数()f x x ,2()2g x x x ,若存在129,,,[0,]2n x x x ,使得121121()()()()()()()()n n n n f x f x f x g x g x g x g x f x ,则n 的最大值是( )A. 11B. 13C. 14D. 18【解析】即112211()()[()()][()()][()()]n n n n g x f x g x f x g x f x g x f x ,设2()()()22h x g x f x x x ,即121()()()()n n h x h x h x h x 恒成立,∵当x 9[0,2时,max 91()()1324h x h ,min ()(1)1h x h ,而111311344, ∴1n 的最大值为13,即n 的最大值为14. 故选C. 本题与2018浦东二模第12题类似,可类比思考(2018浦东二模12)已知函数2()57f x x x ,若对于任意正整数n ,在区间5[1,]n n上存在1m 个实数0a 、1a 、2a 、 、m a ,使得012()()()()m f a f a f a f a 成立, 则m 的最大值为【解析】对于任意正整数n 成立,取min 59()2n n , ∴在区间9[1,]2上函数最大值为919()24f,最小值为53(24f ,19316444,即m 的最大值为6.二. 虹口区11. 如图,已知半圆O 的直径4AB ,OAC 是等边三角形,若点P 是边AC (包含端点A 、C )上的动点,点Q 在弧BC 上,且满足OQ OP ,则OP BQ的最小值为【解析】∵OQ OP ,∴0OP OQ ,∵BO OA ,∴()OP BQ OP BO OQ OP BO OP OQ OP OA ,结合向量数量积几何意义,OC OA OP OA OA OA , 即[2,4]OP OA ,∴OP BQ的最小值为2.12. 若直线y kx 与曲线2|log (2)|2|1|x y x 恰有两个公共点,则实数k 取值范围为 【解析】分段讨论曲线,当21x ,112y x x,当11x ,21y x ,当 1x ,3y . 综上画出曲线图像如图所示,∵直线y kx 与曲线有两个交点,∴数形结合可得(,0]{1}k .15. 已知函数2()1f x ax x ,1,1(),111,1x g x x x x,若函数()()y f x g x 恰有两个零点,则实数a 的取值范围为( )A. (0,)B. (,0)(0,1)C. 1(,(1,)2D. (,0)(0,2)【解析】即函数()f x 与()g x 的图像有两个不同交点,结合图像,分类讨论,当0a ,()f x 开口向下,过定点(0,1),两个函数图像恒有两个交点;当0a ,只有一个交点;当 0a ,开口向上,对称轴102x a,过定点(0,1),要满足有两个交点,21ax x x , 440a ,∴01a ,综上所述,(,0)(0,1)a ,故选B.16. 已知点E 是抛物线2:2C y px (0)p 的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线C 上,在EFP 中,若sin sin EFP FEP ,则 的最大值为( )A.2B. 2C.D. 【解析】根据题意,作出图像,∵sin sin EFP FEP , 由正弦定理,即PE PF ,再由抛物线定义,PF PH , ∴1sin PF PH PEH PE PE, 要取最大值,即PEH 取最小值,∴PE 与抛物线相切时,可求 的最大值. 设2px my,联立22y px ,得2220y pmy p , 222440p m p ,∴1m ,即4PEH,max. 故选C.三. 宝山区11. 张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC 中,a 、b 、c 分别是角A 、B 、C的对边,已知b 45A ,求边c . 显然缺少条件,若他打 算补充a 的大小,并使得c 只有一解,,那么a 的可能取值是 (只需填写一个合适的答案)【解析】由正弦定理,2sin sin sin a b B A B a ,∵c 只有一解,即sin y B ,3[0,4B与2y a仅有一解,∴2{1}(0,2a,即{2})a ,a 在此范围内即可. 或数形结合,根据题意,如图所示,以C 为圆心的圆与射线AB 仅有一个交点,观察可得,{2})a .12. 如果等差数列{}n a 、{}n b 的公差都为d (0d ),若满足对于任意n *N ,都有n n b a kd ,其中k 为常数,k *N ,则称它们互为“同宗”数列,已知等差数列{}n a 中,首项11a ,公差2d ,数列{}n b 为数列{}n a 的“同宗”数列,若11221111lim()3n n n a b a b a b,则k 【解析】由题知21n a n ,又{}n b 为{}n a 的“同宗”数列,所以2n n b a k , 则221n b k n . ∴11111((21)(212)221221n n a b n n k k n k n ∴1122111111111[(1()(22132321221n n a b a b a b k k k n k n∴1122111111lim((1)23213n a b a b k k, 设111(1)2321k c k k, 则11111111(1)(1)23212232121k k c c k k k k k111111(2223212221k k k k k 211211(2(22)22212(22)321k k k k k k k1211()02(21)2(22)321k k k k k,即{}k c 单调递减,∵213c ,∴当且仅当2k 时,11221111lim()3n n n a b a b a b,故2k .16. 设点M 、N 均在双曲线22:143x y C 上运动,1F 、2F 是双曲线C 的左、右焦点,则 12|2|MF MF MN的最小值为( )A. B. 4 C. D. 以上都不对 【解析】∵O 为1F 、2F 的中点,则12|2|MF MF MN |22|2||MO MN NO ,∵||2NO ,∴12|2|4MF MF MN,故选B.四. 松江区10. 已知A 、B 、C 是单位圆上三个互不相同的点,若||=||AB AC ,则AB AC的最小值是【解析】法一:由题意,作OD AB ,OE AC ,设AD x ,OAD ,∴cos x , 2cos cos221BAC x ,2AB AC x ,∴4222cos 284AB AC x x x x221118()422x ,即AB AC 的最小值为12.法二:建系,设(0,1)A ,(cos ,sin )B ,(cos ,sin )C ,∴(cos ,sin 1)AB, (cos ,sin 1)AC ,∴222cos (sin 1)2sin 2sin AB AC21112(sin )222 ,即AB AC 的最小值为12 .11. 已知向量1e ,2e是平面 内的一组基向量,O 为 内的定点,对于 内任意一点P , 当12OP xe ye时,则称有序实数对(,)x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为11(,)x y 、22(,)x y ,对于下列命题:① 线段A 、B 的中点的广义坐标为1212(,)x x y y ;② A 、B ;③ 向量OA 平行于向量OB 的充要条件是1221x y x y ;④ 向量OA 垂直于向量OB的充要条件是12120x x y y .其中的真命题是 (请写出所有真命题的序号)【解析】由题知1112OA x e y e ,2122OB x e y e,设向量1e 、2e 的夹角为 ,① 若线段AB 的中点为C ,则1212121()222x x y y OC OA OB e e,则1212(,)22x x y y C ,∴①正确;② 由211212()()AB OB OA x x e y y e,两边平方得:||AB ,若2,则不成立;③ 若OA ∥OB 存在非零实数k ,有OA kOB ,则11122122()x e y e k x e y e ,即121122()()0x kx e y ky e ,∴1212x kx y ky ,∴1221x y x y 成立;④ 若0OA OB OA OB,11122122()()OA OB x e y e x e y e122212212()cos x x y y x y x y ,若2,则不成立. ∴真命题为①③.12. 已知函数()f x 的定义域为R ,且()()1f x f x 和(1)(1)4f x f x 对任意的x R 都成立,若当[0,1]x 时,()f x 的值域为[1,2],则当[100,100]x 时,函数()f x的值域为【解析】由(1)(1)4f x f x 可得()(2)4f x f x ,当[0,1]x 时,()[1,2]f x ; 当[1,0]x 时,则[0,1]x ,∴11()[,1]()2f x f x ; 当[1,2]x 时,则2[0,1]x ,∴4()[2,4](2)f x f x ;当[2,1]x 时,则[1,2]x ,∴111()[,]()42f x f x ; 当[2,3]x 时,则2[1,0]x ,∴4()[4,8](2)f x f x ;当[3,2]x 时,则[2,3]x ,∴111()[,()84f x f x ; ……当[,1]x n n 时,1()[2,2]n n f x ; 当[(1),]x n n 时,111()[,]22n n f x ; ∴当[100,100]x 时,()f x 的值域为989999100100100999998100111111[,][,][,1][1,2][2,2][2,2][,2]222222 .15. 将函数()2sin(34f x x的图像向下平移1个单位,得到()g x 的图像,若12()()9g x g x ,其中12,[0,4]x x ,则12x x 的最大值为( ) A. 9 B. 375C. 3D. 1 【解析】g()2sin(3)1[3,1]4x x,∵12()()9g x g x ,∴12()()3g x g x , ∴25g()2sin(3)134312k x x x,25[0,4]312k ,∴543[,88k ,∵k Z ,∴0k 时,min512x ,5k 时,max 154x ,∴max 12min 9x x x x ,故选A.16. 对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该 值为点P 到曲线C 的距离,记作(,)d P C ,若曲线C 是边长为6的等边三角形,则点集{|(,)1}D P d P C 所表示的图形的面积为( )A. 36B. 36C. 36D. 36 【解析】由题意可知,满足条件的区域为以正三角形边 上的点为圆心,1为半径的圆扫过的区域,如图面积为226361(63644, 故选D.五. 杨浦区11. 当0x a 时,不等式22112()x a x 恒成立,则实数a 的最大值为 【解析】2222112282(()()x a x x a x x a x a ,当且仅当x a x 时等号成立, ∴2211()x a x 的最小值为28a,题中不等式恒成立,即282a ,∴2a ,即最大值为2. 12. 设d 为等差数列{}n a 的公差,数列{}n b 的前n 项和n T ,满足1(1)2nn n nT b (n *N ), 且52d a b ,若实数23{|}k k k m P x a x a (k *N ,3k ),则称m 具有性质k P ,若n H 是数列{}n T 的前n 项和,对任意的n *N ,21n H 都具有性质k P ,则所有满足条件的k 的值为【解析】由关系式1(1)2nn n n T b(n *N ),可得1112b b ,122212b b b ,1233312b b b b,12344412b b b b b ,∴114b ,123116b b b ,3116b ,214b ,∴514d a ,∴可求得14n na .当2n k ,k *N ,22221212k k k k k T b T T ,∴21212k k T ;当21n k ,k *N ,212122212112k k k k k T b T T ,∴220k T ;即n 为奇数时,112n n T ;n 为偶数时,0n T .∴2111111(1416434n n n H ,而2213k n k a H a (k *N ,3k ),即6111(14344n k k ,整理得1111141343334n n k ,∴1433k , ∵k *N ,∴3k 或4.16. 已知函数2()2x f x m x nx ,记集合{|()0,}A x f x x R ,集合{|[()]0,}B x f f x x R ,若A B ,且都不是空集,则m n 的取值范围是( )A. [0,4)B. [1,4)C. [3,5]D. [0,7)【解析】设0x A ,∴0()0f x ,∵A B ,∴0x B ,∴0[()]0f f x ,即(0)0f , ∴0m ,2()f x x nx . 当0n ,{0}A B ,符合题意. 当0n ,{0,}A n ,{|()0,(),}B x f x f x n x R ,∵A B ,∴()f x n 无解,即20x nx n 无解, 24004n n n ,∵0m ,∴综上所述,[0,4)m n ,故选A.本题与2018虹口一模12题类似,可对比思考(2018虹口一模12)设2()22x f x x a x b ,其中,a b N ,x R ,如果函数()y f x 与函数(())y f f x 都有零点且它们的零点完全相同,则(,)a b 为【解析】设零点0x ,0()0f x ,0(())0(0)0f f x f ,∴0b ,∴2()2f x x ax , 当0a ,2()f x x ,4(())f f x x ,有唯一零点0x ,符合;当0a ,()(2)f x x x a , 有两个零点10x 和22x a ,(())()[()2]0()0f f x f x f x a f x 和()2f x a , ∵()0f x 已满足有两个相同的零点10x 和22x a ,∴方程()2f x a 无解, 即2220x ax a 无解,248002a a a ,∴1a ; 综上,(,)a b 为(0,0)或(1,0).六. 徐汇区11. 已知 R ,函数24()43x x f x x x x,若函数()f x 恰有2个零点,则 的取 值范围是【解析】4y x 的零点为4x ,243y x x 的零点为1x 或3x ,若函数恰有两个零点,结合图像可得,(1,3](4,) .12. 已知圆22:(1)1M x y ,圆22:(1)1N x y ,直线1l 、2l 分别过圆心M 、N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是椭圆22194x y 上 任意一点,则PA PB PC PD的最小值为【解析】设(,)P x y ,其中22194x y ,(0,1)M ,(0,1)N ,()()PA PB PM MA PM MB 2(()()||1PM MA PM MA PM ,同理,2||1PC PD PN, ∴22||||2PA PB PC PD PM PN222222(1)(1)22()x y x y x y ,∵点P 在椭圆22194x y上,∴2PO ,即222()8x y ,∴min ()8PA PB PC PD.15. 对于函数()y f x ,如果其图像上的任意一点都在平面区域{(,)|()()0}x y y x y x内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x ;②y ;下列结论正确的是( )A. ①、②均不是“蝶型函数”B. ①、②均是“蝶型函数”C. ①是“蝶型函数”,②不是“蝶型函数”D. ①不是“蝶型函数”,②是“蝶型函数” 【解析】平面区域{(,)|()()0}x y y x y x 为图中红色阴影部分,∵|sin |||x x 对x R 恒成立,∴① 符合“蝶型函数”的条件;y 为等轴双曲线221x y 的0y 的部分,由双曲线渐近线的几何意义可知,② 也符合“蝶型函数”的条件. 故选B.16. 已知数列{}n a 是公差不为0的等差数列,前n 项和为n S ,若对任意的n *N ,都有3n S S ,则65a a 的值不可能为( ) A. 2 B.53 C. 32 D. 43【解析】法一:111331140,00,02032300n a d a d a S S a a d d a d a, ∴61151151311[,2]4424a a d d a a a d a d d,由于43[,2]32 ,∴选D. 法二:A 选项,不妨设62a ,51a ,∴40a ,31a ,符合题意;B 选项,同理,设65a ,53a ,∴41a ,31a ,符合题意;C 选项,设63a ,52a ,∴41a ,30a ,符合题意;D 选项,设64a ,53a ,∴42a ,31a ,不符题意,故选D.七. 长宁(嘉定)区11. 已知数列{}n a 的前n 项和为n S ,且112n n na a,若数列{}n S 收敛于常数A ,则首项 1a 取值的集合为【解析】1221234112lim ()()2813k k a a S a a a a q,232112345111111lim ()()41613k k a a S a a a a a a a a q , 由题意,lim n n S A ,∴11121333A a a ,即首项1a 取值的集合为1{}3.12. 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b 的解集A 是有限集,则集合A 中最多有 个元素【解析】转化为123()||||||f x x a x a x a 和123()||||||g x x b x b x b 图像交点,由此类函数的图像可知,如图最多可有3个交点,即集合A 中最 多有3个元素.16. 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x 的定义域为D ,12,x x D ,① 若当12()()0f x f x 时,都有120x x ,则函数()y f x 是D 上的奇函数; ② 若当12()()f x f x 时,都有12x x ,则函数()y f x 是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题【解析】对于命题①,首先定义域关于原点对称没有说明,其次不能表示任意性,即存在12()()0f x f x ,有120x x ,不符合奇函数的定义;对于命题②,同样也不能表示任意性,即存在12()()f x f x ,有12x x ,也不符合单调增函数的定义. 故选C.八. 普陀区11. 已知点(2,0)A ,设B 、C 是圆22:1O x y 上的两个不同的动点,且向量(1)OB tOA t OC(其中t 为实数),则AB AC【解析】根据题意,A 、B 、C 三点共线, 作OD BC ,∴BD CD ,∴()()AB AC AB AC AD BD AD CD22222()AD BD AD OB OD22222413AD OD OB OA OB ,即3AB AC12. 记a 为常数,记函数1()log 2axf x a x(0a 且1a ,0x a )的反函数为1()f x ,则11111232()()()()21212121af f f f a a a a【解析】11()log log 22a a a x x f a x x a x ,∴()()1f a x f x ,∴11()(1)f x f x a ,(原函数关于点1(,)22a 对称,反函数关于点1(,22a 对称)∴倒序相加可得11111232()()()(21212121af f f f a a a a222a a a 16. 