高频小信号放大电路学习笔记
- 格式:ppt
- 大小:659.00 KB
- 文档页数:50
高频小信号谐振放大器(总结)高频小信号谐振放大器=高频+小信号+谐振+放大;高频:由于高频频率高波长短,不同于低频,所以在线路中会存在反射、串扰;以及整块电路板的寄生参数的影响会导致效果会一点也出不来。
因为此次的频率在6M频率不算很高,总结一些解决方法:①反射:器件之间的连线要短,最好是直接相连,背面焊接不要出现就90°转折。
②串扰:级与级之间的地线处理好,最好是单点供地,并且地线要是所有传输线中最粗的一根,信号线不要裸露的从地线上方走过。
③寄生参数:是个不好处理的参数,但是可以通过输出的波形分析出,然后实施相应方法避免或解决,如布线不要有平行线,减小接入系数可以减小晶体管极间电容的影响。
注:自制扼流线圈或电感在绕制好后需用绝缘胶布固定,防止其因线圈变动影响稳定性。
小信号:小信号的输入大小影响晶体管的基极偏置,但是不能太小,因为学校的数字合成信号发生器在输出小于10mv的时候会有寄生波纹输出,在示波器上显示的可能是几百Hz属于低频信号,但是此时的信号仍然是高频信号,出现这种现象是因为示波器导致的视觉误差。
因为这种波纹的存在导致输出的波形上下浮动,很容易认为是电路的寄生振荡。
解决方法是提高小信号的输出幅度,一般在100mv时寄生波纹很小。
(注:有的数字合成信号发生器输出没有寄生波纹)谐振:涉及到输出的中心频率和带宽,如图:电容和电感可由计算可得,而这个电位器的作用是在输出带宽窄的情况下,调节电位器,减小其接入阻值,可以增加带宽。
放大:此次的核心是放大,其他的工作做的再好,不放大就是做无用功,只有放大了,再出现问题就好解决。
出现不放大的情况有以下几种:①输出增益为负值②增益不够高③输出波形失真,如图:解决方法:①静态工作点没有设置好,基极偏置跟低频不一样,经验值为+5V左右;②增益不够高很大程度上是因为晶体管的截止频率不够(静态工作点合理),可以尝试换截止频率高的晶体管,如9018 的截止频率为1G,足够放大。
实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。
2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。
Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。
从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。
f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。
结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。
一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。
实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.325输入,输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~AvBW0.7=6.372MHz-33.401kHz5,在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A输入端波形:输出端波形:2、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
的波形。
(2)将输入信号的振幅修改为1V,用同样的设置,观察ic(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。
高频电子线路复习第2章 高频小信号放大器高频小信号放大器与低频小信号放大器的主要区别:(1)晶体管在高频工作时,其电流放大系数与频率有关,晶体管的两个结电容将不能被忽略。
(2)高频小信号放大器的集电极负载为调谐回路,因此高频小信号放大器的主要性能在很大程度上取决于谐振回路。
1.LC 谐振回路的选频作用并联谐振回路的等效导纳:Y=G 0+j(ωC- ),谐振频率:ω0= ,并联回路的品质因数: 其中R=Q L ω0L2.串并联阻抗的等效变换:R 2≈Q 2r 1 ;X 2≈X 13.谐振回路的接入方式:变压器耦合连接,自耦变压器耦合连接,双电容分压耦合连接4.等效变换的接入系数与变换关系(上述三种耦合连接方式接入系数p 的计算公式)5.晶体管高频等效电路:晶体管y 参数等效电路6.高频谐振放大器的分析,等效电路,谐振电压放大倍数,通频带和矩形系数。
第3章 高频功率放大器高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换为高频交流输出。
高频功率放大器与高频小信号放大器的主要区别:高频小信号放大器晶体管工作在线性区域;而高频功率放大器,为了提高效率,晶体管工作延伸到非线性区域,一般工作在丙类状态。
高频功率放大器的分析方法通常采用折线分析法。
1.谐振功率放大器的用途和特点(与小信号调谐放大器进行比较)2.折线近似分析法----晶体管特性的折线化3.丙类高频功率放大器的工作原理:静态时晶体管工作在截止状态;在正弦输入信号时,输出集电极电流为余弦电流脉冲;输出为并联谐振电路,故其输出电压仍为正弦波。
4. 丙类高频功率放大器的一些重要公式:(1)导通角:(2) 集电极余弦脉冲电流的高度(幅值):(3)集电极余弦脉冲电流波形的表达式:(4)余弦电流脉冲的傅里叶级数表达式:i c =I c0+I c1m cos ωt+I c2m cos2ωt+···+I cnm cosn ωt其中:I c0=I cM α0(θc );I c1m =I cM α1(θc )5. 丙类高频功率放大器的功率和效率:P ==V CC I C0 ;P 0=(1/2)U cm I c1m ;η=P o /P = 。
