第二制冷剂量热器法
- 格式:docx
- 大小:77.98 KB
- 文档页数:5
制冷压缩机性能实验一、实验目的1、了解压缩机性能测定的原理及方法;2、了解蒸气压缩式制冷的循环流程及各组成设备;3、测定蒸气压缩式制冷循环的性能;4、理解与认识回热循环;5、比较单级蒸气压缩制冷机在实际循环中有回热与无回热性能上的差异;6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。
二、实验原理1、单级蒸气压缩制冷机的理论循环图1显示了压力一比焓图上单级蒸气压缩制冷机的理论循环。
压缩机吸入的是以点1表示的饱和蒸气,1- 2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程2 2中制冷剂与环境介质有温差,放出过热热量,在冷凝过程2 3中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K下的饱和蒸气压力P K ; ( 3 3)是液态再冷却放出的热量;3 -4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4- 1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T o、饱和压力P o保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。
I .1 L I心"㈡二声已图1为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度) ,以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。
图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器一一回热器。
在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2' —3—3—4' —1 —1'中, 3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。
根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。
制冷系统综合试验台设计(量热器及总体设计)摘要该试验台的设计是为了研究在不同工况下各输入参数的变化对压缩机或制冷系统综合性能的影响大小;或在不同制冷剂工质下,检验制冷系统的性能,并提出针对性的改善措施,最终使系统的性能得到优化。
该试验台采用“第二制冷剂电量热器法”,其原理是制冷系统产生的冷量与电加热器产生的热量相交换,达到平衡时,通过测量电加热量而得出制冷量的一种间接实验方法。
校核实验方法采用水冷冷凝器量热法。
该试验台设置有数据自动采集系统,通过控制系统调节节流阀的开起度和冷凝器冷却水阀的开启度,达到在设定工况下采集记录各工况参数的目的。
本次设计的主要任务是对试验台的一个主要部件——量热器进行设计计算,并对该试验台进行总体布置。
通过热力计算,得出制冷量等性能指标。
再根据传热学和换热器设计等有关文献,计算出蒸发盘管的传热系数,从而得出所需蒸发盘管面积,并对其进行结构设计。
同时还根据量热器设计压力,计算出量热器的壁厚,并对其进行强度校核。
接下来,进行了制冷系统节流机构和附属设备的选型。
关键词:量热器,试验台,第二制冷剂,制冷系统DESIGN OF TEST BENCH FOR REFRIGERATION SYSTEM (DESIGN AND APLACATION OFCALORMETER AND WHOLE BENCH)ABSTRACTThe comprehensive experimental bench of refrigeration system was set up to investigate the impact on performance of compressor or refrigeration system with the change of input parameter on different operating mode; or to check the performance of refrigeration system and introduce the improved method to optimize the performance of the system.The experimental bench was designed following to the second refrigerant electro-calorimeter. The principle is that measuring the quantity of the electricity to get the refrigerating output when the exchange of the refrigerating output produced by the refrigeration system equaled with the heat quantity produced by the electric heater. The method of checking test is water-cooled condenser calorimeter method. This experimental bench was set up automatic date acquisition system. By means of control system to set the open level