设()f x 是定义在R 上的周期为4的函数,且2sin 201()2log 14x x f x x x,记()()g x f x a ,若102a,则函数()g x 在区间[4,5] 上零点的个数是( ) A. 5 B. 6 C. 7D. 8【解析】数形结合,转化为()y f x ([4,5])x与y a 1(0)2a 的交点个数问题,画出图像, 观察可得,交点个数为8个,即()g x 在区间[4,5] 上有8个零点,故选D.九. 青浦区11. 已知函数()2f x,当(0,1]x 时,2()f x x ,若在区间[1,1] 内()()(1)g x f x t x 有两个不同的零点,则实数t 的取值范围是【解析】当(1,0]x (0,1],1f x ,2()21f x x,作出()f x 图像如图所示,根据题意,即 ()y f x 与(1)y t x 有两个不同交点,t 即直线(1)y t x 的斜率,数形结合,观察图像可得1(0,2t .12. 已知平面向量a 、b 、c 满足||1a,||||2b c ,且0b c ,则当01 时, |(1)|a b c的取值范围是【解析】如图所示,OB b ,OC c ,OA a,||1a ,∴点A 在以O 为圆心,1为半径的圆上. (1)b c 表示OD(∵(1)1 ,01 ,∴D 在线段BC 上), |(1)||((1))|||||a b c a b c OA OD AD ,即求AD 的取值范围. ∵OD ,∴结合图像可得,min max OD OA AD OD OA ,即1,3]AD ,∴|(1)|a b c的取值范围为1,3] .16. 记号[]x 表示不超过实数x 的最大整数,若2()[30x f x ,则(1)(2)(3)(29)(30)f f f f f 的值为( )A. 899B. 900C. 901D. 902【解析】令2()30x g x ,()h x ,则()[()][()]f x g x h x ,(1)(2)(30)f f f [(1)][(2)][(30)][(1)][(2)][(30)]g g g h h h ,其中:[()]g x 对应函数值表示落在2()30x g x 图像下方的整点个数,如[(10)]3g (如图1);则[(1)][(2)][(30)]g g g 表示落在函数2()30x g x (030x )图像上以及图像的下方的整点个数(如图2),同理,[(1)][(2)][(30)]h h h 表示落在函数()h x (030x )图像上以及图像的下方的整点个数(如图3),这里,我们观察到2()30x g x ,()h x 互为反函数,两者函数关于y x 对称,那么函数()h x (030x )下方的整点个数(如图3)可等价为落在2()30x g x 图像上及左侧的整点个数(030y ),如图4;结合图2及图4,则(1)(2)(30)f f f [(1)][(2)][(30)][(1)][(2)][(30)]g g g h h h , 可等价为()y g x (030x ,030y )图像下方及左方的整点个数(有两个相同的点(30,30)),即:落点030x ,030y 内所有的整点个数再加上(30,30)这个唯一重复的点(如图5),则2(1)(2)(3)(29)(30)301901f f f f f . 故选C.十. 浦东新区10. 已知函数()2||1f x x x a 有三个不同的零点,则实数a 的取值范围为 【解析】本题可分类讨论,亦可转化为||y x a 与12y x的交点个数问题,结合函数图像可得,要有三个不同的交点, 即y x a 与12y x必须有两个交点,∴12x a x, 即22210x ax ,2480a ,∵0a 明显成立,∴(,a本题与2018松江一模第10题类似,可类比思考.(2018松江一模10)已知函数()|2|1f x x x a 有三个零点,则实数a 的范围为 【解析】分类讨论,设()|2|g x x x a ,可以看作()g x 与1y 有三个交点,当0a ,()g x 图像如图所示,易知与1y 只有1个交点,不符;当0a ,()g x 图像如图所示,要与1y 有3个交点,需满足()14a f,即a . 解法二:根据题意,可以看作()|2|g x x a 与1()h x x有三个交点,结合图像可知,当2ax 时,()g x 与()h x 恒有一个交点,∴当2ax 时,()g x 与()h x 有两个不同 交点,即12a x x在(0,)x 有两个解, 2210x ax ,280a ,且0a,∴a11. 已知数列{}n a 满足:211007(1)2018(1)n n n na n a n a ()n *N ,11a ,22a , 若1limn n na A a ,则A【解析】由211007(1)2018(1)n n n na n a n a 两边同除1n na 得:22111111111007(1)2018(1)lim lim[1007(1)2018(1)]n n n n n n n n n n a a a aa n n a a n n a ,∵1limn n na A a ,∴20181007A A,解得:1009A 或2A ,∵0n a ,∴1009A . 12. 已知函数2||2416()1()22x a x x x f x x,若对任意的1[2,)x ,都存在唯一的 2(,2)x ,满足12()()f x f x ,则实数a 的取值范围为【解析】当2x ,21()164164xf x x x x,∵164y xx 在x [2,) 的值域为[16,) ,且单调递增,∴()f x 在x [2,) 的值域为1(0,]16,且单调递减. 数形结合,分析||1()()2x a f x (2)x 与2()416xf x x(2)x 的图像关系由题意,当2a ,需满足211()216a ,即2a ,∴[2,2)a ;当2a ,需满足211()216a ,即6a ,∴[2,6)a ;综上所述,[2,6)a . (图中函数图像为了视觉效果,已按比例更改,非真实情况,但不妨碍解题理解)16. 已知点(1,2)A ,(2,0)B ,P 为曲线y 上任意一点,则AP AB 的取值范围为( )A. [1,7]B. [1,7]C. [1,3D. [1,3【解析】法一:曲线y 为椭圆22143x y 的上半部分,设(2cos )P ,[0,] ,∴2cos 34sin(36AP AB,由[0,] ,则7[,666 ,∴1sin()[,1]62,∴[1,7]AP AB . 故选A.法二:由向量数量积的几何意义,分析AP 在AB上的投影的范围.由图得,AB AC AP AB AB AD,:24AB l y x , 11:12PC l y x ,∴68(,)55C ,设21:2P D l y x b ,联立y ,由0 得,2b ,∴21:22P D l y x ,由:24AB l y x ,∴124(,)55D 55AP AB ,即[1,7]AP AB .十一. 闵行区11. 已知向量(cos ,sin )a ,(cos ,sin )b ,且3,若向量c 满足||1c a b ,则||c的最大值为【解析】由题意,||||1a b ,且a 与b 夹角为3,结合图像,如图,OA a ,OB b ,OC c ,∴a b OD,||OD ,∵||1c a b ,∴||||1OC OD DC,∴||||||1OC OD CD ,即||c1.12. 若无穷数列{}n a 满足:10a ,当n *N ,2n 时,1121||max{,,,}n n n a a a a a (其中121max{,,,}n a a a 表示121,,,n a a a 中的最大项),有以下结论: ① 若数列{}n a 是常数列,则0n a (n *N ); ② 若数列{}n a 是公差0d 的等差数列,则0d ; ③ 若数列{}n a 是公比为q 的等比数列,则1q ;④ 若存在正整数T ,对任意n *N ,都有n T n a a ,则1a 是数列{}n a 的最大项. 则其中的正确结论是 (写出所有正确结论的序号) 【解析】由题意:2112||0a a a a 或212a a ,命题①:若数列{}n a 是常数列,则21100n a a a a ,∴命题①正确;命题②:若数列{}n a 是公差0d 的等差数列,则10d a 或10d a ,若10d a , 则{}n a 递增,由321122||max{,}a a a a a a,∴3212||max{,}a a a a ,不符题意,∴10d a ,此时{}n a 递减,11121||max{,,,}n n n a a d a a a a ,∴命题②正确;命题③:若数列{}n a 是公比为q 的等比数列,则212a a ,2q ,由10a ,∴{}n a 是递增数列,则212111max{,,,}2n n n a a a a a ,1221111||222n n n n n a a a a a , ∴1121||max{,,,}n n n a a a a a ,∴命题③正确;命题④:当10a 时,则21100n a a a a ,显然成立,当10a 时,数列{}n a 不可能为常数列,∴212a a ,此时数列{}n a 是以周期为T 的周期数列,假设1a 不是{}n a 的最大项,在12,,,T a a a 中,一定存在这一最大项i a (1i T ,i *N ),由21211121||||max{,,,}T T i T a a a a a a a a a ,∴假设不成立,即1a 一定是数列{}n a 的最大项,∴命题④正确. ∴正确结论为①②③④.16. 在平面直角坐标系中,已知向量(1,2)a,O 是坐标原点,M 是曲线||2||2x y 上的动点,则a OM的取值范围为( )A. [2,2]B. [C. [55D. [5【解析】画出曲线||2||2x y ,即图中菱形PQSR ,a OA,由题意,OA PR ,OA QS ,∴结合向量数量积的几何意义,12OA OM OA OM OA OM,可求出125OM OM ,∴55OA OM ,即[2,2]a OM,故选A.十二. 金山区11. 设函数21()lg(1||)1f x x x,则使(2)(32)f x f x 成立的x 取值范围是 【解析】观察函数结构,可得函数性质,()()f x f x ,为偶函数,且当0x 时,函数 为增函数,∴由(2)(32)f x f x 可得|2||32|x x ,平方整理得251240x x , 解得2(,)(2,)5x .12. 已知平面向量a 、b 满足条件:0a b ,||cos a ,||sin b ,(0,)2,若向量c a b (,) R ,且22221(21)cos (21)sin 9,则||c 的最小值为【解析】方法一:如图建系,(cos ,0)a ,(0,sin )b, ∴(cos ,sin )c ,设2(2cos ,2sin )OE c, (cos ,sin )OD a b ,∴||1OD, ∴((21)cos ,(21)sin )DE OE OD,∴由题意,1||3DE ,∴min 12||||||133OE OD DE ,∴min min 11||||23c OE .方法二:由(0,2,则cos (0,1) ,sin (0,1) ,设cos 3(21)cos sin 3(21)sin ,[0,2) ,则cos 16cos 2,sin 16sin 2 , 则22222222221cos 1sin ||()cos sin (1)cos (1)sin 43cos 43sin c a b5151511(cos cos sin sin )cos()1861861869 , ∴||c 的最小值为13.16. 已知函数52|log (1)|1()(2)21x x f x x x,则方程1(2)f x a x (a R )的实数根个 数不可能为( )A. 5个B. 6个C. 7个D. 8个 【解析】作出()f x 图像如图所示,设12u x x,作出12u x x的图像如图所示,当1a 时,则方程()1f u 由图可知有4个解,即1u 、2u 、3u 、4u , 且14u ,2(0,1)u ,31u ,43u ,再由右图知方程112x u x,212x u x ,312x u x 和412x u x共有7个解,排除选项C ; 当2a 时,方程()2f u 有3个解124u ,2(0,1)u ,32u , 则12u x x共有6个解,排除选项B ; 当(1,2)a 时,方程()f u a 有4个解1(4,24)u ,2(0,1)u ,3(1,2)u ,4(2,3)u , 则12u x x共有8个解,排除选项D ;综上所述,选择A.十三. 奉贤区11. 点P1上运动,E 是曲线第二象限上的定点,E 的纵坐标是158, (0,0)O ,(4,0)F ,若OP xOF yOE,则x y 的最大值是【解析】点1515(,88E,点(4,0)F ,1547EF k ,∴设直线EF 的法向量(15,47)OX, ∴OP OX xOF OX yOE OX , 即6060OP OX x y,∴欲求x y 的最大值,即确定OP 在OX方向上投影的最大值,结合图像可知点P 在(0,3)处时,投影有最大值,此时1515(0,3)(4,)88OP xOF yOE x y y ,解得34x ,85y ,∴4720x y.12. 设11(,)A x y ,22(,)B x y 是曲线2224x y x y 的两点,则1221x y x y 的最大值是 【解析】曲线方程为22(1)(2)5x y ,表示以(1,2)为半径的圆, 当A 、B 、O (也在圆上)逆时针排列时,112212211111()22001AOBx y S x y x y x y ,∵圆的内接正三角形的面积最大,∴21221max max ()2()242AOB x y x y S. 16. 若三个非零且互不相等的实数1x 、2x 、3x 成等差数列且满足123112x x x ,则称1x 、 2x 、3x 成“ 等差数列”,已知集合{|||100,}M x x x Z ,则由M 中的三个元素组成的所有数列中,“ 等差数列”的个数为( )A. 25B. 50C. 51D. 100【解析】由1x 、2x 、3x 成等差数列得:21332122x x x x x x ,代入123112x x x ,化简得:22112220x x x x ,∴122x x 或12x x (舍),当122x x 时,324x x , 由于1x 、2x 、3{|||100,}x x x x Z ,且1x 、2x 、3x 不为零,∴2[25,0)(0,25]x , 且2x Z ,∴符合题意的“ 等差数列”的个数为50,选B.十四. 静安区11. 集合12{|log ,12}A y y x x x ,2{|510}B x x tx ,若A B A ,则实数t 的取值范围是【解析】∵12log y x x 在[1,2]x 上单调递减,∴集合[3,1]A ,由题意,A B ,设2()51f x x tx ,即需满足(3)10150f t ,(1)250f t ,∴2(,3t . 12. 若定义在实数集R 上的奇函数()y f x 的图像关于直线1x 对称,且当01x 时,13()f x x ,则方程1()3f x 在区间(4,10) 内的所有实根之和为【解析】根据题意,画出图像,如图所示,可知1()3f x在区间(4,10) 内有8个实根, 由对称关系可知,12382(3)21252924x x x x .16. 设a 、b 表示平面向量,||a 、||b 都是小于9的正整数,且满足()(3)33a b a b, (||||)(||3||)105a b a b ,则a 和b的夹角大小为( )A.6 B.3C.23 D. 56 【解析】22||3||433a b a b ,22||3||4||||105a b a b ,设a 和b的夹角为 ,作差可得||||||||(1cos )18a b a b a b ,∵||a 、||b都是小于9的正整数,∴cos 为有理数,排除A 、D 选项. 若3,||||36a b ,由22||3||4||||105a b a b 得22||3||39a b ,不成立,排除B 选项,故选C.十五. 黄浦区11. 在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为1a、2a 、3a 、4a 、5a ,若i a 与j a的夹角记为ij ,其中i 、{1,2,3,4,5}j ,且i j ,则 ||cos i ij a的最大值为【解析】由||cos i ij a 几何意义,表示向量i a 在向量j a上的投影大小,如图,设1a AB ,2a AC ,3a AD ,4a AE,5a AF ,结合图像可知,||cos i ij a 的最大值为3a 在2a 或4a方向上的投影,∴3||cos 6a12. 如图,1l 、2l 是过点M 夹角为3的两条直线,且与圆心为O ,半径长为1的圆分别相切,设圆周上一点P 到1l 、2l 的距离分别为1d 、2d ,那么122d d 的最小值为【解析】如图建系,设(cos ,sin )P ,根据题意,1:2l y ,2:2l y ,∴1sin 22d,2sin 22d ,1232sin 322d d ,333122d d 的最小值为3.16. 如图,平面直角坐标系中,曲线(实线部分)的方程可以是( )A. 22(||1)(1)0x y x yB. 22(1)0x yC. (||1)0x yD. 0【解析】由题意,A 选项,||1y x 或221x y ,如图①;B 选项,||1y x 或221||1x y y x ,如图②;C 选项,221||1x y y x 或221x y ,如图③;D 选项,||1y x 且221x y ,如图④. 故选C.。
