共混改性5-填充与增强(7,8)
- 格式:pdf
- 大小:885.65 KB
- 文档页数:99
聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。
然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。
以下是聚丙烯改性的几种主要方法。
1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。
添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。
2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。
常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。
共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。
3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。
常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。
界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。
4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。
辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。
5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。
常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。
高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。
总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。
这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。
聚苯硫醚(PPS)具有机械强度高、耐高温、高阻燃、耐化学药品性能强等优点;具有硬而脆、结晶度高、难燃、热稳定性好、机械强度较高、电性能优良等优点。
聚苯硫醚PPS是工程塑料中耐热性最好的品种之一,一般大于260度,其流动性仅次于尼龙。
PPS 分子结构此外,它还具有成型收缩率小(约0.8%),防火性好,耐震动疲乏性好等优点。
PPS的发展成熟,全球产能达5万吨/年以上,其价格相对较低,相比于动辄数百元每公斤的其他特种工程塑料,性价比高,常作为结构性高分子材料使用,并应用于不同领域。
聚苯硫醚(PPS)与聚醚醚酮(PEEK),聚砜(PSF),聚酰亚胺(PI),聚芳酯(PAR),液晶聚合物(LCP)一起被称为6大特种工程塑料。
PPS的软化点为277~282℃,Tg为85~93℃。
PPS性能优良,尤其通过增强、改性、共混合金化及原位复合技术制成了用途广泛的各种复合材料。
PPS改性和应用实例根据结构不同,PPS分为交联型与直链型两种。
直链型有优良的韧性和延伸性;交联型在氧气存在的情况下能加热固化,超过200℃热处理时熔融指数急剧下降,利用该性能可将聚合终了的低黏度PPS通过热处理制造适合注塑、挤出任意黏度的聚合物。
但是,PPS具有耐冲击性能差、性脆的致命缺点。
未改性的PPS较脆、热变形温度低,影响其应用领域和范围。
为了进一步改善PPS的性能,扩大适用范围,须对其进行改性,改性方向主要有:•提高强度;•提高冲击性能;•提高润滑性;•改善电性能以及研制具有特殊性能的共混材料;•合金化新型材料。
研究表明,PPS添加无机填料后仍能与其他聚合物有良好的相容性,这为其合金化和复合改性创造了有利条件。
最早开发成功的是PPS与氟塑料共混合金,此后形成了合金系列。
PPS 合金化后拉伸强度、弯曲强度、抗冲击性能、耐热性能大幅提高,为进一步的挤出、吹塑成型工艺的实施提供了可能。
目前,全世界销售的PPS复合改性品种多达200余种,主要有玻纤GF增强、碳纤维CF增强、无机填料填充、GF和填料共同填充增强等共混改性。
1.聚合物共混:共混改性包括物理共混、化学共混和物理/化学共混三大类型。
其中,物理共混就是通常意义上的“混合”。
如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。
2.分布混合,又称分配混合。