127.02ωωω-=∆高频电子线路重点第二章 选频网络一. 基本概念所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。
电抗(X)=容抗( )+感抗(wL) 阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗) ,电容、电感消失了,相角等于0,谐振频率: ,此时|Z|最小=R ,电流最大2.当w<w 0时,电流超前电压,相角小于0,X<0阻抗是容性;当w>w 0时,电压超前电流,相角大于0,X>0阻抗是感性;3.回路的品质因素数 (除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位差大小等于外加电压的Q 倍,相位相反4.回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好5.失谐△w=w (再加电压的频率)-w 0(回路谐振频率),当w 和w 0很相近时, ,ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比 6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±17. ,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值 通频带相对值 9.相位特性Q 越大,相位曲线在w 0处越陡峭10.能量关系电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。
回路总瞬时储能 回路一个周期的损耗 ,表示回路或线圈中的损耗。
就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。
11. 电源阻与负载电阻的影响Q L 三. 并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z )1(CL ωω-0100=-=C L X ωωLC 10=ωCR R L Q 001ωω==)(j 00)()(j 11ωψωωωωωe N Q =-+=Q702ωω=∆⋅21)(2=+=ξξN Q f f 0702=∆⋅Qf f 1207.0=∆ξωωωωψ arctan arctan 00-=⎪⎪⎭⎫⎝⎛-⋅-=Q ⎪⎭⎫ ⎝⎛-+≈C L R C L ωω1j ⎪⎭⎫ ⎝⎛-+=L C L CR ωω1j 1C ω1-+ –CV sLRI s C L 22222221cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2sm 02sm 21π2121π2CQV R V w R⋅=⋅⋅=ωQ CQV V CQ w w w R C L ⋅=⋅=+π2121π2212sm sm每周期耗能回路储能π2 =Q 所以RR R R Q LS 01++=反之w p=√[1/LC-(R/L)2]=1/√RC·√1-Q23.谐振时,回路谐振电阻R p= =Q p w p L=Q p/w p C4.品质因数(乘R p)5.当w<w p时,B>0导纳是感性;当w>w p时,B<0导纳是容性(看电纳)电感和电容支路的电流等于外加电流的Q倍,相位相反并联电阻减小品质因数下降通频带加宽,选择性变坏6.信号源阻和负载电阻的影响由此看出,考虑信号源阻及负载电阻后,品质因数下降,并联谐振回路的选择性变坏,通频带加宽。
高频小信号放大器实验报告一、实验目的1、理解高频小信号调谐放大器的电路组成和工作原理。
2、进一步理解高频小信号放大器和低频小信号放大器的不同。
3、掌握高频小信号放大器的调试方法。
4、掌握用示波器测试小信号谐振放大器的基本性能。
二、实验仪器双踪示波器、数字频率计、高频毫伏表、BT-3频率特性测试仪直流稳压电源、数字万用表、高频信号发生器。
三、实验原理1、高频小信号放大器高频小信号谐振放大器最典型的单元电路图如上,由LC但调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类状态负载回路调谐在输入信号频率f0上。
该放大电路能够对输入的高频小信号进行反向放大。
LC调谐回路的作用有两个:一是选频滤波,二是提供晶体管集电极所需的负载电阻,同时进行阻抗变换。
高频小信号的技术指标有:(1)中心频率f,指放大器的工作频率。
(2)增益放大器对有用信号的的放大能力。
(3)通频带指放大电路增益由最大值下降3dB时所对应的频带宽度(4)选择性指放大器对通频带之外干扰信号的衰减能力。
2、实验电路图3、实验电路分析(1)电路中各元件的作用(2)交流通路四、实验步骤及内容(一)静态工作点的测量1、K1、K2均置于1—2,K3、K4断开,用示波器和频率计在B点监测。
调整L1,使振荡器振荡;使振荡频率在4MHz左右。
2、用万用表测量直流工作点。
V BQ(V) V CQ (V) V EQ (V) I CQ (mA) 估算值仿真值实测值(二)观察单调谐回路放大器的输入、输出信号的波形,注意幅度和相位的变化关系。
(三)用示波器测量单调谐回路放大器的幅频特性曲线与增益,并计算通频带宽度。
记下输入信号幅度Vin(pp值)(可在输入开关处测量)。
保持输入信号幅度不变,逐点改变信号源频率,记录3B点输出电压幅度V out(pp值),在3.9—4.1MHz频率范围内,每隔200KHz做一次测量。
做V out—f曲线,并根据曲线计算电压增益K、通VO 频带BW。