上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= .2.(4分)抛物线y 2=4x 的焦点坐标为 .3.(4分)不等式<0的解是 .4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= . 5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 .(用数字作答)6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= .7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a= . 8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 cm 2.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= .10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= .11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 种不同的选法.(用数字作答)12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= .二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( )祝您高考马到成功!A .B .C .D .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1 B .|ab |≥1 C .|a +b |≥1 D .|a ﹣b |≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值; (2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规祝您高考马到成功!划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由. 20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值;(2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系;(3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由; (3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1.祝您高考马到成功!上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= 3 . 【解答】解:∵集合A={1,2,5},B={2,a }, A ∪B={1,2,3,5}, ∴a=3. 故答案为:3.2.(4分)抛物线y 2=4x 的焦点坐标为 (1,0) .【解答】解:∵抛物线y 2=4x 是焦点在x 轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是 (﹣1,0) .【解答】解:不等式<0,即 x (x +1)<0,求得﹣1<x <0,故答案为:(﹣1,0).4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= 1﹣i . 【解答】解:由iz=1+i ,得z==1﹣i故答案为:1﹣i .5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 21 .(用数字作答)祝您高考马到成功!【解答】解:(x ﹣)7的展开式的通项为=,由7﹣3r=1,得r=2, ∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= 2 .【解答】解:根据正弦函数的图象与性质,知 函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a=.【解答】解:若函数f (x )=x a 的反函数的图象经过点(,), 则:(,)满足f (x )=x α, 所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 18π cm 2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm ,则圆柱体的体积为 V=πa 2•a=27π,祝您高考马到成功!解得a=3cm ;∴该圆柱的侧面积为S=2π×3×3=18πcm 2. 故答案为:18π.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= ﹣ .【解答】解:∵函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax , ∴x >0时,﹣f (x )=2﹣x ﹣a (﹣x ), ∴f (x )=﹣2﹣x ﹣ax , ∵f (2)=2,∴f (2)=﹣2﹣2﹣2a=2, 解得a=﹣. 故答案为:﹣.10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= 2 .【解答】解:无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,可得=a ,即有=a ,即为2a 2﹣5a +2=0, 解得a=2或,由题意可得0<|q |<1, 即有0<|a ﹣|<1,检验a=2成立;a=不成立. 故答案为:2.祝您高考马到成功!11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 780 种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论: ①、选出志愿者服务队的4人中有1名女生,有C 53C 31=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况, 此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C 52C 32=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C 51C 33=5种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法, 则一共有360+360+60=780; 故答案为:780.12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= 4 .【解答】解:建立平面直角坐标系如图所示, 设B (﹣a ,0),C (a ,0),E (0,b ),∠ABC=α, 由||=2,知A (﹣a +2cosα,2sinα),∴=(a ﹣2cosα,b ﹣2sinα),=(2a ,0), ∴•=2a (a ﹣2cosα)+0=2a 2﹣4acosα=6,∴a 2﹣2acosα=3; 又=(2a ﹣2cosα,﹣2sinα),祝您高考马到成功!∴=(2a ﹣2cosα)2+(﹣2sinα)2=4a 2﹣8acosα+4 =4(a 2﹣2acosα)+4 =4×3+4 =16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( ) A .B .C .D .【解答】解:根据叫做二阶行列式,它的算法是:ad ﹣bc ,由题意得,=ad ﹣bc .故选B .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b【解答】解:由a >b ,利用指数函数的单调性可得:2a >2b .再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A ,B ,C 不正确. 故选:D .祝您高考马到成功!15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【解答】解:∵S 4+S 6>2S 5, ∴4a 1+6d +6a 1+15d >2(5a 1+10d ), ∴21d >20d , ∴d >0,故“d >0”是“S 4+S 6>2S 5”充分必要条件, 故选:C16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1B .|ab |≥1C .|a +b |≥1D .|a ﹣b |≥2【解答】解:双曲线﹣y 2=1的渐近线为:y=±x .把x=2代入上述方程可得:y=±1.不妨取A (2,1),B (2,﹣1).=a+b=(2a +2b ,a ﹣b ).代入双曲线方程可得:﹣(a ﹣b )2=1,化为ab=. ∴=ab ,化为:|a +b |≥1.故选:C .三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所祝您高考马到成功!成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.【解答】解:(1)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2, ∴AA 1⊥平面ABCD ,AC==2,∴∠A 1CA 是A 1C 与底面ABCD 所成的角, ∵A 1C 与底面ABCD 所成的角为60°, ∴∠A 1CA=60°,∴AA 1=AC•tan60°=2•=2, ∵S 正方形ABCD =AB ×BC=2×2=4, ∴四棱锥A 1﹣ABCD 的体积: V===. (2)∵BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成角(或所成角的补角).∵BD=,A 1D=A 1B==2, ∴cos ∠A 1BD===.∴∠A 1BD=arccos.∴异面直线A 1B 与 B 1D 1所成角是arccos.祝您高考马到成功!18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值;(2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.【解答】解:f (x )=2sinxcosx +2cos 2x ﹣1=sin2x +cos2x=2sin (2x +)(1)当2x +=时,即x=(k ∈Z ),f (x )取得最大值为2;(2)由f ()=,即2sin (A +)=可得sin (A +)=∵0<A <π ∴<A < ∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4 当A=时,cosA==0∵a=,b=,解得:c=2.祝您高考马到成功!19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n ﹣1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为+×+×+…+×=(千万元).∴f (n )=﹣(2n +6)=﹣2n ﹣7(千万元).(2)方法一:∵f (n +1)﹣f (n )=[﹣2(n +1)﹣7]﹣[﹣2n ﹣7]=[﹣4],∴当n ≤3时,f (n +1)﹣f (n )<0,故当n ≤4时,f (n )递减; 当n ≥4时,f (n +1)﹣f (n )>0,故当n ≥4时,f (n )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利. 答:该项目将从2023年开始并持续赢利; 方法二:设f (x )=﹣2x ﹣7(x ≥1),则f′(x )=,令f'(x )=0,得=≈=5,∴x ≈4.祝您高考马到成功!从而当x ∈[1,4)时,f'(x )<0,f (x )递减; 当x ∈(4,+∞)时,f'(x )>0,f (x )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值; (2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系; (3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.【解答】解:(1)∵M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形, ∴△MF 1F 2为等腰直角三角形, ∴OF 1=OM , 当a >1时,=1,解得a=,当0<a <1时,=a ,解得a=,(2)当k=1时,y=x +m ,设A (x 1,y 1),(x 2,y 2),由,即(1+a 2)x 2+2a 2mx +a 2m 2﹣a 2=0,∴x 1+x 2=﹣,x 1x 2=,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=,∵△OAB 是以O 为直角顶点的直角三角形,∴•=0,祝您高考马到成功!∴x 1x 2+y 1y 2=0, ∴+=0,∴a 2m 2﹣a 2+m 2﹣a 2=0 ∴m 2(a 2+1)=2a 2,(3)证明:当a=2时,x 2+4y 2=4, 设A (x 1,y 1),(x 2,y 2), ∵k OA •k OB =﹣, ∴•=﹣,∴x 1x 2=﹣4y 1y 2, 由,整理得,(1+4k 2)x 2+8kmx +4m 2﹣4=0.∴x 1+x 2=,x 1x 2=,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2 =++m 2=,∴=﹣4×,∴2m 2﹣4k 2=1, ∴|AB |=•=•=2•=∵O 到直线y=kx +m 的距离d==,∴S △OAB =|AB |d==•==1祝您高考马到成功!21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1. 【解答】解:(1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,不妨设x 1>x 2,则k ≥=恒成立.∵1≤x 2<x 1≤4,∴<<,∴k 的最小值为.(2)f (x )=log 2x 的定义域为(0,+∞),令x 1=,x 2=,则f ()﹣f ()=log 2﹣log 2=﹣1﹣(﹣2)=1, 而2|x 1﹣x 2|=,∴f (x 1)﹣f (x 2)>2|x 1﹣x 2|, ∴函数f (x )=log 2x 不是“2﹣利普希兹条件函数”.证明:(3)设f (x )的最大值为M ,最小值为m ,在一个周期[0,2]内f (a )=M ,f (b )=m ,则|f (x 1)﹣f (x 2)|≤M ﹣m=f (a )﹣f (b )≤|a ﹣b |. 若|a ﹣b |≤1,显然有|f (x 1)﹣f (x 2)|≤|a ﹣b |≤1. 若|a ﹣b |>1,不妨设a >b ,则0<b +2﹣a <1,祝您高考马到成功!∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.!功成到马考高您祝。
2019一模集合命题不等式专题一、解答题(宝山区一模2)集合U R =,集合{}{}30,10A x x B x x =->=+>,则U B C A =__________. 答案:(]1,3- (虹口区一模2)不等式的解集为________. 【答案】(虹口区一模3)设全集,若,则________. 【答案】(浦东新区一模1) 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________. 答案:()12,(青浦区一模1)已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =答案: {1}-(青浦区一模2)写出命题“若22am bm <,则a b <”的逆命题 答案: 若a b <,则22am bm < (青浦区一模3)不等式2433(1)12()2x x x ---<的解集为 答案:(2,3)-(徐汇区一模2)已知全集U R =,集合{}2|,,0A y y x x R x ==∈≠,则U C A =_________. 答案:(],0-∞(徐汇区一模3)若实数,x y 满足1xy =,则222x y +的最小值为_________.答案:(杨浦区一模1)设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则UA =21xx >-1,12⎛⎫⎪⎝⎭U R ={2,1,0,1,2}A =--{}2|log (1)B x y x ==-()U A C B ={}1,2答案: {1,2}(杨浦区一模5)若实数x 、y 满足221x y +=,则xy 的取值范围是 答案: 11[,]22-(杨浦区一模11)当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为 答案: 2(长宁区一模1)已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =答案:}6,4,3,2,1{(长宁区一模12) 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素 答案:3(崇明区一模2)已知集合{}{}|12,1,0,1,2,3A x x B =-<<=-,则=A B ⋂ . (松江区一模1) 设集合{|1}A x x =>,{|0}3xB x x =<-,则A B = 答案: (1,3)(虹口区一模13)已知,则“”是“”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A(宝山区一模14)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“()sin arcsin x x =”的( )条件..A 充分非必要 .B 必要非充分 .C 充要 .D 既非充分也非必要(浦东新区一模13) “14<a ”是“一元二次方程20-+=x x a 有实数解”的( ) (A )充分非必要条件 (B )充分必要条件 (C )必要非充分条件 (D )非充分非必要条件x R ∈1233x -<1x <答案: A(长宁区一模13)已知x ∈R ,则“0x ≥”是“3x >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 答案:B(崇明区一模13)若b a <<0,则下列不等式恒成立的是( ).A ba 11> .B b a >- .C 22b a > .D 33b a < (崇明区一模14 )“2<p ”是“关于x 的实系数方程012=++px x 有虚数根”的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件(松江区一模14)若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b>⎧⎨>⎩的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要三、解答题(长宁区一模17) 求下列不等式的解集: (1)|23|5x -<;(2)442120x x-⋅->答案:(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分2019一模函数专题一、填空题(宝山区一模4)方程()ln 9310x x +-=的根为__________. 答案:0x =(宝山区一模8)函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =__________. 答案:()x f x e -=-(宝山区一模10)将函数y =的图像绕y 轴旋转一周所得的几何容器的容积是__________. 答案:23π(虹口区一模4)设常数,若函数的反函数的图像经过点,则__________. 【答案】(虹口区一模6)函数的值域为__________.【答案】(虹口区一模12)若直线与曲线恰有两个公共点,则实数的取值范围为________. 【答案】(浦东新区一模5)若函数()=y f x 的图像恒过点01(,),则函数13()-=+y f x 的图像一定经过定点____. 答案:()13,(浦东新区一模10)已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.答案:(,-∞a R ∈3()log ()f x x a =+()2,1a =88()([2,8])f x x x x=+∈y kx =2|log (2)|2|1|x y x +=--k (,0]{1}-∞(浦东新区一模12)已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. 答案:[)2,6∈-a(普陀区一模1)函数()2f x x=的定义城为 . 答案: (,0)(0,1]-∞(普陀区一模3)设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= . 答案: 2-(普陀区一模12)设a 为常数,记函数()1log 2axf x a x=+- (0a >且1,0a x a ≠<< )的反函数为()1f x -,则1121f a -⎛⎫+⎪+⎝⎭111232++=212121a f f f a a a ---⎛⎫⎛⎫⎛⎫+⋅⋅⋅ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.