三向应力状态的广义胡克定律
- 格式:ppt
- 大小:2.32 MB
- 文档页数:4
广义胡克定律公式推导
广义胡克定律是描述材料弹性行为的重要定律,其公式为 F - k·x 或 F - k·x,其中 F 是施加的外部力,k 是物体的劲度系数,x 是形变量。
在三维情况下,广义胡克定律是三个方程,可以将这三个方程的应力应变提出来写成矩阵形式。
首先,将三维情况下的广义胡克定律写成矢量形式,即 F = k·e,其中 e 是应变矢量,定义为形变前后物体的长度差。
接着,将矢量 F 与应变矢量 e 之间的关系表示为矩阵形式,即 F = k·E,其中 E 是胡克应变矩阵,定义为胡克应变矩阵胡克应变矩阵。
最后,将胡克应变矩阵表示成矢量胡克应变矩阵,即 E = [e_x e_y e_z],然后将其代入矩阵形式的广义胡克定律中,得到三维情况下的广义胡克定律矩阵形式为:
[F_x - k·e_x] = [0 0 0]
[F_y - k·e_y] = [0 0 0]
[F_z - k·e_z] = [0 0 0]
其中,F_x、F_y、F_z 分别表示外部力在 x、y、z 方向上的投影,e_x、e_y、e_z 分别表示对应的应变矢量。
可以看出,三维情况下的广义胡克定律矩阵形式正是反映了物体在三维空间中的弹性行为。
三向的胡克定律一、三向胡克定律的基础概念三向胡克定律,又称为三维胡克定律,是弹性力学的基本定律之一。
它描述了在三维空间中,物体的应力和应变之间的关系。
与传统的二维胡克定律相比,三向胡克定律考虑了更多的因素,包括剪切应力、旋转应力和三维空间的应变状态。
在三向胡克定律中,物体的应力和应变被表示为三维向量,这些向量不仅包括大小,还包括方向。
这使得三向胡克定律能够更准确地描述在复杂应力状态下的物体行为,如扭曲、弯曲和剪切等。
二、三向胡克定律的数学表达三向胡克定律的数学表达通常由三个方程构成:应力平衡方程、几何方程和物理方程。
这些方程一起描述了物体的应力、应变和变形之间的关系。
1.应力平衡方程:该方程描述了物体内部应力的平衡状态。
在三维空间中,这个方程是一个线性方程组,表示为:σij,j=0 (i=1,2,3)。
其中,σij表示应力张量分量,j表示偏量算子。
2.几何方程:这个方程描述了物体的应变和变形。
它通常表示为:εij=1/2(uij+uji),其中εij表示应变张量分量,uij表示位移梯度分量。
3.物理方程:这个方程将应力和应变联系起来,通常表示为:σij=λδij+2μεij。
其中,λ和μ是拉梅常数,δij是克罗内克符号,表示当i=j时值为1,否则为0。
三、三向胡克定律的应用三向胡克定律在许多工程领域中有广泛的应用,包括结构工程、航空航天工程和材料科学等。
以下是一些具体的应用实例:1.结构工程:在结构工程中,三向胡克定律被用于分析桥梁、建筑和其它大型结构的应力分布和变形。
这种分析可以帮助工程师预测结构的强度、刚度和稳定性,从而优化设计。
2.航空航天工程:在航空航天工程中,由于飞行器经常处于复杂的应力状态,因此三向胡克定律的应用尤为重要。
它被用于分析飞行器的结构强度、疲劳寿命和气动弹性等问题。
3.材料科学:在材料科学中,三向胡克定律用于研究材料的力学性能,如弹性模量、泊松比和剪切模量等。
这种研究有助于理解材料的微观结构和宏观力学行为之间的关系,为新材料的开发提供理论支持。
总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点航天航空学院1334班艾松学号:4113006012线性关系,这类问题称为几何非线性问题。
③物理非线性问题。
在这类问题中,材料内的变形和内力之间〔如应变和应力之间〕不满足线性关系,即材料不服从胡克定律。
在几何非线性问题和物理非线性问题中,叠加原理失效。
解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。
在许多工程构造中,杆件往往在复杂载荷的作用或复杂环境的影响下发生破坏。
例如,杆件在交变载荷作用下发生疲劳破坏,在高温恒载条件下因蠕变而破坏,或受高速动载荷的冲击而破坏等。
这些破坏是使机械和工程构造丧失工作能力的主要原因。
所以,材料力学还研究材料的疲劳性能、蠕变性能和冲击性能。
材料力学根本公式〔解决问题方法〕: 一、应力与强度条件 拉压:[]σσ≤=maxmax AN平衡微分方程〔1〕几何方程〔2〕物理方程〔3〕成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于构造力学,后来随着计算机的开展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个剪切:[]ττ≤=AQ max挤压:[]挤压挤压挤压σσ≤=AP圆轴扭转:[]ττ≤=W tTmax 平面弯曲: ①[]σσ≤=maxzmax W M②[]max t max t maxmax σσ≤=y I M z t max c max maxy I Mzc =σ[]cnax σ≤ ③[]ττ≤⋅=bI S Q z *max z max max斜弯曲:[]σσ≤+=maxyyz z max W M W M拉〔压〕弯组合:[]σσ≤+=maxmax zW MA N[]t max t z max t σσ≤+=y I M A N z []c max c z z max c σσ≤-=ANy I M 圆轴弯扭组合: ① 第三强度理论[]στσσ≤+=+=z2n2w2n 2w r34W M M(1)式中的σx 、σy 、σz 、τyz=τzy 、τxz=τzx 、τxy=τyx 为应力分量,X 、Y 、Z 为单位体积的体力在三个坐标方向的分量;(2)式中的u 、v 、w 为位移矢量的三个分量〔简称位移分量〕,εx 、εy 、εz 、γyz 、γxz 、γxy 为应变分量;(3)式中的E 和v 分别表示杨氏弹性模量和泊松比。