of the throttle and the condenser cooling water valve, we can collect every parameter of different work condition.The primary mission of this design is to calculate the calorimeter, which is one important part of the experimental. First, through heat calculation, we can get refrigerating output, then according to heat transfer and design of heat exchanger, we can get the coefficient of heat transmission. So we get the area of coil pipe and make design of it. Also, according to the design pressure, I calculate the wall thickness of the calorimeter and make strength checking. Followed it, I select the model number throttle flap and appurtenance.KEY WORDS:calorimeter,experimental bench,the second refrigerant,refrigeration system目录第一章前言 (1)第二章制冷系统的热力计算 (3)§2.1循环特征点的状态参数 (3)§2.2计算循环的各性能指标 (4)第三章量热器的结构设计与计算 (5)§3.1关于量热器 (5)§3.2蒸发盘管的计算与结构选取 (5)§3.2.1管外换热系数的计算 (5)§3.2.2管内换热系数的计算 (6)§3.2.3总传热系数的计算 (6)§3.2.4传热面积的计算 (7)§3.3蒸发盘管的面积校核 (7)§3.4蒸发盘管结构设计 (8)§3.5量热器壳体及封头设计计算 (9)§3.6支座的选择 (12)§3.7保温材料的选择 (12)§3.8漏热系数的计算 (13)第四章节流机构和辅助设备的选择 (16)§4.1节流机构 (16)§4.2辅助设备 (17)§4.2.1油分离器 (17)§4.2.2气液分离器 (18)§4.2.3干燥过滤器 (18)§4.2.4电磁阀 (18)§4.2.5水泵 (19)§4.2.6贮液器 (19)第五章实验台操作规程 (20)§5.1启动前的准备工作 (20)§5.2实验台启动程序 (20)§5.3实验台运转中检测项目 (21)§5.4停机操作程序 (21)第六章试验中相关计算及规定 (22)§6.1目的 (22)§6.2试验规定 (22)§6.3试验方法 (24)§6.3.1第二制冷剂量热器法 (24)§6.3.2水冷式冷凝器量热器法 (25)§6.4输入功率计算 (27)§6.4.1电动机输入功率 (27)§6.4.2压缩机输入功率计算 (27)§6.5压缩机单位功率制冷量K E值 (27)§6.6校核试验和主要试验之间的偏差 (28)第七章结论 (29)参考文献 (30)致谢 (32)第一章前言从二十世纪后半叶开始,随着制冷行业的发展,有关制冷系统的试验台作为各制冷系统部件的标准之一的检验与实现更是得到前所未有的高速发展,从手动到半自动,再到高精度全自动测试阶段,主要表现有模糊控制在制冷系统中的应用,计算机仿真技术在制冷系统研究与优化设计中的运用以及建模方法与仿真研究在复杂制冷系统中的运用。
压缩机检测方法和参数—压缩机性能测试一、前言制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。
它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。
压缩机的作用可总结为:1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。
2)提高压力(压缩)以创造在较高温度下冷凝的条件。
3) 输送制冷剂,使制冷剂完成制冷循环。
压缩机性能的好坏直接影响到整机的制冷效果。
而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。
对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。
压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。
本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。
以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。
二、压缩机测试的相关规定为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。
2.1 一般规定2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏.2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量.2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计).2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭压缩机为距机壳体)0.3m的直管段处。