是混合体系在应变作用下置换流动单元位置而实现的。
3.分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。
分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。
4.总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。
5.分散度则是指分散相颗粒的破碎程度。
对于总体均匀性,则采用数理统计的方法进行定量表征。
分散度则以分散相平均粒径来表征。
6.分散相的平衡粒径:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。
即“平衡粒径”。
7.高分子合金:(塑料合金)指含多种组分的聚合物均相或多相体系,常具有较高的力学性能,作工程塑料。
8.熔融共混:将聚合物组分加热到熔融状态后进行共混(应用广泛)。
采用的设备-----密炼机、开炼机、挤出机等。
本方法最具有工业价值。
9.溶液共混:将聚合物组分溶于溶剂后,进行共混。
本方法主要用于基础研究领域10.乳液共混:将不同聚合物乳液共混方法。
本法可用于橡胶共混改性中;以乳液应用的产品可乳液共混改性等。
11.分散度:反映分散相物料的破碎程度;(分散相的平均粒径和分布表征)12.均一性:反映分散相分散的均匀程度(分散相浓度起伏大小,用统计法)13.相界面:连续相与分散相之间的交界面。
(界面结合好坏对共混物性能有重大影响)14. 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。
名词解释1、聚合物共混与聚合物共混物——聚合物共混是指两种或两种以上均聚物或共聚物的经混合制成宏观均匀的材料的过程。
聚合物共混物是指两种或两种以上均聚物或共聚物的经混合制成宏观上均匀的高分子聚合物的混合物。
2、相容性与混溶性——相容性是指满足热力学相容条件,在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系。
即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。
混溶性,是指共混物各组分之间彼此相互容纳的能力。
表示了共混组分在共混中相互扩散的分散能力和稳定状态,是指非相容聚合物共混物中各成分物质的界面结合能力。
3、NG机理和SD机理——处于介稳定的体系,相分离不能自发进行,需要成核作用,包含核的形成和核的增长两个阶段,这样的相分离过程机理称为成核-增长分离过程机理即NG机理。
处于不稳定的体系,在相分离过程中,物质向浓度较大的方向扩散,即反向扩散来完成的,称为旋节分离,即为SD机理。
4、分散相与相畴——在共混物中两个或多个相中只有一个连续相,此连续相为分散介质,称之为基体,其他分散于连续相中的相是分散相。
在复相聚合物体系中,每一相都以一定的聚集态存在,因为相之间的交错,所以连续性较小的相或不连续的相就被分成很多的微小区域,这种微小区域称为相畴。
5、银纹与银纹化、剪切与剪切带——玻璃态聚合物在应力作用下会产生发白现象,这种现象叫应力发白现象,亦称银纹现象,这种产生银纹的现象也叫银纹化。
聚合物中产生银纹的部位称为银纹体或简称银纹。
聚合物在一定的剪切应力作用下,可产生明显的局部的形变,这种形变称为剪切形变,由剪切形变所构成的形变区域称为剪切带。
6、应变软化与应变硬化——应变软化就是材料对应变的阻力随应变的增加而减小,是由于在较大应变时大分子链各物理交联点发生重新组合形成有利于形变发展的超分子结构的缘故。
当形变值很大时,这种大形变能导致大分子链的明显取向,造成应变硬化现象。
7、热塑性弹性体:在常温下显示橡胶状弹性、在高温下能够塑化成型的一类新型高分子材料,是一类介于橡胶和塑料之间的弹性体材料,如SBS,SIS等。
名词解释1.【聚合物共混】:是指两种或两种以上聚合物经过混合制成宏观均匀物质的过程,能增加体系的均匀性。
2.【高分子合金】:是指含多种组分的聚合物均相或多相体系,包括聚合物共混物和嵌段、接枝共聚物,一般为具有较高力学性能的工程塑料。
3.【复合材料】:是指由两个或两个以上独立的物理相组成的固体产物,其组成包括基体和增强材料两部分。
4.【杂化材料】:两种以上不同种类的有机、无机、金属材料,在原子、分子水平上杂化,产生具有新型原子、分子集合结构的物质,含有这种结构要素的物质为杂化材料。
5.【分布混合】:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的。
指分散相粒子不发生破碎,只改变分散相的空间分布、增加随机性的混合过程。