1.外力偶矩计算公式〔P功率,n转速〕2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式〔杆件横截面轴力F N,横截面面积A,拉应力为正〕4.轴向拉压杆斜截面上的正应力与切应力计算公式〔夹角a 从x轴正方向逆时针转至外法线的方位角为正〕5.纵向变形和横向变形〔拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1〕6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律〔切变模量G,切应变g 〕16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩〔a〕实心圆〔b〕空心圆18.圆轴改变时横截面上任一点切应力计算公式〔扭矩T,所求点到圆心间隔r〕19.圆截面周边各点处最大切应力计算公式20.改变截面系数,〔a〕实心圆〔b〕空心圆21.薄壁圆管〔壁厚δ≤ R0 /10 ,R0为圆管的平均半径〕改变切应力计算公式22.圆轴改变角与扭矩T、杆长l、改变刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同〔如阶梯轴〕时或24.等直圆轴强度条件25.塑性材料;脆性材料26.改变圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴外表某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式〔形心轴z c与平行轴z1的间隔为a,图形面积为A〕42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式〔为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度〕46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载结合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸〔压缩〕59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪实在用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.68.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的平安系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴改变 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M ztmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉〔压〕弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5〞与“6〞两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 改变 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L 〔m / 〕3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)根本变形表(注意:以下各公式均指绝对值,使用时要根据详细情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律〔1〕、表达形式之一〔用应力表示应变〕)(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=〔2〕、表达形式之二〔用应变表示应力〕)(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,,Gxyxy τγ=()zx yz xy ,,7、强度理论 〔1〕[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=〔2〕[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 〔1〕αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 〔2〕22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式〔假设把直杆分为三类〕①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ〞=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= 〔圆截面4di z =,矩形截面12min b i =〔b 为短边长度〕〕五、动载荷〔只给出冲击问题的有关公式〕 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 〔自由落体冲击〕st20d ∆=g v K 〔程度冲击〕六、截面几何性质1、 惯性矩〔以下只给出公式,不注明截面的形状〕⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。