10外压容器(实际使用)
- 格式:pdf
- 大小:788.81 KB
- 文档页数:41
按压力等级分类:压力容器可分为内压容器与外压容器。
内压容器又可按设计压力(p)大小分为四个压力等级,具体划分如下:低压(代号L)容器0.1 MPa≤p<1.6 MPa;中压(代号M)容器 1.6 MPa≤p<10.0 MPa;高压(代号H)容器10 MPa≤p<100 MPa;超高压(代号U)容器p≥100MPa。
(1MPa=9.8Kg)按容器在生产中的作用分类:反应压力容器(代号R):用于完成介质的物理、化学反应。
换热压力容器(代号E):用于完成介质的热量交换。
分离压力容器(代号S):用于完成介质的流体压力平衡缓冲和气体净化分离。
储存压力容器(代号C,其中球罐代号B):用于储存、盛装气体、液体、液化气体等介质。
在一种压力容器中,如同时具备两个以上的工艺作用原理时,应按工艺过程中的主要作用来划分品种。
按安装方式分类:固定式压力容器:有固定安装和使用地点,工艺条件和操作人员也较固定的压力容器。
移动式压力容器:使用时不仅承受内压或外压载荷,搬运过程中还会受到由于内部介质晃动引起的冲击力,以及运输过程带来的外部撞击和振动载荷,因而在结构、使用和安全方面均有其特殊的要求。
上面所述的几种分类方法仅仅考虑了压力容器的某个设计参数或使用状况,还不能综合反映压力容器的危险程度。
压力容器的危险程度还与介质危险性及其设计压力p和全容积V的乘积有关,pV值愈大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。
按安全技术管理分类:《压力容器安全技术监察规程》采用既考虑容器压力与容积乘积大小,又考虑介质危险性以及容器在生产过程中的作用的综合分类方法,以有利于安全技术监督和管理。
该方法将压力容器分为三类:1.第三类压力容器,具有下列情况之一的,为第三类压力容器:高压容器;中压容器(仅限毒性程度为极度和高度危害介质);中压储存容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于10MPa·m3 );中压反应容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于0.5Pa·m3);低压容器(仅限毒性程度为极度和高度危害介质,且乘积大于等于0.2MPa·m3 );高压、中压管壳式余热锅炉;中压搪玻璃压力容器;使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540MPa)的材料制造的压力容器;移动式压力容器,包括铁路罐车(介质为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、永久气体运输(半挂)车]和罐式集装箱(介质为液化气体、低温液体)等;球形储罐(容积大于等于50m3);低温液体储存容器(容积大于5m3)。
危险化学品压力容器的常用分类压力容器的分类方法有多种。
归结起来,常用的分类方法有如下几种。
1.按制造方法分根据制造方法的不同,压力容器可分为焊接容器,铆接容器,铸造容器,锻造容器,热套容器,多层包扎容器和绕带容器等。
2.按承压方式分内压容器和外压容器。
3.按设计压力(P)分①低压容器(代号L):0.1MPa≤P<1.6MPa。
②中压容器(代号M):1.6MPa≤P<10MPa。
③高压容器(代号H):10MPa≤P<100MPa。
④超高压容器(代号U):P≥100MPa。
4.按容器的设计温度(T设-壁温)分①低温容器:T设≤-20℃。
②常温容器:-20℃<T设<150℃。
③中温容器:150℃≤T设<400℃。
④高温容器:T设≥400℃。
5.按容器的制造材料分钢制容器、铸铁容器、有色金属容器和非金属容器等。
6.按容器外形分圆筒形(或称圆柱形)容器,球形容器,矩(方)形容器和组合式容器等。
7.按容器在生产工艺过程中的作用原理分①反应容器(代号R):用于完成介质的物理、化学反应。
②换热容器(代号E):用于完成介质的热量交换。
③分离容器(代号S):用于完成介质的流体压力平衡缓冲和气体净化分离。