答案:2a(青浦区一模11)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是(徐汇区一模9)已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数[]()()()1,2g x f x x =∈,则()g x 的反函数为_________. 答案:()[]1310,0,lg2x gx x -=-∈(徐汇区一模11)已知R λ∈,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是_________. 答案:(]()1,34+∞,(杨浦区一模8)若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为答案: [1,0]-(长宁区一模6) 已知幂函数()a f x x =的图像过点2,则()f x 的定义域为 答案:),0(+∞(长宁区一模8) 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是答案:)2,1[(崇明区一模9)若函数()1log 2+-=x ax x f 的反函数的图像过点()73,-,则=a .(崇明区一模11)设()x f 是定义在R 上的以2为周期的偶函数,在区间[]10,上单调递减,且满足()()22,1==ππf f ,则不等式组()⎩⎨⎧≤≤≤≤2121x f x 的解集为 .(松江区一模3)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =答案:2(松江区一模9)若|lg(1)|0()sin 0x x f x x x ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对 答案: 4(松江区一模12)已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为 答案:二、选择题(虹口区一模15)已知函数,,若函数恰有两个零点,则实数的取值范围为( ) A.B.C.D.【答案】B(宝山区一模15)关于函数()232f x x =-的下列判断,其中正确的是( ) .A 函数的图像是轴对称图形 .B 函数的图像是中心对称图形 .C 函数有最大值 .D 当0x >时,()y f x =是减函数答案:A(普陀区一模16)设()f x 是定义在R 上的周期为4的函数,且()2sin 2,012log ,14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[]-45,上零点的个数是( ) .A 5 .B 6 .C 7 .D 8 答案:D(青浦区一模16)记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 902(徐汇区一模15)对于函数()y f x =,如果其图像上的任意一点都在平面区域{}(,)|()()0x y y x y x -+≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y = )100100[2,2]-2()1f x ax x =-+1, 1(), 1 1 1, 1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩()()y f x g x =-a (0,)+∞(,0)(0,1)-∞1(,)(1,)2-∞-+∞(,0)(0,2)-∞.A ①、②均不是“蝶型函数” .B ①、②均是“蝶型函数”.C ①是“蝶型函数”;②不是“蝶型函数 .D ①不是“蝶型函数”;②是“蝶型函数” 答案:B(杨浦区一模16)已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7) 答案:A(杨浦区一模15)已知x x f θsin log )(=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤ 答案:D(杨浦区一模13)下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 答案: C(长宁区一模16)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题 答案:C(崇明区一模16)函数()(),,22+-==x x x g x x f 若存在,,,,,⎥⎦⎤⎢⎣⎡∈⋯29021n x x x 使得 ()()()()()()()(),n n n n x f x g x g x g x g x f x f x f +⋯++=++⋯++--121121则n 的最大值为( ).A 11 .B 13 .C 14 .D 18三、解答题(宝山区一模19)某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[]20,0∈t )近似地满足函数213++-=t bt y 关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒.求大棚一天中保温时段通风最的最小值. 答案:(1)203(2)256(虹口区一模18)已知函数是定义在上的奇函数. (1)求实数的值及函数的值域;(2)若不等式在上恒成立,求实数的取值范围.【解析】(1)由解得,反之时, ,符合题意,故据此,,即值域为 ⑵在显然是单调增函数,,所以,故,令,则随的增大而增大, 最大值为,所求范围是16()1x f x a a+=-+(0,1)a a >≠R a ()f x ()33x t f x ⋅≥-[1,2]x ∈t (0)0f =3a =3a =16()133x f x +=-+23113131x x x -=-=++3131()()3131x x x x f x f x -----==-=-++3a =1()301()x f x f x +=>-()(1,1)f x ∈-(1,1)-32()131f x =-+[1,2]x ∈13[,]25x ∈31(33)31x xx t +≥-⋅-max31(33)31x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦31,[2,8]xm m -=∈31(33)(2)31x xx m +-⋅--24m m m m+⋅=-m 152∴15[,)2+∞(浦东新区一模19)(本小题满分14分,第1小题满分6分,第2小题满分8分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:答案:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E = (6分) (2)03t <≤时,16()=20aH t t t++ (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨≥⎪⎩ (10分) ②39(,)1616343a a ⎧>⎪⇒∈+∞⎨+≥⎪⎩ (12分)综上,1[,)4a ∈+∞ (14分)(普陀区一模21)已知函数()2xf x =(x ∈R ),记()()()g x f x f x =--.(1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值. 答案:(1)2(,log 3]-∞;(2)27119[,)2259;(3)12a =-,172b =.(青浦区一模19)对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数. 答案:(1)[4,4]-;(2)略.(徐汇区一模18)已知函数()22ax f x x -=+,其中a R ∈. (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间()0+∞,上是单调减函数.答案:(1)1,2;1,20;1,02a x a x a x x =-≠->--<≤<-≥<-或 (2)1a <-(杨浦区一模19) 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.答案:(1)[3,10];(2)6x =,最大值为4575.(长宁区一模20)已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值; (2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.答案:(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立.即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<<…………………………5分 所以12ω=. ……………………………………6分 (3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立, 由[]1,1,2m x x x≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥, 综上,实数m 的取值范围为[]1,2 . ………………6分(崇明区一模19)(本题满分14分,本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;(3)()5xf x ≤恒成立.) (1) 判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. (松江区一模18)已知函数2()21x f x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值. 答案:解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分(2)由条件可得:222()2(1)(21)32121x x x x x m f x ≤⋅=-=++-++恒成立, ……8分记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分2019一模三角专题一、填空题(宝山区一模1)函数()()sin 2f x x =-的最小正周期为___________. 答案:π(宝山区一模9)已知()()2,3,1,4A B ,且()1sin ,cos ,,,222AB x y x y ππ⎛⎫=∈- ⎪⎝⎭,则x y +=__________. 答案:62or ππ-(宝山区一模11)章老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知45b A =∠=︒,求边c 。
1(2019金山一模). 已知集合{1,3,5,6,7}A =,{2,4,5,6,8}B =,则A B =I 1(2019闵行一模). 已知全集U =R ,集合2{|30}A x x x =-≥,则U A =ð 1(2019浦东一模). 已知全集U =R ,集合(,1][2,)A =-∞+∞U ,则U A =ð 1(2019长嘉一模). 已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =U 1(2019杨浦一模). 设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则U A =ð1(2019松江一模). 设集合{|1}A x x =>,{|0}3x B x x =<-,则A B =I 1(2019青浦一模). 已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =I 1(2019奉贤一模). 已知{|31}x A x =<,{|lg(1)}B x y x ==+,则A B =U 2(2019青浦一模). 写出命题“若22am bm <,则a b <”的逆命题2(2019徐汇一模). 已知全集U =R ,集合2{|,,0}A y y x x x -==∈≠R ,则U A =ð 2(2019崇明一模). 已知集合{|12}A x x =-<<,{1,0,1,2,3}B =-,则A B =I 2(2019宝山一模). 集合U =R ,集合{|30}A x x =->,{|10}B x x =+>,则U B A =I ð 3(2019虹口一模). 设全集U =R ,若{2,1,0,1,2}A =--,3{|log (1)}B x y x ==-,则()U A B =I ð13(2019虹口一模). 已知x ∈R ,则“12||33x -<”是“1x <”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要13(2019浦东一模). “14a <”是“一元二次方程20x x a -+=有实数解”的( ) A. 充分不必要条件 B. 充分必要条件C. 必要不充分条件D. 既不充分也不必要条件13(2019长嘉一模). 已知x ∈R ,则“0x ≥”是“3x >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件13(2019闵行一模). 若a 、b 为实数,则“1a <-”是“11a>-”的( ) A. 充要条件 B. 充分非必要条件C. 必要非充分条件D. 既非充分也非必要条件14(2019松江一模). 若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x a y b >⎧⎨>⎩的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要14(2019崇明一模). “2p <”是“关于x 的实系数方程210x px ++=有虚根”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要。
上海市13区2019届高三上期末(一模)考试数学试题分类汇编立体几何一、填空、选择题1、(宝山区2019届高三)将函数y =的图像绕着y 轴旋转一周所得的几何容器的容积是 .2、(崇明区2019届高三)设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于3、(虹口区2019届高三)关于三个不同平面α、β、γ与直线l ,下来命题中的假命题是( ) A. 若αβ⊥,则α内一定存在直线平行于βB. 若α与β不垂直,则α内一定不存在直线垂直于βC. 若αγ⊥,βγ⊥,l αβ=I ,则l γ⊥D. 若αβ⊥,则α内所有直线垂直于β4、(金山区2019届高三)在120︒的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A 、B 两点,则这两个点在球面上的距离是5、(浦东新区2019,母线与底面所成角为3π,则该圆锥的表面积为 6、(浦东新区2019届高三)下列命题正确的是( ) A. 如果两条直线垂直于同一条直线,那么这两条直线平行 B. 如果两条直线垂直于同一条直线,那么这两条直线平行 C. 如果两条直线垂直于同一条直线,那么这两条直线平行 D. 如果两条直线垂直于同一条直线,那么这两条直线平行7、(普陀区2019届高三) 如图,正四棱柱1111ABCD A B C D -的底面边长为4,记1111AC B D F =I ,11BC B C E =I ,若AE BF ⊥,则此棱柱的体积为8、(青浦区2019届高三)已知直角三角形△ABC 中,90A ∠=︒,3AB =,4AC =,则△ABC 绕直线AC 旋转一周所得几何体的体积为9、(徐汇区2019届高三)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”.刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:4π.若正方体的棱长为2,则“牟合方盖”的体积为( )(A )16 (B ) (C )163 (D )128310、(杨浦区2019届高三)若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于 3()cm11、(长宁区2019届高三)若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为 12、(闵行区2019届高三)如图,在过正方体1111ABCD A B C D -的任意两个顶点的所有直线中,与直线1AC 异面的直线的条数为13、(闵行区2019届高三)已知a 、b 为两条不同的直线,α、β为两个不同的平面,a αβ=I ,a ∥b ,则下列结论不可能成立的是( )A. b ⇐β,且b ∥αB. b ⇐α,且b ∥βC. b ∥α,且b ∥βD. b 与α、β都相交14、(青浦区2019届高三)对于两条不同的直线m 、n 和两个不同的平面α、β,以下结论正确的是( ) A. 若m ⇐α,n ∥β,m 、n 是异面直线,则α、β相交 B. 若m α⊥,m β⊥,n ∥α,则n ∥β C. m ⇐α,n ∥α,m 、n 共面于β,则m ∥nD. 若m α⊥,n β⊥,α、β不平行,则m 、n 为异面直线参考答案一、填空、选择题1、π322、33、D4、2π5、3π6、D7、 8、12π 9、C 10、12π 11、π3312、12 13、D 14、C二、解答题 1、(宝山区2019届高三)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.2、(崇明区2019届高三)如图,设长方体1111ABCD A B C D -中,2AB BC ==, 直线1A C 与平面ABCD 所成的角为4π. (1)求三棱锥1A A BD -的体积; (2)求异面直线1A B 与1B C 所成角的大小.3、(奉贤区2019届高三) 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC =,D 是BC 的中点.(1)求证:BC ⊥平面11A AD ;(2)若90BAC ︒∠=,4BC =,三棱柱111ABC A B C -的体积是1A D 与1AB 所成角的大小.4、(虹口区2019届高三)在如图所示的圆锥中,底面直径与母线长均为4,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积与体积;(2)求异面直线AB 与CD 所成角的大小.5、(金山区2019届高三) 如图,三棱锥P ABC -中,PA ⊥底面ABC ,M 是 BC 的中点,若底面ABC 是边长为2的正三角形,且PB 与底面ABC 所成的角为3π. 