2.1.5 排气管道上应设置有效的油分离器.2.1.6试验系统装置的周围不应有异常的空气流动。
压缩机性能测试一、前言制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。
它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。
压缩机的作用可总结为:1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。
2)提高压力(压缩)以创造在较高温度下冷凝的条件。
3)输送制冷剂,使制冷剂完成制冷循环。
压缩机性能的好坏直接影响到整机的制冷效果。
而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。
对压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷量是测试的重点。
压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。
本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。
以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。
二、压缩机测试的相关规定为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。
2.1一般规定2.1.1排除试验系统内的不凝性气体.确认没有制冷剂的泄漏.2.1.2系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量.2.1.3循环的制冷剂液体内含油量应不超过2%(以质量计).2.1.4压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭压缩机为距机壳体)0.3m的直管段处。
2.1.5排气管道上应设置有效的油分离器.2.1.6试验系统装置的周围不应有异常的空气流动。
制冷压缩机的性能试验及方法压缩机操作规程通过试验了解和谙习活塞式制冷压缩机在给定工况和不同工况下制冷量的变化及与各有关参数之间的关系,把握接受量热器法测定制冷压缩机性能的原理和方法,谙习数据采集方法及各有关仪表的作用。
量热器由电加热管及通过试验了解和谙习活塞式制冷压缩机在给定工况和不同工况下制冷量的变化及与各有关参数之间的关系,把握接受量热器法测定制冷压缩机性能的原理和方法,谙习数据采集方法及各有关仪表的作用。
量热器由电加热管及蒸发盘管构成。
蒸发盘管在量热器内上部,量热器下部存有确定数量的第二制冷剂(又称第二工质),电加热管被第二制冷剂浸没。
第二制冷剂是电机热管与制冷系统蒸发盘管之间进行热交换的媒介,它与制冷剂系统中循环的制冷剂无关。
当电加热器通电时第二制冷剂被加热蒸汽,形成的气体上升到量热器上部,在蒸发盘管表面冷凝器后重新落入量热器底部,蒸发盘管中的低温低压的制冷剂液体吸取第二制冷剂的热量而蒸发,因此,电热管产生的热量抵消制冷压缩机在移动工况下产生的冷量。
通过能量平衡来实现对制冷压缩机制冷本领的测试。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
制冷压缩机性能试验台工作条件,常温、常压下运行,电源电压AC220V制冷压缩机性能试验台试验目的1.谙习蒸汽压缩式制冷循环系统的基本结构和工作原理2.了解国际标准GB/T57732023容积式制冷压缩机性能使用方法3.利用蒸发器液体载冷剂循环法(主测法)求制冷压缩机制冷量4.利用水冷冷凝器热平衡法(辅测法)求制冷压缩机制冷量5.主、辅测制冷量相对误差的计算与分析6.制冷机组能效比的计算与分析1、功率表2只(精度0.5级)分别测量加热功率和压缩机功率。
制冷原理知识点总结制冷原理及设备期末复习有不全的大家相互补充题型:填空20分;选择10分;判断10分;简答45分(5道);计算1道,带计算器。
绪论实现人工制冷的方法(4大类,简单了解原理)1.利用物质的相变来吸热制冷;融化(固体一液体),气化(液体一气体),升华(固体一气体)气化制冷(蒸气制冷):包括蒸气压缩式制冷、吸收式制冷、蒸汽喷射式制冷、吸附式制冷。
2.利用气体膨胀产生低温气体等嫡膨胀时温度总是降低的,产生冷效应。
3.气体涡流制冷高压气体经涡流管膨胀后,可分为冷热两股气流;4.热电制冷(半导体制冷)利用半导体的温差电效应实现的制冷。
根据制冷温度的不同,制冷技术可大体上划分三大类:普通冷冻:120K【我们只考普冷】深度冷冻:120K20K低温和超低温:V20K。
t=(t,C;T,Kelvin常用制冷的方法有:液体气化制冷气体膨胀制冷涡流管制冷热电制冷开)T=273+t液体蒸发制冷循环必须具备以下四个基本过程:制冷剂液体在低压下汽化产生低压蒸气,将低压蒸气抽出并提高压力变成高压气,将高压气冷凝成高压液体,高压液体再降低压力回到初始的低压状态。
按照实现循环所采用的方式之不同,液体蒸发制冷有蒸气压缩式制冷蒸气吸收式制冷蒸气喷射式制冷吸附式制冷等蒸气压缩式制冷系统组成:1-压缩机2-冷凝器3-膨胀阀4-蒸发器组成的密闭系统。
工作原理:制冷剂在蒸发器中吸收被冷却对象的热量而蒸发,产生的低压蒸气被压缩机吸入,经压缩机压缩后制冷剂压力升高,压缩机排出的高压蒸气在冷凝器中被常温冷却介质冷却,凝结成高压液体。
高压液体经膨胀阀节流,变成低压、低温湿蒸气,进入蒸发器,低压液体在蒸发器中再次汽化蒸发。
如此周而复始。
蒸气吸收式制冷系统组成:发生器、吸收器、冷凝器、蒸发器、溶液热交换器、溶液泵、冷剂泵等工质对:制冷剂与吸收剂常用:氨一水溶液溴化锂一水溶液工作原理:I.澳化锂溶液在发生器中被热源加热沸腾,产生出制冷剂蒸汽在冷凝器被冷凝成冷剂水。