④储存容器(代号C,其中球罐代号B):用于储存、盛装气体、液体、液化气体等介质。
8.按容器的使用方式分①固定式容器:有固定安装和使用地点,工艺条件和操作人员也较固定的压力容器。
②移动式容器:使用时不仅承受内压或外压载荷,搬运过程中还会受到由于内部介质晃动引起的冲击力,以及运输过程带来的外部撞击和振动载荷,因而在结构、使用和安全方面均有其特殊的要求。
9.按制造许可分根据制造能力、工艺水平、人员条件等,国家质量监督检验检疫总局令(第22号)《锅炉压力容器制造监督管理办法》将压力容器分为A(1~4)、B(1~3)、C(1~3)、D(1、2)四级。
(1)A级分为A1:超高压容器、高压容器(单层、多层);A2:第三类低、中压容器;A3:球形容器;A4:非金属压力容器;A5:医用氧舱。
外压容器实验报告外压容器实验报告一、引言外压容器是一种常见的工业设备,在许多领域都有广泛的应用。
它主要用于存储和运输高压气体或液体,以及承受外部压力。
本实验旨在通过对外压容器的研究和测试,探索其在不同条件下的性能和可靠性。
二、实验目的1. 研究外压容器在不同压力下的变形和破裂特性。
2. 分析外压容器的承载能力和安全性。
3. 探究外压容器的结构优化和材料选择。
三、实验装置和方法本实验使用了一台压力测试机和一组外压容器样品。
首先,将外压容器样品放置在压力测试机的夹具上。
然后,逐步增加压力,记录下外压容器的变形情况和压力数值。
最后,观察外压容器是否破裂,并记录破裂压力。
四、实验结果与分析通过实验,我们得到了一系列外压容器在不同压力下的变形情况和破裂压力。
根据数据分析,我们可以得出以下结论:1. 变形特性:随着外压容器受到的压力增加,其变形程度逐渐增加。
在低压力下,外压容器的变形主要表现为轻微的形变和扭曲。
但在高压力下,外压容器会出现明显的塑性变形,甚至出现局部破裂。
2. 破裂特性:外压容器的破裂压力与其结构和材料的强度密切相关。
在实验中,我们观察到不同样品的破裂压力存在差异。
这表明在设计和制造外压容器时,需要考虑材料的强度和结构的合理性,以确保其安全性。
3. 结构优化:通过对实验结果的分析,我们可以发现一些结构优化的思路。
例如,增加外压容器的壁厚可以提高其抗压能力和耐磨性。
此外,采用合适的材料,如高强度钢材,也可以提高外压容器的承载能力。
五、实验结论通过本次实验,我们对外压容器的性能和可靠性有了更深入的了解。
以下是我们的实验结论:1. 外压容器在受到压力作用时会发生变形,且变形程度与压力大小呈正相关。
2. 外压容器的破裂压力与其结构和材料的强度有关,需要合理设计和选择材料。
3. 结构优化和材料选择可以提高外压容器的承载能力和安全性。
六、实验改进和展望本实验仅仅是对外压容器性能的初步研究,还有许多改进和深入研究的空间。
压力容器分类及其安全附件常识压力容器是在工业领域中广泛使用的设备,用于储存和运输气体、液体或混合物。
由于容器内部的压力较高,如果不正确使用或维护,容器可能会发生泄漏或爆炸,造成严重的人员伤亡和财产损失。
因此,了解压力容器的分类和安全附件常识对于确保工作场所和操作员的安全至关重要。
压力容器的分类可根据其设计、功能和用途来划分。
1. 简单压力容器:由单一材料制成的容器,如汽车轮胎和气罐。
2. 低压容器:工作压力低于0.1MPa的容器,如暖气水箱和水贮罐。
3. 常压容器:工作压力介于0.1MPa和1.6MPa之间的容器,如空气压缩机和反应釜。
4. 中压容器:工作压力介于1.6MPa和10MPa之间的容器,如液化石油气罐和公共燃气用气罐。
5. 高压容器:工作压力超过10MPa的容器,如高压气瓶和压缩空气储罐。
为确保压力容器的安全运行,常见的安全附件包括:1. 安全阀:用于控制容器内部压力超过设定值时的放压,防止压力过高导致容器爆炸。
2. 压力表:用于测量容器内部的压力,以确保工作压力在安全范围内。
3. 液位计:用于监测容器内液体的液位,以确保容器内部不会超过设计限制。
4. 爆破片:安装在容器上的一种薄弱部件,当容器内部压力超过设计极限时,爆破片会破裂以释放压力。
5. 温度计:用于监测容器内部的温度,以确保工作温度在允许范围内。