求: (1)三棱锥P ABC -的体积; (2)异面直线PM 与AC 所成角的大小. (结果用反三角函数值表示)6、(浦东新区2019届高三)已知直三棱柱111A B C ABC -中,11AB AC AA ===,90BAC ︒∠=. (1)求异面直线1A B 与11B C 所成角; (2)求点1B 到平面1A BC 的距离.7、(普陀区2019届高三)如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O ,钉尖为i A (1,2,3,4i =). (1)记i OA a =(0a >),当1A 、2A 、3A 在同一水平面内时,求1OA 与平面123A A A 所成 角的大小(结果用反三角函数值表示);(2)若该“钉”的三个钉尖所确定的三角形的面积为2,要用某种线型材料复制100枚这种“钉”(耗损忽略不计),共需要该种材料多少米?8、(青浦区2019届高三)已知正四棱柱1111ABCD A B C D -的底面边长为3,15A D =. (1)求该正四棱柱的侧面积与体积;(2)若E 为线段1A D 的中点,求BE 与平面ABCD 所成角的大小.9、(徐汇区2019届高三)如图,已知正方体''''ABCD A B C D -的棱长为1. (1)正方体''''ABCD A B C D -中哪些棱所在的直线与直线'A B 是异面直线? (2)若,M N 分别是','A B BC 的中点,求异面直线MN 与BC 所成角的大小.10、(杨浦区2019届高三)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB的中心,点E 在边BC 上移动. (1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .11、(长宁区2019届高三) 《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P ABCD -中,PD ⊥底面ABCD . (1)已知4AD CD m ==,斜梁PB 与底面ABCD 所成角为15︒,求立柱PD 的长; (精确到0.01m )(2)求证:四面体PDBC 为鳖臑.参考答案二、解答题1、解:(1)因为正方形ABCD 的边长为2,所以4ABCD S =,…………2分11633P ABCD ABCD V S PA -=⋅=, …………………………………4分因为E 为侧棱PC 的中点,所以1823P ABCD V V -==.…………………………………………………6分(2)建立空间直角坐标系,(0,0,0)A ,如图所示:(2,0,0)B ,(0,0,4),(2,2,0),(1,1,2)P C E ,……8分()()()1,1,2,2,2,4,2,0,0,BE PC DC =-=-=u u u r u u u r u u u r……………9分设平面PCD 的一条法向量为(,,)n a b c =r02240020PC n a b c CD n a ⎧⋅=⇒+-=⎪⎨⋅=⇒=⎪⎩u u u r r u u ur r , 令1c =,则(0,2,1)n =r,……………………………………………………11分故sin BE n BE nθ⋅==u u u r ru u u r r ……………………………………………13分 所以,直线BE 与平面PCD所成角大小.……………………14分 17. 2、解:(1)联结AC , 因为1AA ABCD ⊥平面,所以1A CA ∠就是直线1A C 与平面ABCD 所成的角,……………………………………2分 所以14ACA π∠=,所以1AA =4分所以11113A BD ABD ABD A A V V S A A --==⋅7分(2)联结1A D ,BD因为11//A B CD ,所以11//A D B C所以1BA D ∠就是异面直线1A B 与1B C 所成的角或其补角………………………3分在1BA D V中,12cos 3BA D ∠==所以12arccos 3BA D ∠=……………………………………6分 所以异面直线1A B 与1B C 所成角的大小是2arccos 3……………………………………7分3、4、5、6、解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h ,由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,B A ,()01111,,C B -=,…………4分因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u =,则B A n ,BC n 1⊥⊥.又()011,,BC -=,()1011-=,,B A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分 所以,点1B 到平面BC A 1的距离33==d .…………………………14分 7、8、解:(1)在正四棱柱1111ABCD A B C D -中,∵1AA ⊥平面ABCD ,AD ⊂≠平面ABCD ,∴1AA AD ⊥,故14AA =,∴正四棱柱的侧面积为(43)448⨯⨯=,体积为2(3)436⨯=.(2)建立如图的空间直角坐标系O xyz -,由题意可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E , 1(0,0,4)AA =u u u r ,3(,3,2)2BE =--u u u r , 设1AA uuu r 与BE u u u r 所成角为α,直线BE 与平面ABCD 所成角为θ,则11cos ||||AA BE AA BE α⋅===⋅u u u r u u u r u u u r u u u r 又1AA uuu r 是平面ABCD 的一个法向量,故sin cos θα==,θ=. 所以直线BE 与平面ABCD所成的角为. 9、解:(1)由异面直线的定义可知,棱,,',','',''AD DC CC DD D C B C 所在的直线与直线'A B 是异面直线 ……………….6分(2)连结',''BC A C ,因为,M N 分别是','A B BC 的中点,所以MN ∥''A C ,又因为BC ∥''B C ,所以异面直线MN 与BC 所成角为'''A C B ∠(或其补角),…….9分由于'''','''90A B B C A B C =∠=o于是'''45A C B ∠=o , ………………13分所以异面直线MN 与BC 所成角的大小为45o . ………….14分10、解:(1) …… 6分(2)只需证明因为,故,又,故,所以; ……10分 中,,点是的中点,故 ……12分 所以,,故无论点在边的何处,都有. ……14分11、(1)解:因为侧棱⊥PD 底面ABCD ,则侧棱PB 在底面上的射影是DB ,所以PBD ∠就是侧棱PB 与底面ABCD 所成的角,即︒=∠15PBD .……2分 在PDB ∆中,)(24,9022m CD AD DB PDB =+=︒=∠, ………3分 由DB PDPBD =∠tan 得 2415tan PD=︒,解得 )(52.1m PD =. ………5分所以立柱PD 的长约为 m 52.1. ………………………………6分(2)由题意知底面ABCD 是长方形,所以BCD ∆是直角三角形. ………………………2分因为侧棱⊥PD 底面ABCD ,得BC PD DB PD DC PD ⊥⊥⊥,,,所以PDC ∆、PDB ∆是直角三角形. …………………………4分因为DC BC ⊥,PD BC ⊥,又D DC PD =I ,PD DC ,≠⊂平面PDC , 所以⊥BC 平面PDC . …………………………………………6分又因为PC ≠⊂平面PDC ,所以PC BC ⊥,1133P ADE ADE V PA S -∆=⋅⋅=AF PBC ⊥面PA ABCD ⊥面PA BC ⊥BC AB ⊥BC AB ⊥面P BC AF ⊥PAB ∆PA AB =F PB AF PB ⊥AF PBC ⊥面E BC AF PE ⊥ABCD为直角三角形.…………………………………7分所以PBCPDBC由鳖臑的定义知,四面体为鳖臑.………………………8分。
上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=.S11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=2.S【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,=a,且S可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.。
上海市13区2019届高三上期末(一模)考试数学试题分类汇编不等式一、填空、选择题 1、(崇明区2019届高三)若0a b <<,则下列不等式恒成立的是( ) A.11a b> B. a b -> C. 22a b > D. 33a b < 2、(崇明区2019届高三)设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为3、(奉贤区2019届高三)设11(,)A x y ,22(,)B x y 是曲线2224x y x y +=-的两点,则1221x y x y -的最大值是4、(虹口区2019届高三)不等式21xx >-的解集为 5、(金山区2019届高三)不等式|32|1x -<的解集为6、(浦东新区2019届高三)不等式2log 1021x >的解为7、(青浦区2019届高三)不等式2433(1)12()2xx x ---<的解集为 8、(徐汇区2019届高三)若实数,x y 满足1xy =,则222x y +的最小值为___________. 9、(杨浦区2019届高三)若实数x 、y 满足221x y +=,则xy 的取值范围是 10、(杨浦区2019届高三)当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值 为11(杨浦区2019届高三)已知sin ()log f x x θ=,(0,)2πθ∈,设sin cos ()2a f θθ+=,(sin cos )b f θθ=⋅,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤12、(长宁区2019届高三)已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是___参考答案一、填空、选择题1、D2、[2,82]ππ--3、1532 4、(1,2) 5、1(,1)36、(4,)+∞7、()2,3-8、229、11[,]22- 10、2 11、D 12、)2,1[二、解答题 1、(浦东新区2019届高三)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下: ① 3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++; ② 3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0 (即累积经验值.....不变); ③ 超过5小时为不健康时间,累积经验....值.开始损失,损失的经验值与不健康时间成 正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累.积经验值....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ; 若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24, 求实数a 的取值范围.2、(徐汇区2019届高三)已知函数2(),2ax f x x -=+其中.a R ∈ (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间(0,)+∞上是单调减函数.3、(杨浦区2019届高三)上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.4、(长宁区2019届高三)求下列不等式的解集: (1)|23|5x -<; (2)442120x x -⋅->参考答案 二、解答题1、解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E = (6分)(2)03t <≤时,16()=20aH t t t++ (8分) 16()244≥⇒+≥aH t t t① 04319[,]41684a a a ⎧<≤⎪⇒∈⎨≥⎪⎩ (10分) ② 439(,)1616343a a a ⎧>⎪⇒∈+∞⎨+≥⎪⎩ (12分)综上,1[,)4a ∈+∞ (14分) 2、解:(1)不等式()1f x ≤-即为2(1)10.22ax a xx x -+≤-⇔≤++……….3分 当1a <-时,不等式解集为[)(,2)0,-∞-+∞; ……………….4分当1a =-时,不等式解集为(,2)(2,)-∞--+∞; ……………….5分当1a >-时,不等式解集为(]2,0.- ……………….6分(2)任取120,x x <<则12121222()()22ax ax f x f x x x ---=-=++12122(1)(),(2)(2)a x x x x +-++……….9分120x x <<12120,20,20,x x x x ∴-<+>+>……………….11分所以要使()f x 在(0,)+∞递减即12()()0,f x f x ->只要10a +<即1,a <- ………13分 故当1a <-时,()f x 在区间(0,)+∞上是单调减函数 ……………….14分 3、解:(1)根据题意,30)315(2≥-+x x ,得03145≥--xx ……2分 解得3≥x 或51-≤x ……4分 又101≤≤x ,可得103≤≤x ……6分(2)设利润为y 元,则)315(900xx x y -+=, ……8分 ]1261)611(3[9002+--=x , ……12分故6=x 时,4575max =y ……14分 4、解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6l o g 2>x . ………………………………………7分。
2019届高三数学一模典题库一、填空题1.集合1. [19届宝山一模2] 集合U =R ,集合{|30}A x x =->,{|10}B x x =+>,则UBA =答案:(]1,3-2. [19届闵行一模1]已知全集U =R ,集合2{|30}A x x x =-≥,则UA =答案: (0,3)3. [19届崇明一模2]已知集合{|12}A x x =-<<,{1,0,1,2,3}B =-,则A B =答案:{0,1}4. [19届奉贤一模1]已知{|31}x A x =<,{|lg(1)}B x y x ==+,则A B =答案: R5. [19届虹口一模3]设全集U =R ,若{2,1,0,1,2}A =--,3{|log (1)}B x y x ==-,则()U A B =答案: {1,2}6. [19届金山一模1]已知集合{1,3,5,6,7}A =,{2,4,5,6,8}B =,则A B =答案: {5,6}7. [19届浦东一模1]已知全集U =R ,集合(,1][2,)A =-∞+∞,则UA =答案: (1,2)8. [19届青浦一模1]已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =答案: {1}-9. [19届松江一模1]设集合{|1}A x x =>,{|0}3xB x x =<-,则A B = 答案: (1,3)10. [19届徐汇一模2]已知全集U =R ,集合2{|,,0}A y y x x x -==∈≠R ,则UA =答案: (,0]-∞11. [19届杨浦一模1]设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则UA =答案:{1,2}12. [19届长嘉一模1]已知集合{1,2,3,4}A =,{2,4,6}B =,则AB =答案: {1,2,3,4,6}2.命题、不等式13. [19届虹口一模2]不等式21xx >-的解集为 答案: (1,2)14. [19届金山一模4]不等式|32|1x -<的解集为 答案: 1(,1)315. [19届青浦一模2]写出命题“若22am bm <,则a b <”的逆命题 答案: 若a b <,则22am bm <16. [19届徐汇一模3]若实数x 、y 满足1xy =,则222x y +的最小值为答案:17. [19届杨浦一模5]若实数x 、y 满足221x y +=,则xy 的取值范围是 答案: 11[,]22-3.函数18. [19届崇明一模11]设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为答案:[2,82]ππ--19. [19届浦东一模10]已知函数()2||1f x x x a =+-有三个不同的零点,则实数a 的取值范围为答案: (,-∞20. [19届普陀一模1]函数2()f x x=的定义域为 答案: (,0)(0,1]-∞21. [19届普陀一模3]设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= 答案: 2-22. [19届奉贤一模9]函数()g x 对任意的x ∈R ,有2()()g x g x x +-=,设函数2()()2x f x g x =-,且()f x 在区间[0,)+∞上单调递增,若2()(2)0f a f a +-≤,则实数a的取值范围为 答案: [2,1]-23. [19届闵行一模8]已知函数()|1|(1)f x x x =-+,[,]x a b ∈的值域为[0,8], 则a b +的取值范围是 答案: [2,4]24. [19届松江一模12]已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为答案: 100100[2,2]-25. [19届虹口一模6]函数8()f x x x=+,[2,8)x ∈的值域为答案:26. [19届青浦一模11]已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 答案: 1(0,]227. [19届徐汇一模11]已知λ∈R ,函数24()43x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是 答案: (1,3](4,)+∞28. [19届杨浦一模11]当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为答案: 229. [19届长嘉一模7]已知幂函数()a f x x =的图像过点2,则()f x 的定义域为 答案: (0,)+∞30. [19届长嘉一模8]已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是答案: [1,2)4.