6.【分散混合】:是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。
7.【总体均匀性】:是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小,一般采用数理统计的方法进行定量表征。
8.【分散度】:是指分散相颗粒的破碎程度,一般以分散相平均粒径来表征。
9.【平衡粒径】:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。
即“平衡粒径”。
10.【相逆转】:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。
在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。
1简答题1.试述共混物形态结构形态的3种基本类型?并简述其特点。
答:主要分为(1)均相体系,共混物中只有一个连续相;(2)两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中;(3)两相体系,两相都为连续相,相互贯穿。
2.试述均相体系的判定方法?答:可以利用玻璃化转变温度(T g)作为判定标准。
如果两种聚合物共混后,形成的共混物具有单一的T g,则就可以认为该共混体系为均相体系;如果形成的共混物具有两个T g,则就可以认为该共混物为两相体系。
塑料共混改性工艺---涉及挤出机、螺杆元件排布塑料混合是一种有效的将多种组分的原料加工成更均匀、更实用的产品过程。
这一过程中主要发生的是物理反应,当然也存在少量的化学反应。
特殊的,例如反应挤出,我们所期望的更多是化学反应而非物理反应。
而无论是物理还是化学反应,都要求材料的充分混合辊炼,因此就有了共混设备这一有力的加工手段执行者。
先确认几个概念:1.预处理:我们通常说的预处理很多时候是指材料的水分预处理。
由于聚合物和添加剂都具有吸水性,而温度波动和仓库的潮湿都有可能是原材料吸湿,而这正是我们所不希望看到的。
熔融聚合物,如尼龙,聚酯等对水分极其敏感的材料,水分的存在将导致他们的降解,从而导致了各项性能指标的恶化甚至是导致加工失败。
目前比较实用的干燥方式多为热风循环干燥形式。
2.预混合:对于单螺杆而言,吃料能力很大程度上影响了混合效果,很多时候即使是单纯的颜色处理都会因为混合的不均匀而导致材料同批次的前后色差以及后期加工的颜色不均一性;而对于双螺杆,虽然吃料能力基本上不影响混合效果,而且为了计量精确,理论上是应该所有组分在喂料口单独计量、单独喂入。
但是这就意味着需要多个精确喂料器,而这对共混厂家而言是非常的不经济的,因此我们在加工双组分及多组分的材料前,大多都进行预混合。
目前的混合设备多为立式高速搅拌机。
3.分散混合:分散混合是将组分的粒度尺寸减小,将固体块或者聚集体破碎成微粒,或者是不相容的聚合物的分散相尺寸达到所要求的范围。
这一过程通常是依靠大厚度大角度的捏合盘来实现。
4.分配混合:分配混合是使个组分的空间分布达到均匀。
形象点说也就是“平均主义”,保证混合设备内通过分配元件的熔体中各组分的分布均匀。
这个通常是靠窄片小角度捏合盘来实现。
极端的情况先会采取齿轮分配元件来实现。
5.停留时间分布:同批次物料在通过喂料口后通过分散,分布混合最终挤出离开混合设备的时候长短的分布。
这一指标最主要的意义在于评估设备的自洁能力。
PPO的特点、改性方法与应用高分子09-1班姓名:管永学号:07摘要未经改性的聚苯醚(PPO) 树脂具有良好的力学性能、电性能、耐热性、阻燃性以及化学稳定性等,但是它的耐溶剂性差、制品容易发生应力开裂、缺口冲击强度低,另外它存在一个致命的弱点----熔体粘度高,加工成型性极差,纯PPO 树脂不能采用注射方法成型,这样大大限制了它的应用。
为了克服这些缺点,或赋予其新的性能,人们对PPO进行了多种改性。
本文主要介绍了PPO的改性方法:有物理(填充、共混、增强和微发泡等) 和化学(聚苯醚的端基改性、共聚、嵌段、接枝和网化等) 改性两种。
关键词:PPO改性;物理改性;化学改性;正文聚苯醚,别名聚2,6-二甲基-1,4-苯醚;聚亚苯基氧,英文名Poly-phenylene oxide 简称PPO。
它是一种耐较高温度的工程塑料。
聚苯醚及改性聚苯醚以其优良的性能和众多品种,很快发展成为当今世界五大工程塑料之一。
1 聚苯醚的优点和缺点优点[1](l) 物理机械性能聚苯醚分子链中含有大量的苯环结构,分子链刚性较强,机械强度高,具有较高的硬度和韧性;蠕变小,尺寸稳定性优良。
(2) 热性能聚苯醚具有较高的耐热性,玻璃化温度达211℃,熔点为268℃,热分解温度为330℃。