6. 排污阀:用于释放容器内的污水、沉淀物或其他杂质,以确保容器内部清洁。
此外,压力容器还需要定期进行检测和维护,以确保其安全运行。
常见的检测方法包括超声波检测、液体渗透检测和磁粉检测,以检查容器壁是否存在裂纹或其他缺陷。
维护工作包括定期更换和修理安全附件,检查和修复液体泄漏和气体泄漏,清洁容器内部,确保其运行状态良好。
在操作压力容器时,操作员需要遵循以下安全措施:1. 严格按照容器的工作压力和温度范围进行操作,不得超过设计限制。
2. 调整、检查和维护安全附件,确保其正常工作。
3. 定期清洗容器,清除杂质和沉积物,以保持容器内部干净。
压力容器分类方法很多,压力容器分类按照不同的方法可以有不同的分类。
1.1压力容器分类按制造分类:可分单层、锻焊、多层包扎、绕带、绕板、热套、无缝容器等。
1.2压力容器分类按材料分类:有钢制容器、有色金属容器和非金属容器。
1.3压力容器分类按壁厚分类:可分薄壁容器和厚壁容器两种。
容器外径与内径之比小于或等于1.2者为薄壁容器;大于1.2者为厚壁容器。
1.4压力容器分类按设计压力P分类:低压容器:0.1 ≦P< 1.6 MPa中压容器:1.6≦P <10 MPa高压容器:10≦P< 98.1 MPa超高压容器:P ≧98.1 MPa1.5压力容器分类按设计温度分类:高温容器:t≧450℃;常温容器:-20℃〈t <450℃;低温容器:t ≦-20℃;1.6压力容器分类按形状分类:有球形容器、圆筒形容器、圆锥形容器、1.7压力容器分类按承压方式分类:有内压容器和外压容器。
1.8压力容器分类按使用中工艺过程的作用原理分类:可分为反应容器、换热容器、分离容器和贮存容器四种。
1.9压力容器分类按使用方式分类:有固定式容器和移动式容器之分。
1.10压力容器分类按安全技术监察和管理分类:1.10.1低压容器(本条第2,3款规定的除外)为第一类压力容器。
1.10.2下列情况之一为第二类压力容器:(1)中压容器(本条第3款规定除外);(2)易燃介质或毒性程度为中度危害介质的低压反应容器和储存容器;(3)毒性程度为极度和高度危害介质的低压反应容器;(4)低压管壳式余热锅炉;(5)搪玻璃压力容器。
1.10.3下列情况之一为第三类压力容器:(1)毒性程度为极度和高度危害介质的中压容器P*V大于等于0.2MPa.m2低压容器;(2)易燃或毒性程度为中度危害介质且P*V大于等于0.5MPa.m2的中压反应容器和P*V大于等于10MPa.m2的中压储存容器;(3)高压,中压管壳式余热锅炉;(4)高压容器。
压力容器的等级按压力等级分类:压力容器可分为内压容器与外压容器。
内压容器又可按设计压力(p)大小分为四个压力等级,具体划分如下:低压(代号L)容器0.1MPa≤p<1.6MPa;中压(代号M)容器1.6MPa≤p<10.0MPa;高压(代号H)容器10MPa≤p<100MPa;超高压(代号U)容器p≥100MPa。
(1MPa=9.8Kg)按容器在生产中的作用分类:反应压力容器(代号R):用于完成介质的物理、化学反应。
换热压力容器(代号E):用于完成介质的热量交换。
分离压力容器(代号S):用于完成介质的流体压力平衡缓冲和气体净化分离。
储存压力容器(代号C,其中球罐代号B):用于储存、盛装气体、液体、液化气体等介质。
在一种压力容器中,如同时具备两个以上的工艺作用原理时,应按工艺过程中的主要作用来划分品种。
按安装方式分类:固定式压力容器:有固定安装和使用地点,工艺条件和操作人员也较固定的压力容器。
移动式压力容器:使用时不仅承受内压或外压载荷,搬运过程中还会受到由于内部介质晃动引起的冲击力,以及运输过程带来的外部撞击和振动载荷,因而在结构、使用和安全方面均有其特殊的要求。
上面所述的几种分类方法仅仅考虑了压力容器的某个设计参数或使用状况,还不能综合反映压力容器的危险程度。
压力容器的危险程度还与介质危险性及其设计压力p和全容积V的乘积有关,pV值愈大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。