指数函数、对数函数31. [19届宝山一模4]方程ln(931)0x x +-=的根为 答案:0x =32. [19届宝山一模8]函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = 答案:()x f x e -=-33. [19届崇明一模9]若函数2()log 1x af x x -=+的反函数的图像经过点(3,7)-,则a = 答案:634. [19届奉贤一模3]设函数()2x y f x c ==+的图像经过点(2,5),则()y f x =的反函数1()f x -=答案: 2log (1)x -,1x >35. [19届虹口一模4]设常数a ∈R ,若函数3()log ()f x x a =+的反函数的图像经过点(2,1),则a = 答案: 836. [19届虹口一模12]若直线y kx =与曲线恰2|log (2)|2|1|x y x +=--有两个公共点,则实数k取值范围为 答案: (,0]{1}-∞37. [19届金山一模6]已知函数2()1log f x x =+,则1(5)f -=答案: 1638. [19届金山一模11]设函数21()lg(1||)1f x x x=+-+,则使(2)(32)f x f x <-成立的x 取值范围是 答案: 2(,)(2,)5-∞+∞39. [19届闵行一模4]方程110322x=-的解为 答案: 2log 5x =40. [19届浦东一模3]不等式2log 1021x >的解为答案: (4,)+∞41. [19届浦东一模5]若函数()y f x =的图像恒过点(0,1),则函数1()3y f x -=+的图像一定经过定点 答案: (1,3)42. [19届普陀一模10]某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元,绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%,照此推算,此人2019年的年薪为 万元(结果精确到0.1) 答案: 10.443. [19届浦东一模12]已知函数2||2416()1()22x a x x x f x x -⎧≥⎪⎪+=⎨⎪<⎪⎩,若对任意的1[2,)x ∈+∞,都存在唯一的2(,2)x ∈-∞,满足12()()f x f x =,则实数a 的取值范围为 答案: [2,6)-44. [19届普陀一模12]记a 为常数,记函数1()log 2a xf x a x=+-(0a >且1a ≠,0x a <<)的反函数为1()f x -,则11111232()()()()21212121af f f f a a a a ----+++⋅⋅⋅+=++++答案: 2a45. [19届青浦一模3]不等式2433(1)12()2x x x ---<的解集为 答案: (2,3)-46. [19届松江一模3]已知函数()y f x =的图像与函数x y a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =答案: 247. [19届松江一模9]若|lg(1)|0()sin 0x x f x xx ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对 答案: 448. [19届徐汇一模9]已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数()()g x f x =([1,2]x ∈),则()g x 的反函数为 答案: 1()310x g x -=-,[0,lg 2]x ∈ 49. [19届杨浦一模8]若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为 答案: [1,0]-5. 三角函数50. [19届宝山一模1]函数()sin(2)f x x =-的最小正周期为 答案:π51. [19届宝山一模9]已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += 答案:6π或2π-52. [19届闵行一模10]在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 面积为S ,且224()S a b c =+-,则cos C =答案: 053. [19届杨浦一模2]已知扇形的半径为6,圆心角为3π,则扇形的面积为 答案: 6π54. [19届宝山一模11]张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b =45A ∠=︒,求边c .显然缺少条件,若他打算补充a 的大小,并使得c 只有一解,,那么a 的可能取值是 (只需填写一个合适的答案)答案:2a =或a ≥55. [19届奉贤一模7]在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,若222()a b c ++=,则角B 的值为 (用反正切表示)答案:56. [19届浦东一模7]在ABC △中,角A 、B 、C 对边是a 、b 、c . 若22(2a b =+⋅,b c =,则A = 答案:56π57. [19届普陀一模2]若1sin 3α=,则cos()2πα+= 答案: 13-58. [19届普陀一模8]设0a >且1a ≠,若log (sin cos )0a x x -=, 则88sin cos x x += 答案: 159. [19届青浦一模4]在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34(,)55,则tan()πθ+的值为 答案: 43-60. [19届青浦一模8]设函数()sin f x x ω=(02ω<<),将()f x 图像向左平移23π单位后所得函数图像与原函数图像的对称轴重合,则ω= 答案:3261. [19届松江一模8]在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,若22()6c a b =-+,3C π=,则△ABC 的面积=答案:62. [19届杨浦一模10]已知复数1cos 2()i z x f x =+,2cos )i z x x =++(x ∈R ,i 为虚数单位),在复平面上,设复数1z 、2z 对应的点分别为1Z 、2Z ,若1290Z OZ ︒∠=,其中O 是坐标原点,则函数()f x 的最小正周期为 答案: π63. [19届长嘉一模]已知(,)2a ππ∈,且tan 2a =-,则sin()a π-=答案:6. 数列64. [19届宝山一模12]如果等差数列{}n a 、{}n b 的公差都为d (0d ≠),若满足对于任意n ∈*N ,都有n n b a kd -= ,其中k 为常数,k ∈*N ,则称它们互为“同宗”数列,已知等差数列{}n a 中,首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若11221111lim()3n n n a b a b a b →∞++⋅⋅⋅+=,则k = 答案:3265. [19届崇明一模12]已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立.函数1()|sin ()|n n f x x a n=-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m =总有两个不同的根,则{}n a 的通项公式是 答案:(1)2n n π- 66. [19届闵行一模5]等比数列{}n a 中,121a a +=,5616a a +=,则910a a += 答案: 25667. [19届闵行一模12]若无穷数列{}n a 满足:10a ≥,当n ∈*N ,2n ≥时,1121||max{,,,}n n n a a a a a ---=⋅⋅⋅(其中121max{,,,}n a a a -⋅⋅⋅表示121,,,n a a a -⋅⋅⋅中的最大项),有以下结论:① 若数列{}n a 是常数列,则0n a =(n ∈*N ); ② 若数列{}n a 是公差0d ≠的等差数列,则0d <; ③ 若数列{}n a 是公比为q 的等比数列,则1q >;④ 若存在正整数T ,对任意n ∈*N ,都有n T n a a +=,则1a 是数列{}n a 的最大项. 则其中的正确结论是 (写出所有正确结论的序号) 答案: ①②③④68. [19届浦东一模6]已知数列{}n a 为等差数列,其前n 项和为n S . 若936S =,则348a a a ++=答案: 1269. [19届松江一模4]已知等差数列{}n a 的前10项和为30,则14710a a a a +++= 答案: 1212. [19届杨浦一模12]设d 为等差数列{}n a 的公差,数列{}n b 的前n 项和n T ,满足1(1)2n n n nT b +=-(n ∈*N ),且52d a b ==,若实数23{|}k k k m P x a x a -+∈=<<(k ∈*N ,3k ≥),则称m 具有性质k P ,若n H 是数列{}n T 的前n 项和,对任意的n ∈*N ,21n H -都具有性质k P ,则所有满足条件的k 的值为 答案: 3或470. [19届长嘉一模11]已知数列{}n a 的前n 项和为n S ,且112n n n a a ++=,若数列{}n S 收敛于常数A ,则首项1a 取值的集合为 答案: 1{}371. [19届长嘉一模12]已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素 答案: 37. 向量72. [19届虹口一模11]如图,已知半圆O 的直径4AB =,OAC 是等边 三角形,若点P 是边AC (包含端点A 、C )上的动点, 点Q 在弧BC 上,且满足OQ OP ⊥,则OP BQ ⋅的最 小值为 答案: 273. [19届金山一模12]已知平面向量a 、b 满足条件:0a b ⋅=,||cos a α=,||sin b α=,(0,)2πα∈,若向量c a b λμ=+(,)λμ∈R ,且22221(21)cos (21)sin 9λαμα-+-=,则||c 的最小值为 答案:1374. [19届闵行一模11]已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=,且3παβ-=,若向量c 满足||1c a b --=,则||c 的最大值为 答案:31+75. [19届青浦一模12]已知平面向量a 、b 、c 满足||1a =,||||2b c ==,且0b c ⋅=,则当01λ≤≤时,|(1)|a b c λλ---的取值范围是答案: 1,3]76. [19届松江一模7]若向量a ,b 满足()7a b b +⋅=,且||3a =,||2b =,则向量a 与b 夹角为 答案:6π77. [19届松江一模10]已知A 、B 、C 是单位圆上三个互不相同的点,若||=||AB AC ,则AB AC ⋅的最小值是 答案: 12-78. [19届松江一模11]已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(,)x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为11(,)x y 、22(,)x y ,对于下列命题:① 线段A 、B 的中点的广义坐标为1212(,)22x x y y ++; ② A 、B 两点间的距离为1(x x -; ③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是 (请写出所有真命题的序号) 答案: ①③79. [19届长嘉一模4]已知向量(3,)a m =,(1,2)b =-,若向量a ∥b ,则实数m = 答案: 6-8. 解析几何80. [19届崇明一模7]圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 答案:281. [19届闵行一模7]已知两条直线1:4230l x y +-=和2:210l x y ++=,则1l 与2l 的距离为答案:82. [19届奉贤一模2]双曲线2213y x -=的一条渐近线的一个方向向量(,)d u v =,则u v=答案: 383. [19届普陀一模4]若直线l 经过抛物线2:4C y x =的焦点且其一个方向向量为(1,1)d =,则直线l 的方程为 答案: 1y x =-84. [19届普陀一模11]已知点(2,0)A -,设B 、C 是圆22:1O x y +=上的两个不同的动点,且向量(1)OB tOA t OC =+-(其中t 为实数),则AB AC ⋅= 答案: 385. [19届松江一模6]已知双曲线标准方程为2213x y -=,则其焦点到渐近线的距离为答案: 186. [19届金山一模2]抛物线24y x =的准线方程是 答案: 1x =-87. [19届奉贤一模8]椭圆2214x y t+=上任意一点到其中一个焦点的距离恒大于1,则t 的取值范围为 答案: 25(3,4)(4,)488. [19届奉贤一模11]点P 19=上运动,E 是曲线第二象限上的定点,E 的纵坐标是158,(0,0)O ,(4,0)F ,若OP xOF yOE =+,则x y +的最大值是 答案:472089. [19届奉贤一模12]设11(,)A x y ,22(,)B x y 是曲线2224x y x y +=-的两点,则1221x y x y -的最大值是答案:290. [19届虹口一模8]双曲线22143x y -=的焦点到其渐近线的距离为答案:91. [19届浦东一模2]抛物线24y x =的焦点坐标为 答案: (1,0)92. [19届徐汇一模5]已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是答案:221520x y -= 93. [19届徐汇一模6]在平面直角坐标系xOy 中,直线l 经过坐标原点,(3,1)n =是l 的一个法向量,已知数列{}n a 满足:对任意的正整数n ,点1(,)n n a a +均在l 上,若26a =,则3a 的值为 答案: 2-94. [19届徐汇一模12]已知圆22:(1)1M x y +-=,圆22:(1)1N x y ++=,直线1l 、2l 分别过圆心M 、N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是椭圆22194x y +=上任意一点,则PA PB PC PD ⋅+⋅的最小值为 答案: 895. [19届杨浦一模3]已知双曲线221x y -=,则其两条渐近线的夹角为 答案:2π9. 复数96. [19届崇明一模3]若复数z 满足232i z z +=-,其中i 为虚数单位,则z = 答案:12i -97. [19届奉贤一模5]若复数(i)(34i)z a =++(i 是虚数单位)的实部与虚部相等,则复数z 的共轭复数的模等于答案:98. [19届闵行一模3]若复数z 满足(12i)43i z +=+(i 是虚数单位),则z = 答案: 2i -99. [19届虹口一模9]若复数sin i 1cos iz θθ-=(i 为虚数单位),则||z 的最大值为答案:12100. [19届松江一模2]若复数z 满足(34i)43i z -=+,则||z = 答案: 1101. [19届金山一模5]若复数(34i)(1i)z =+-(i 为虚数单位),则||z =答案:102. [19届浦东一模4]已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为答案:103. [19届青浦一模6]如图所示,在复平面内,网格中的每个正方形的边长都为1,点A 、B 对应的复数分别是1z 、2z ,则21||z z = 答案:5104. [19届徐汇一模1]若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 答案: 210. 立体几何105. [19届宝山一模10] 将函数21y x =--的图像绕着y 轴旋转一周所得的几何容器的容积是 答案:23π106. [19届普陀一模5]若一个球的体积是其半径的43倍,则该球的表面积为 答案: 4107. [19届普陀一模9]如图,正四棱柱1111ABCD A B C D -的底面边长为4, 记1111AC B D F =,11BC B C E =,若AE BF ⊥,则此棱柱的体积为 答案: 322108. [19届杨浦一模6]若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于3()cm答案: 12π109. [19届浦东一模8]已知圆锥的体积为33π,母线与底面所成角为3π,则该圆锥的表面积为 答案: 3π110. [19届闵行一模9]如图,在过正方体1111ABCD A B C D -的任意两个顶点的 所有直线中,与直线1AC 异面的直线的条数为 答案: 12111. [19届崇明一模8]设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于 答案:33π112. [19届虹口一模5]若一个球的表面积为4π,则它的体积为 答案:43π113. [19届金山一模10]在120︒的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A 、B 两点,则这两个点在球面上的距离是答案: 2π114. [19届青浦一模5]已知直角三角形△ABC 中,90A ∠=︒,3AB =,4AC =,则△ABC 绕直线AC 旋转一周所得几何体的体积为 答案: 12π115. [19届长嘉一模9]如图,某学生社团在校园内测量远处某栋楼CD 的高度,D 为楼顶,线段AB 的长度为600m ,在A 处测得30DAB ∠=︒,在B 处测得105DBA ∠=︒,且此时看楼顶D 的仰角30DBC ∠=︒,已知楼底C 和A 、B 在同一水平面上,则此楼高度CD =m (精确到1m )答案: 21211. 排列组合、概率、二项式定理116. [19届宝山一模5]从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一名代表,则各班的代表数有 种不同的选法(用数字作答) 答案:20117. [19届崇明一模4]281()x x-的展开式中含7x 项的系数为 (用数字作答) 答案:56-118. [19届闵行一模6]5(12)x -的展开式中3x 项的系数为 (用数字作答) 答案: 80-119. [19届长嘉一模3]在61()x x+的二项展开式中,常数项为 (结果用数值表示)答案:20120. [19届长嘉一模10]若甲、乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的概率为 答案:920121. [19届金山一模7]从1、2、3、4这四个数中一次随机地抽取两个数,则其中一个数是另一个数的两倍的概率是 (结果用数值表示) 答案:13122. [19届普陀一模6]在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为 (结果用最简分数表示) 答案:712123. [19届普陀一模7]设523601236(1)(1=x x a a x a x a x a x -+++++⋅⋅⋅+),则3a = (结果用数值表示) 答案: 0124. [19届金山一模8]在31021()x x-的二项展开式中,常数项的值是 (结果用数值表示)答案: 210125. [19届崇明一模10]2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有 种 答案:1518126. [19届奉贤一模4]在52()x x-的展开式中,x 的系数为答案: 40127. [19届奉贤一模6]有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆放到书架的同一层上,则同一科目的书都相邻的概率是 答案:15128. [19届奉贤一模10]天干地支纪年法,源于中国,中国自古便有十天干与十二地支. 十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为 年 答案: 戊戌129. [19届虹口一模7]二项式62)x的展开式的常数项为答案: 60130. [19届虹口一模10]已知7个实数1、2-、4、a 、b 、c 、d 依次构成等比数列,若成这7个数中任取2个,则它们的和为正数的概率为 答案:47131. [19届浦东一模9]已知二项式n 的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为 答案:358x 132. [19届青浦一模9]2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名男性,则不同的选派方案共有 种 答案: 80133. [19届徐汇一模7]已知21(2)n x x-(n ∈*N )的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是 (结果用数值表示) 答案: 84-134. [19届徐汇一模8]上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如下表所示:上海某高中2018届高三(1)班选考物理学业水平等级考的学生中,有5人取得A +成绩, 其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为 人 答案: 15135. [19届杨浦一模4]若()n a b +展开式的二项式系数之和为8,则n =答案: 312. 