.第二制冷剂量热器法
本实验采用国标(GB5773-04)提出的对容积式制冷压缩机性能测试的主要试验方法──第二制冷剂量热法,对制冷压缩机的制冷量和输入功率进行测定。
根据标准,本试验方法适用于名义功率不小于0.75kW的容积式制冷压缩机的性能试验。
第二制冷剂量热器法是通过第二制冷剂量热器间接测定制冷量,是利用安置在第二制冷剂量热器内部的电加热管发出的热量来消耗蒸发器盘管所产生的制冷量。
本试验装置有二种制冷剂,其中第一制冷剂为R22,第二制冷剂为R11。
第二制冷剂
量热器是一个密闭的受压的隔热容器,安置在该量热器内的蒸发器盘管悬挂在容器的上部,电加热管安装在容器的底部并被容器内的第二制冷剂浸没。
第一制冷剂在制冷系统中循环,在第二制冷剂量热器的蒸发器盘管中蒸发制冷;输入第二制冷剂量热器的热量主要是电加热管供给(量热器的漏热量应不超过5%),量热器内的第二制冷剂被加热汽化,形成的第
二制冷剂蒸汽在顶部蒸发器盘管外表面冷凝,重新回到液面。
这样,制冷系统所产生的冷量被输入的热量通过第二制冷剂这中间介质间接消耗,当试验系统的热力状态趋于稳定,表明量热器内趋于动态热平衡。
当系统处于热平衡时,其热平衡方程式为:
Q0=N h+∆Q l
(W)
式中:Q0──发器盘管制冷量,W;
N h──加热功率,W;
△Q l──第二制冷剂量热器的热损失(外界传入为正),W。
图1全封闭式制冷压缩机性能试验装置系统图
a、全封闭式制冷压缩机
b、冷凝器
c、节流阀
d、蒸发器盘管
e、第二制冷剂量热器
f、电加热管
g、静压水箱
h、第二制冷剂压力表
i、电功率表
j、制冷压缩机吸气压力表
k、制冷压缩机排气压力表l、冷凝压力水量调节阀
⋅ 1 ⋅
1n
lg P
图 2 全封闭式制冷压缩机性能试验装置制冷系统循环图
当实际试验工况与规定的试验工况相一致,以及实际供电频率和规定电网频率一致时, 蒸发器盘管制冷量即为制冷压缩机的制冷量。
若实际的试验工况和规定工况有些差异,根 据制冷压缩机制冷量的定义,用以下的公式来求得全封闭式制冷压缩机在规定试验工况下 的制冷量。
Q p = (N h + ∆Q l ) ⋅
h 1n - h 5n h 1 - h 5 v
1n
f
1
v f (W )
式中:Q p ──制冷压缩机规定试验工况下的制冷量,W ;
h 1n ──规定试验工况下制冷压缩机吸入蒸汽的比焓,kJ/kg ; h 5n ──规定试验工况下节流阀前液态制冷剂的比焓,kJ/kg ; h 1 ──实际试验工况下制冷压缩机吸入蒸汽的比焓,kJ/kg ; h 5 ──实际试验工况下节流阀前液态制冷剂的比焓,kJ/kg ; v 1n ──规定试验工况下制冷压缩机吸入蒸汽的比容,m 3/kg ; v 1 ──实际试验工况下制冷压缩机吸入蒸汽的比容,m 3/kg ; f 1n ──规定试验工况下制冷压缩机供电频率,Hz ;
f 1 ──实际试验工况下制冷压缩机供电频率,Hz 。
2. 第二制冷剂量热器热损失的标定
将量热器与制冷系统的阀门全部关闭,接通电加热管电源,供给电能使第二制冷剂蒸 发并升压,调节供电量,使第二制冷剂压力稳定于某值,该值所对应的第二制冷剂的饱和 温度与环境温度之差不小于 15℃,此时维持供电量,其值波动应在±1%之内,并使第二制 冷剂压力相对应的饱和温度的波动不大于±0.5℃,读得电加热量 Q d 。
第二制冷剂量热器热损失系数由下式确定:
K F=Q d
t b-t a
(W/℃)
式中:K F──第二制冷剂量热器热损失系数,W/℃;
t b──第二制冷剂稳定压力所对应的饱和温度,℃;
∆Q l = K F ⨯ (t b - t a )
'
∆Q l = K F ⋅ (t k - t a )
t a ──环境温度,℃。
从而可利用 K F 值,求得试验条件下第二制冷剂量热器的热损失:
' '
(
W )
式中:t b’ ──实际试验条件下第二制冷剂稳定压力所对应的饱和温度,℃;
t a’ ──实际试验条件下环境温度,℃;
测定的第二制冷剂量热器的绝热效果应使散热量不超过被测压缩机制冷量的 5%。
3. 辅助测量方法──冷凝器热平衡法
冷凝器热平衡法作为辅助测量手段,其结果的求得不依赖于主要的测量手段,它是用 以判别主要测量手段所得结果的可信程度。
国标 GB5773-04 规定“第二制冷剂量热法”以 “冷凝器热平衡法”为辅助测量手段,两种方法的测量结果偏差在±4%以内,以主要测试装 置测得的制冷量为准。
通过测量冷凝器的制冷剂进出口状态参数、冷凝器冷却水进出口温度、冷却水流量, 利用冷凝器的热平衡关系,可求得在实际试验工况下系统中制冷剂的流量:
G 1 =
M s ⋅ C P ⋅ (t o - t i ) +
h 3 - h 4
∆Q l 1000 (k
g/s )
式中:G 1──系统中第一制冷剂的流量,kg/s ;
M s ──冷却水质量流量,kg/s ;
C p ──水的定压比热,C p =4.19,kJ/kg.℃; t o ──冷却水出口水温,℃;
t i ──冷却水进口水温,℃;
h 3 ──进冷凝器制冷剂蒸汽的比焓,kJ/kg ; h 4 ──出冷凝器制冷剂蒸汽的比焓,kJ/kg ; △Q l’ ──冷凝器的热损失(以向外界散热为正)
,W 。
'
'
(W )
式中:K F ’──冷凝器热损失系数,W/℃;
t k ──冷凝温度,℃; t a ──环境温度,℃。
冷凝器的热损失可按量热器热损失系数测定方法相同原理进行,并规定该热损失不 得大于制冷压缩机制冷量的 5%。
采用第二制冷剂量热法,可根据节流阀前的状态参数及离开第二制冷剂量热器的第
一制冷剂的状态参数,求得在该实际试验工况下系统内的实际制冷剂流量:
G1=N h+∆Q l
h1-h5
(k g/s)
三、试验的稳定条件
=。