按安全技术管理分类:《压力容器安全技术监察规程》采用既考虑容器压力与容积乘积大小,又考虑介质危险性以及容器在生产过程中的作用的综合分类方法,以有利于安全技术监督和管理。
该方法将压力容器分为三类:1.第三类压力容器,具有下列情况之一的,为第三类压力容器:高压容器;中压容器(仅限毒性程度为极度和高度危害介质);中压储存容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于10MPa·m3);中压反应容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于0.5Pa·m3);低压容器(仅限毒性程度为极度和高度危害介质,且乘积大于等于0.2MPa·m3);高压、中压管壳式余热锅炉;中压搪玻璃压力容器;使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540MPa)的材料制造的压力容器;移动式压力容器,包括铁路罐车(介质为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、永久气体运输(半挂)车]和罐式集装箱(介质为液化气体、低温液体)等;球形储罐(容积大于等于50m3);低温液体储存容器(容积大于5m3)。
内压薄壁容器应力测定实验实验指导书北京化工大学机电学院过程装备与控制工程系实验一、内压薄壁容器应力测定实验一、实验目的1.掌握电阻应变测量原理;2.学习电阻应变仪的使用方法,学习电阻应变片的贴片和接线技术; 3.了解封头在内压作用下的应力分布规律。
二、实验原理 1. 应力计算:薄壁压力容器主要由封头和圆筒体两个部分组成,由于各部分曲率不同,在它们的连接处曲率发生突变。
受压后,在连接处会生产边缘力系——边缘力矩和边缘剪力。
使得折边区及其两侧一定距离内的圆筒体和封头中的应力分布比较复杂,某些位置会出现较高的局部应力。
利用电阻应变测量方法可对封头和与封头相连接的部分圆筒体的应力分布进行测量。
应力测定中用电阻应变仪来测定封头各点的应变值,根据广义虎克定律换算成相应的应力值。
由于封头受力后是处于二向应力状态,在弹性范围内用广义虎克定律表示如下:经向应力:()21211μεεμσ+-=E(1-1)环向应力:()12221μεεμσ+-=E(1-2) 式中:E —材料的弹性模量μ—材料的波桑比 ε1—经向应变 ε2—环向应变。
椭圆封头上各点的应力理论计算公式如下:经向应力:()[]bb a x a s p r 2122242--=σ (1-3)环向应力:()[]()⎥⎦⎤⎢⎣⎡-----=2224421222422b a x a a bba x a s p θσ (1-4)2.电阻应变仪的基本原理:电阻应变仪将应变片电阻的微小变化,用电桥转换成电压电流的变化。
其过程为:()→∆∆→→放大器或电桥应变片I V RdR ε将()指示或纪录检流计或纪录仪放大或→∆∆I V将电阻应变片用胶水粘贴在封头外壁面上,应变片将随封头的拉伸或压缩一起变形,应变片的变形会引起应变片电阻值的变化,二者之间存在如下关系:ε⋅=∆=∆K LlK R R (1-5) 式中:ΔR/R —电阻应变片的电阻变化率ΔL/L —电阻应变片的变形率 K —电阻应变片的灵敏系数; ε—封头的应变。
化工容器之外压容器,你了解多少?
工作时内压小于外压的压力容器。
真空容器和海洋开发用的潜水器外壳等﹐都属于这类容器。
外压容器的失效机制与内压容器不同。
当外﹑内压差达到一定值时﹐容器就会因丧失稳定性而出现皱曲﹐这一压差值称为失稳临界压力。
圆筒形容器失稳后出现不同的波形﹐长圆筒呈现两个波﹐短圆筒则会出现两个以上的波形。
失稳的临界压力取决于材料的弹性模数﹑泊松比和圆筒的直径﹑长度和壁厚。
在其它参数相同的情况下﹐圆筒越短则临界压力越高。
因此﹐工程上常常在壳体上设置刚性圈﹐减少每段筒节的长度﹐以提高临界压力。
由于稳定性计算比较烦琐﹐工程设计时大多用图算法来确定许用压差。
这种方法还能用于计算应力超过材料弹性极限的非线性问题。
圆筒的圆度误差会降低临界压力﹐所以制造外压容器时一般将圆度误差控制在直径的 0.5%以内。
若容器承受附加的轴向压力或弯曲等外载荷作用﹐在稳定性计算中应考虑这些影响。