行列式、矩阵、程序框图136. [19届宝山一模6]关于x 、y 的二元一次方程组的增广矩阵为123015-⎛⎫⎪⎝⎭,则x y += 答案:8-137. [19届闵行一模4]方程110322x =-的解为答案: 2log 5x =138. [19届松江一模5]若增广矩阵为1112m m m m +⎛⎫⎪⎝⎭的线性方程组无解,则实数m 的值为答案: 1-139. [19届徐汇一模4]若数列{}n a 的通项公式为2111n na n n=+(n ∈*N ),则lim n n a →∞= 答案: 1-140. [19届长嘉一模2]已知1312x -=,则x =答案: 1141. [19届杨浦一模9]在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则1()y f x =+的零点是答案: 1x =-13. 数学归纳法、极限142. [19届虹口一模1]计算:153lim 54n nn nn +→∞-=+答案: 5143. [19届浦东一模11]已知数列{}n a 满足:211007(1)2018(1)n n n na n a n a ++=-++()n ∈*N ,11a =,22a =,若1limn n na A a +→∞=,则A =答案: 1009144. [19届宝山一模7] 如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q =答案:23-145. [19届闵行一模2] 2221lim 331n n n n →∞-=++答案:23146. [19届崇明一模1]计算:20lim 31n n n →∞+=+答案:13147. [19届金山一模3]计算:21lim32n n n →∞-=+答案:23148. [19届金山一模9]无穷等比数列{}n a 各项和S 的值为2,公比0q <,则首项1a 的取值范围是 答案: (2,4)149. [19届青浦一模10]设等差数列{}n a 满足11a =,0n a >,其前n 项和为n S,若数列也为等差数列,则102limn n nS a +→∞=答案:14150. [19届杨浦一模7]在无穷等比数列{}n a 中,121lim()2n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 答案: 11(0,)(,1)2214. 参数方程、线性规划二、选择题1.命题、不等式151. [19届崇明一模13]若0a b <<,则下列不等式恒成立的是( )A.11a b> B. a b -> C. 22a b > D. 33a b < 答案:D152. [19届虹口一模13]已知x ∈R ,则“12||33x -<”是“1x <”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要 答案: A153. [19届闵行一模13]若a 、b 为实数,则“1a <-”是“11a>-”的( ) A. 充要条件 B. 充分非必要条件 C. 必要非充分条件 D. 既非充分也非必要条件 答案: B154. [19届松江一模14]若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b >⎧⎨>⎩的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要 答案: B155. [19届长嘉一模13]已知x ∈R ,则“0x ≥”是“3x >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 答案: B2.函数156. [19届宝山一模15]关于函数23()2f x x =-的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形 C. 函数有最大值 D. 当0x >时,()y f x =是减函数 答案: A157. [19届虹口一模15]已知函数2()1f x ax x =-+,1,1(),111,1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,若函数()()y f x g x =-恰有两个零点,则实数a 的取值范围为( )A. (0,)+∞B. (,0)(0,1)-∞C. 1(,)(1,)2-∞-+∞ D. (,0)(0,2)-∞答案: B158. [19届青浦一模16]记号[]x 表示不超过实数x 的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 902 答案: D159. [19届徐汇一模15]对于函数()y f x =,如果其图像上的任意一点都在平面区域{(,)|()()0}x y y x y x +-≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y =;下列结论正确的是( )A. ①、②均不是“蝶型函数”B. ①、②均是“蝶型函数”C. ①是“蝶型函数”,②不是“蝶型函数”D. ①不是“蝶型函数”,②是“蝶型函数” 答案: B160. [19届杨浦一模15]已知sin ()log f x x θ=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤答案: D161. [19届杨浦一模16]已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( ) A. [0,4) B. [1,4)- C. [3,5]- D. [0,7) 答案: A162. [19届长嘉一模16]某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题 答案: C3.指数函数、对数函数163. [19届金山一模16]已知函数52|log (1)|1()(2)21x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则方程1(2)f x a x +-=(a ∈R )的实数根个数不可能为( )A. 5个B. 6个C. 7个D. 8个 答案: A164. [19届普陀一模16]设()f x 是定义在R 上的周期为4的函数,且2sin 201()2log 14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[4,5]-上零点的个数是( )A. 5B. 6C. 7D. 8 答案: D4. 三角函数165. [19届宝山一模14] “[,]22x ππ∈-”是“sin(arcsin )x x =”的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要 答案: B166. [19届奉贤一模13]下列以行列式表达的结果中,与sin()αβ-相等的是( ) A.sin sin cos cos αβαβ- B.cos sin sin cos βαβα C. sin sin cos cos αβαβ D. cos sin sin cos ααββ-答案: C167. [19届普陀一模14]函数2cos(2)4y x π=+的图像( ) A. 关于原点对称 B. 关于点3(,0)8π-C. 关于y 轴对称D. 关于直线4x π=轴对称答案: B168. [19届松江一模15]将函数()2sin(3)4f x x π=+的图像向下平移1个单位,得到()g x 的图像,若12()()9g x g x ⋅=,其中12,[0,4]x x π∈,则12x x 的最大值为( ) A. 9 B.375C. 3D. 1答案: A169. [19届徐汇一模13]设θ∈R ,则“6πθ=”是“1sin 2θ=”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件 答案: A170. [19届杨浦一模13]下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 答案: C5. 数列171. [19届崇明一模16]函数()f x x =,2()2g x x x =-+,若存在129,,,[0,]2n x x x ⋅⋅⋅∈,使得121121()()()()()()()()n n n n f x f x f x g x g x g x g x f x --++⋅⋅⋅++=++⋅⋅⋅++,则n 的最大值是( )A. 11B. 13C. 14D. 18 答案:B172. [19届徐汇一模16]已知数列{}n a 是公差不为0的等差数列,前n 项和为n S ,若对任意的n ∈*N ,都有3n S S ≥,则65a a 的值不可能为( ) A. 2 B. 53 C. 32D. 43 答案: D173. [19届奉贤一模15]各项均为正数的等比数列{}n a 的前n 项和为n S ,若1lim 3n n n n nS a S a →∞-<+,则q 的取值范围是( )A. (0,1)B. (2,)+∞C. (0,1](2,)+∞D. (0,2)答案: B6. 向量174. [19届崇明一模15]已知向量a 、b 、c 满足0a b c ++=,且222a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A. a b ⋅B. b c ⋅C. a c ⋅D. 不能确定的答案:B175. [19届浦东一模16]已知点(1,2)A -,(2,0)B ,P 为曲线y =上任意一点,则AP AB ⋅的取值范围为( )A. [1,7]B. [1,7]-C. [1,3+D. [1,3-+ 答案: A176. [19届闵行一模16]在平面直角坐标系中,已知向量(1,2)a =,O 是坐标原点,M 是曲线||2||2x y +=上的动点,则a OM ⋅的取值范围为( )A. [2,2]-B. [C. [D. [ 答案: A177. [19届长嘉一模15]已知向量a 和b 夹角为3π,且||2a =,||3b =,则(2)(2)a b a b -⋅+=( )A. 10-B. 7-C. 4-D. 1- 答案: D7. 解析几何178. [19届宝山一模16]设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则12|2|MF MF MN +-的最小值为( )A. B. 4 C. D. 以上都不对 答案: B179. [19届普陀一模13]下列关于双曲线22:163x y Γ-=的判断,正确的是( ) A. 渐近线方程为20x y ±= B. 焦点坐标为(3,0)± C. 实轴长为12 D. 顶点坐标为(6,0)± 答案: B180. [19届虹口一模16]已知点E 是抛物线2:2C y px =(0)p >的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线C 上,在EFP 中,若sin sin EFP FEP μ∠=⋅,则μ的最大值为( )A.B. C.D. 答案: C181. [19届金山一模13]已知方程22212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是( )A. 2m >或1m <-B. 2m >-C. 12m -<<D. 2m >或21m -<<- 答案: D182. [19届闵行一模15]已知函数y =(x a ≥,0a >,0b >)与其反函数有交点,则下列结论正确的是( )A. a b =B. a b <C. a b >D. a 与b 的大小关系不确定 答案: B183. [19届青浦一模14]长轴长为8,以抛物线212y x =的焦点为一个焦点的椭圆的标准方程为( )A.2216455x y += B. 2216428x y += C. 2212516x y += D. 221167x y += 答案: D184. [19届松江一模13]过点(0,1)且与直线210x y -+=垂直的直线方程是( ) A. 210x y +-= B. 210x y ++= C. 220x y -+= D. 210x y --= 答案: A185. [19届松江一模16]对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C ,若曲线C 是边长为6的等边三角形,则点集{|(,)1}D P d P C =≤所表示的图形的面积为( )A. 36B. 36-C. 36π+D. 36π- 答案: D8. 复数186. [19届崇明一模14] “2p <”是“关于x 的实系数方程210x px ++=有虚根”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 答案:B187. [19届金山一模15]欧拉公式i e cos isin xx x =+(i 为虚数单位,x ∈R ,e 为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2018ie表示的复数在复平面中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A188. [19届浦东一模13] “14a <”是“一元二次方程20x x a -+=有实数解”的( ) A. 充分不必要条件 B. 充分必要条件 C. 必要不充分条件 D. 既不充分也不必要条件 答案: A9. 立体几何189. [19届奉贤一模14]若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件 答案: A190. [19届浦东一模14]下列命题正确的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两条直线垂直于同一条直线,那么这两条直线平行C. 如果两条直线垂直于同一条直线,那么这两条直线平行D. 如果两条直线垂直于同一条直线,那么这两条直线平行 答案: D191. [19届徐汇一模14]魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:4π,若正方体的棱长为2,则“牟合方盖”的体积为( )A. 16B.C.163 D. 1283答案: C192. [19届普陀一模15]若a 、b 、c 表示直线,α、β表示平面,则“a ∥b ”成立的一个充分非必要条件是( )A. a b ⊥,b c ⊥B. a ∥α,b ∥αC. a β⊥,b β⊥D. a ∥c ,b c ⊥ 答案: C193. [19届青浦一模15]对于两条不同的直线m 、n 和两个不同的平面α、β,以下结论正确的是( )A. 若m α,n ∥β,m 、n 是异面直线,则α、β相交B. 若m α⊥,m β⊥,n ∥α,则n ∥βC. m α,n ∥α,m 、n 共面于β,则m ∥nD. 若m α⊥,n β⊥,α、β不平行,则m 、n 为异面直线 答案: C194. [19届闵行一模14]已知a 、b 为两条不同的直线,α、β为两个不同的平面,a αβ=,a ∥b ,则下列结论不可能成立的是( )A. b β,且b ∥αB. b α,且b ∥βC. b ∥α,且b ∥βD. b 与α、β都相交 答案: D195. [19届虹口一模14]关于三个不同平面α、β、γ与直线l ,下来命题中的假命题是( ) A. 若αβ⊥,则α内一定存在直线平行于β B. 若α与β不垂直,则α内一定不存在直线垂直于β C. 若αγ⊥,βγ⊥,l αβ=,则l γ⊥D. 若αβ⊥,则α内所有直线垂直于β答案: D196. [19届金山一模14]给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 答案: B10. 排列组合、概率、二项式定理197. [19届宝山一模13]若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切x ∈R 都成立,其中0a 、1a 、2a 、3a 为实常数,则0123a a a a +++=( )A. 2B. 1-C. 4D. 1 答案: D198. [19届青浦一模13] “4n =”是“1()n x x+的二项展开式存在常数项”的( ) A. 充分不必要条件 B. 必要非充分条件 C. 充要条件 D. 既不充分也不必要条件 答案: A199. [19届杨浦一模14]某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( ) A.310 B. 35 C. 25 D. 23答案: B200. [19届浦东一模15] 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( )种A. 72B. 36C. 64D. 81 答案: B201. [19届奉贤一模16]若三个非零且互不相等的实数1x 、2x 、3x 成等差数列且满足123112x x x +=,则称1x 、2x 、3x 成“β等差数列”,已知集合{|||100,}M x x x =≤∈Z ,则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( ) A. 25 B. 50 C. 51 D. 100 答案: B11. 行列式、矩阵12. 其它202. [19届长嘉一模14]有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,⋅⋅⋅⋅⋅⋅⋅,下表是不同发芽天数的种子数的记录:。