(3) 电性能聚苯醚分子结构中无强极性基团,在很宽的温度及频率范围内,能保持良好的电性能,其介电常数和介电损耗角正切在工程塑料中最小,且不受温度、湿度及频率的影响。
(4 )化学性能聚苯醚为非结晶树脂,分子结构中无可水解的基团,耐水性好,制品在高压蒸汽中反复使用其性能变化不大,但能溶于卤代脂肪烃和芳烃中。
缺点( 1) 极易流动,单纯树脂难以注射成型;( 2) 玻璃纤维增强及填充后制品表面粗糙,光泽度差;( 3) 成本高,与通用工程塑料相比价格高出两倍;( 4) 冲击强度差,制品发脆,熔接强度也不好;( 5) 由于PPS具有优异的耐化学药品性,所以其涂装性与着色性不理想。
我国聚甲醛生产和改性发展现状摘要:聚甲醛(POM),也称为聚甲醛,是五种通用塑料之一。
其年产量仅次于尼龙(PA)和聚碳酸酯(PC)。
POM的主要分子结构链为2CH2O)n-,没有侧链,具有高的结构规整性、高的碳氧键合能、高的相干能密度,是一种高度结晶流动的热塑性聚合物。
关键词:聚甲醛改性分子链聚甲醛在制造的技术上的表现相当突出,并且使用的范围也是相当的广阔的。
同时,聚甲醛对中国工艺品制造方面也有着一定的重要作用。
1聚甲醛用途1.1汽车行业聚甲醛在车辆制造业中的需求量很大。
采用聚甲醛所生产的汽车零件,有着降低润滑点、更加耐磨、方便维护、改善设备功能、增加制造质量、降低材料成本、节省铜材等的效果。
聚甲醛在汽油领域中,主要用于生产汽油泵、汽化器、汽车输油管、汽油驱动阀、汽车万向节轴承、汽油刹车外壳壳体、汽车车窗提升机、车辆安全带扣、汽车门把手、门锁座等。
而在重型发动机领域,聚甲醛则主要用来生产浮动块、压力传讯器外齿轮、钢板簧片减震外壳壳体、推力棒球座等。
1.2机械制造行业在机械生产中,POM可用于生产机床电机开关、通用润滑油导轨、研磨碗设计、圆柱形研磨机和液压套筒等。
农业机械:手动喷洒部件、与播种机的连接和联运部件、移动挤奶部件、排水和灌溉泵壳、进水阀座、接头和管道等。
此外,它还可用于气体载体、输送管道、浸在油脂中的机械部件和标准电阻板等的包装。
2我国聚甲醛产能现状在甲醇产能严重过剩的情况下,该国启动了大量聚甲醛项目,这大大促进了苯丙胺的消化和吸收。
目前,国内外使用的POM材料也主要来自英国富益国际工程有限公司和波兰ZAT有限公司。
3我国聚甲醛改性现状聚合物树脂改性技术包括物理改性(混合、填充、增强、微发泡)和化学改性(共聚、嵌段、接种、渗透网),聚甲醛也不例外。
然而,目前的改性技术仍然基于物理改性,相对困难、简单且易于实施。
目前,世界上生产的聚甲醛产品有四五百种,改性高级聚甲醛产品的市场使用率已达30%以上,而中国海外公司已开始缓慢专注于改性高级产品的生产。
P是一种常用的塑料原料,也是常用的改性原料之一,对其改性方法可分为填充改性、增强增韧改性、共混改性及功能性改性四种,以下为您详细介绍。
填充改性无机填料:云母、碳酸钙、滑石粉、硅灰石、炭黑、石膏、赤泥、立德粉、硫酸钡等;有机填料:木粉、稻壳粉、花生壳粉等。
:云母的增加量为40%以下,粒径在300 目以上;钛酸酯偶联剂用量为云母的30%左右;硅烷偶联剂用量较少,假设用丙烯酸表面办理剂时,用量可加大到5-10%。
云母的长径比越大,增强收效越好。
采用静态混杂器、销钉型混炼螺杆、双螺杆挤出机等有助于提高填充收效。
硅灰石的用量在30-40%,粒径采用300-325 目,填充后的复合资料拉伸强度降低、缺口冲击强度提高。
其他滑石粉、赤泥、重质碳酸钙等填充PP时,粘度增加较大。
随切变速率增加,粘度增大现象逐渐减弱,一般可用表面办理剂如聚乙烯蜡、脂肪酸盐等及采用双螺杆挤出机。
用有机填料木粉、玉米棒芯时,应选择长径比大于15 的为好,可改进韧性和负荷畸变度。
低填充时:滑石粉含量10-20%时, PP复合资料可取代ABS或高抗冲聚苯乙烯;高填充时:滑石粉含量高出30%,只主要用于热变形温度、模量等性能要求较高的制品。
不相同粒度碳酸钙在HDPE中的临界值碳酸钙粒径临界值 /%碳酸钙粒径临界值/%无增韧作用增韧收效 : 随粒径的减小增韧收效越来越好增强增韧改性增强资料:玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等,别的填料改性中的云母、滑石粉办理好时,也能作为增强资料用。
增韧配方设计本卷须知:1、弹性体与树脂的相容性要好塑料的极性大小为:纤维素塑料> PA> PF>EP>PVC>EVA>PS>PP/HDPE/LDPE/LLDPE;弹性体的极性大小为:丁晴胶>氯丁胶>丁苯胶>顺丁胶>天然胶>乙丙胶。
高极性树脂采用高极性弹性体,低极性树脂采用低极性弹性体。
2、相容剂:适合的相容剂,可提高两者的相容性。
常用的相容剂为树脂或增韧剂的马来酸酐或丙烯酸类接枝物。