崇明区2018学年第一次高考模拟考试试卷数 学一、填空题(本大题共有12题,满分54分,其中1~6题每题4分,7~12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果.】1.计算:20lim31n n n →∞+=+ ▲ .2.已知集合{}12x x A =-<<,{1,0,1,2,3}B =-,则A B =∩ ▲ . 3.若复数z 满足232z z i +=-,其中i 为虚数单位,则z = ▲ .4.821x x ⎛⎫- ⎪⎝⎭的展开式中含7x 项的系数为 ▲ (用数字作答).5.角θ的终边经过点(4,)P y ,且3sin 5θ=-,则tan θ= ▲ .6.在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 ▲ .7.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 ▲ . 8.设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于 ▲ . 9.若函数2()log 1x af x x -=+的反函数的图像过点(3,7)-,则a = ▲ . 10.2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有 ▲ 种.11.设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ⎧⎨⎩≤≤≤≤的解集为 ▲ . 12.已知数列{}n a 满足:①10a =,②对任意的*n ∈N 都有1n n a a +>成立.函数1()sin ()n n f x x a n =-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m =总有两个不同的根,则{}n a二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.若0a b <<,则下列不等式恒成立的是(A)11a b> (B)a b -> (C)22a b > (D)33a b <14.“2p <”是“关于x 的实系数方程210x px ++=有虚数根”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件15.已知向量a b c r r r ,,满足0a b c r r r r ++=,且222a b c r r r <<,则a b ⋅r r 、b c ⋅r r 、a c ⋅r r中最小的值是(A)a b ⋅r r (B)b c ⋅r r (C)a c ⋅r r(D)不能确定的 16.函数()f x x =,2()2g x x x =-+.若存在129,,...,0,2n x x x ⎡⎤∈⎢⎥⎣⎦,使得1()f x +2()...f x ++1()n f x -+()n g x =1()g x +2()...g x ++1()n g x -+()n f x ,则n 的最大值是(A) 11 (B) 13 (C) 14 (D) 18三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分) 如图,设长方体1111B ABC A C D D -中,2AB BC ==,直线1A C 与平面ABCD 所成的角为4π. (1)求三棱锥1A A BD -的体积;(2)求异面直线1A B 与1B C 所成角的大小.18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)已知函数23()cos sin 3cos f x x x x =⋅+-. (1)求函数()f x 的单调递增区间;(2)在锐角ABC △中,角,,A B C 的对边分别为,,a b c ,若1()2f A =,3,4a b ==, 求ABC △的面积.19.(本题满分14分,本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分) 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~1600万元的投资收益. 现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[25,1600]x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.)(1)判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由; (2)已知函数()5g x =(1)a ≥符合公司奖励方案函数模型要求,求实数a 的取值范围.20.(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分7分)已知椭圆2222:1(0)x y a b a bΓ+=>>,1B 、2B 分别是椭圆短轴的上下两个端点;1F 是椭圆的左焦点,P 是椭圆上异于点1B 、2B 的点,112B F B △是边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线1PB 的一个方向向量是1,1()时,求以1PB 为直径的圆的标准方程; (3)设点R 满足:11RB PB ⊥,22RB PB ⊥.求证:12PB B △与12RB B △的面积之比为定值.21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,11()n n n a b S n *+=+∈N .(1)若11,2n na b ==,求4a 的值; (2)若{}n a 是公比为q (1)q ≠的等比数列,求证:数列11n b q ⎧⎫+⎨⎬-⎩⎭为等比数列;(3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:23,,,,n a a a K K 成等差数列的充要条件是12d =.崇明区2018学年第一次高考模拟考试数学学科参考答案与评分标准一、填空题1.13; 2.{0,1}; 3.12i -; 4.56-; 5.34-; 6.4; 7.2;8.3; 9.6; 10.1518; 11.[2,82]ππ--; 12.(1)2n n n a π-=.二、选择题13. D ; 14.B ; 15.B ; 16.C三、解答题17. 解:(1)联结AC , 因为1AA ABCD ⊥平面,所以1A CA ∠就是直线1A C 与平面ABCD 所成的角,……………………………………2分 所以14ACA π∠=,所以1AA =4分所以11113A BD ABD ABD A A V V S A A --==⋅=7分(2)联结1A D ,BD因为11//A B CD ,所以11//A D B C所以1BA D ∠就是异面直线1A B 与1B C 所成的角或其补角………………………3分在1BA D V中,12cos 3BA D ∠==所以12arccos 3BA D ∠=……………………………………6分所以异面直线1A B 与1B C 所成角的大小是2arccos 3……………………………………7分18. 解:(1)2()cos sin f x x x x =⋅1sin 2sin(2)23x x x π=+=+……………………………………3分 由222,232k x k k Z πππππ-≤+≤+∈,得:51212k x k ππππ-≤≤+所以函数()f x 的单调递增区间是5[,],1212k k k Z ππππ-+∈…………………………6分 (2)1()sin(2)32f A A π=+= 因为(0,)2A π∈,所以42(,)333A πππ+∈所以5236A ππ+=,A π=……………………………………2分 由222cos 22b c a A bc +-==,得:1c=……………………………………5分因为ABC △是锐角三角形,所以1c=……………………………………6分所以ABC △的面积是1sin 22ABC S bc A ==V ……………………………………8分19. 解:(1)因为525(25)1065f =>, 即函数()f x 不符合条件③所以函数()f x 不符合公司奖励方案函数模型的要求……………………………………5分 (2)因为1a ≥,所以函数()g x 满足条件①,……………………………………2分 结合函数()g x 满足条件①,由函数()g x 满足条件②,得:575≤,所以2a ≤………………………………………………………………4分 由函数()g x 满足条件③,得:55x≤对[25,1600]x∈恒成立 即a≤[25,1600]x ∈恒成立 2≥,当且仅当25x =时等号成立……………………………………7分所以2a ≤………………………………………………………………8分综上所述,实数a 的取值范围是[1,2]a ∈……………………………………9分20. 解:(1)221164x y +=………………………………………4分 (2)由题意,得:直线1PB 的方程为2y x =+…………………………………1分由2221164y x x y =+⎧⎪⎨+=⎪⎩,得:21121605,265x x y y ⎧=-⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩…………………………………3分故所求圆的圆心为84(,)55-,半径为5………………………………………4分所以所求圆的方程为:2284128()()5525x y ++-=………………………………………5分(3) 设直线12PB PB ,的斜率分别为,'k k ,则直线1PB 的方程为2y kx =+. 由11RB PB ⊥,直线1RB 的方程为(2)0x k y +-=.将2y kx =+代入221164y x +=,得()2241160k x kx ++=, 因为P 是椭圆上异于点12B B ,的点,所以P x =21641k k -+.……………3分 所以21'4P P y k x k+==- …………………………………4分 由22RB PB ⊥,所以直线2RB 的方程为42y kx =-.由(2)042x k y y kx +-=⎧⎨=-⎩ ,得2441R k x k =+. …………………………………6分 所以121220216414441PB B RB B R k S x k S x kk ∆∆-+===+. …………………………………7分21.解:(1)由11,2n na b ==,知2344,6,8a a a ===.………………………4分 (2)因为11n n n a b S +=+①, 所以当2n ≥时,111n n n a b S --=+②, ①-②得,当2n ≥时,11n n n n n a b a b a +--=③, 所以111111n n n n n n n a a b b b a a q q--++=+=+,………………………3分 所以111111n n b b q q q -⎛⎫+=+ ⎪--⎝⎭,………………………5分 又因为101n b q+≠-(否则{}n b 为常数数列与题意不符), 所以1{}1n b q+- 为等比数列。
2019年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中第1-6题每题4分,第7-12每每题5分)【考生应在答题纸相应编号的空格内直接填写加过】1.(★) = .2.(★)已知集合A={x|-1<x<2},={-,,,2,3}则B= .3.(★)复数z满2z+ =32i,其中i为单位,则z= .4.(★★)(x- )8的展开x7的系数为(用数字作)5.(★★)角θ的终边过点4,y),且,则tan= .6.(★)在平面直角坐标系xOy中,已知抛线24x上点P到焦点距为,则P的坐标是. 7.(★)圆x2+2-2x+4y=0心到直线x+4+50的离等于.8.(★★★)设一个锥的侧面展开图半径为2的半,此圆锥的积于.9.(★)若函数f(x)og2 的反数图象过(-37),则a=10.(★)2018年海春季高考有23所高招生,如果某3学恰好中2所校录取,那不的录方法有种.11.(★★)fx是定在R的以为周期的偶函在区间[0,1]上单调递,满足fπ)=1,f(2π)=,则不等式组解集为.12.(★★★)已知数列an}满足a1=0任意的n∈*都有an+an成立.函f(x)=|sin x-a)|,x[a,an+1]意的实m∈[0,),fn(x)=m有两个不同的根,则{an}的通项公式是.二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.(★)a<0<,下列不式恒成立的是()A. B.a>b C.a2>2 D.a3<314.(★)“p<2”是关于x的实系数方程x+p10有虚数”的)A.充分必要条件B.必不充分条件C.充分必要件D.既不充分也不必件15.(★)已知满足,且,则中最小是()A. B. C. D.不能定16.(★★)函数f(x)=xg()x2-x+.若在x1,x,…,xn[0,,使得x)+f(2)…+f (x1)+g(xn)=g(+g(x2)…g(xn-1)+f(xn),则的最大值是()A.11B.13C.14D.18三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤】17.(★★)图,设长方BCDA1B1C1D中,B=B=2,直1C与平面ABCD所成角为.求异直线A1B与1C成角大小.18.(★★)已知函数f(x=co•snx+ .在△BC中角A,B,C的对边分别为ab,c若f= a=,b=4.求△BC的面积.19.(★★★)某业投资公司拟投开发某种新能源品,估能活25万元~00万的投资益,现准备定一个研课题组的奖励方案:奖金y(单位:)投收x(位:万元)的加而增加,奖不超过5万元,同时奖不超过投资益2%.(即:奖励方案函数模型y=(x),公司对函数的本要求:当x∈[25,160]时,fx)是增函数;f(x)75恒成立;成立.)知函数合公司奖励方案函数模要求求实数a值范围.写出圆标准方程;当直PB1的一个方向向量是(1,)时求B1为直径的圆标方程;设点R满:RB1⊥B1RB2⊥B2,求:△PB1B2△RB12的面之比为值.若,求a的值;21.(★★★)已列{an},bn}均为各项都不相的数,Sn为an}的n项和,.若{an}的各都为零,{n}是差为d的等差数列,证:a2,3,n,成等差数列的充条件是.。
上海市崇明区2019届高三一模数学试卷
2018.12
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)
1. 计算:20lim 31
n n n →∞+=+ 2. 已知集合{|12}A x x =-<<,{1,0,1,2,3}B =-,则A B =I
3. 若复数z 满足232i z z +=-,其中i 为虚数单位,则z =
4. 281()x x -的展开式中含7x 项的系数为 (用数字作答)
5. 角θ的终边经过点(4,)P y ,且3sin 5θ=-,则tan θ=
6. 在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的 横坐标是
7. 圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于
8. 设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于
9. 若函数2()log 1
x a f x x -=+的反函数的图像经过点(3,7)-,则a = 10. 2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那 么不同的录取方法有 种
11. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足
()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩
的解集为 12. 已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立. 函数1()|sin ()|n n f x x a n =-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m = 总有两个不同的根,则{}n a 的通项公式是
二. 选择题(本大题共4题,每题5分,共20分)
13. 若0a b <<,则下列不等式恒成立的是( ) A. 11a b
> B. a b -> C. 22a b > D. 33a b < 14. “2p <”是“关于x 的实系数方程210x px ++=有虚根”的( )条件
A. 充分不必要
B. 必要不充分
C. 充要
D. 既不充分也不必要
15. 已知向量a r 、b r 、c r 满足0a b c ++=r r r r ,且222a b c <<r r r ,则a b ⋅r r 、b c ⋅r r 、a c ⋅r r 中最小
的值是( )
A. a b ⋅r r
B. b c ⋅r r
C. a c ⋅r r
D. 不能确定的
16. 函数()f x x =,2()2g x x x =-+,若存在129
,,,[0,]2
n x x x ⋅⋅⋅∈,使得 121121()()()()()()()()n n n n f x f x f x g x g x g x g x f x --++⋅⋅⋅++=++⋅⋅⋅++,则n 的最大值 是( )
A. 11
B. 13
C. 14
D. 18
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 如图,设长方体1111ABCD A B C D -中,2AB BC ==,
直线1A C 与平面ABCD 所成的角为
4π. (1)求三棱锥1A A BD -的体积;
(2)求异面直线1A B 与1B C 所成角的大小.
18. 已知函数23()cos sin 3cos f x x x x =⋅+-. (1)求函数()f x 的单调递增区间; (2)在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若1()2f A =
,3a =,4b =, 求△ABC 的面积.
19. 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~1600万元的投资收 益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位: 万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励 方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[25,1600]x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5x f x ≤
恒成立.) (1)判断函数()1030
x f x =+是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数()5g x =(1a ≥)符合公司奖励方案函数模型要求,求实数a 的取值 范围.
20. 已知椭圆22
22:1x y a b
Γ+=(0a b >>),1B 、2B 分别是椭圆短轴的上下两个端点,1F 是 椭圆左焦点,P 是椭圆上异于点1B 、2B 的点,△112B F B 是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)当直线1PB 的一个方向向量是(1,1)时,求以1PB 为直径的圆的标准方程;
(3)设点R 满足:11RB PB ⊥,22RB PB ⊥,求证:△12PB B 与△12RB B 面积之比为定值.
21. 已知数列{}n a 、{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和, 11n n n a b S +=+(n ∈*N ).
(1)若11a =,2
n n b =,求4a 的值; (2)若{}n a 是公比为q (1q ≠)的等比数列,求证:数列1{}1n b q +
-为等比数列; (3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:2a 、3a 、⋅⋅⋅、n a 、⋅⋅⋅ 成等差数列的充要条件是1
2d =.
参考答案
一. 填空题 1. 13
2. {0,1}
3. 12i -
4. 56-
5. 34-
6. 4
7. 2
8. 3
9. 6 10. 1518 11. [2,82]ππ-- 12. (1)2n n π-
二. 选择题
13. D 14. B 15. B 16. B
三. 解答题
17.(1;(2)2arccos 3
.
18.(1)()sin(2)3f x x π
=+,51[,]1212
k k ππππ-++,k ∈Z ;(2)4 19.(1)不符合;(2)[1,2].
20.(1)221164x y +=;(2)2282128()()5525
x y ++-=;(3)4:1. 21.(1)8;(2)公比为1q
;(3)略.。