第二章制冷剂与吸收剂
- 格式:ppt
- 大小:1.16 MB
- 文档页数:50
吸收式和蒸汽压缩式制冷剂工作原理
嘿,朋友们!今天咱来聊聊吸收式和蒸汽压缩式制冷剂的工作原理,这可超级有趣哦!
先说吸收式制冷剂吧,就好像是一个团队合作的过程!想象一下,有一
个大工厂,里面有各种“小伙伴”。
吸收剂就像是一位勤劳的大力士,把制冷剂这个“小调皮”给抓住。
比如说,在溴化锂吸收式制冷系统中,溴化锂就是那个大力士吸收剂呀,它把水这个制冷剂给紧紧抱住。
然后呢,通过一些外部能量的输入,比如加热,就把制冷剂给释放出来,让它去发挥制冷的作用啦!这不就像是在一场游戏中,大家各司其职,一起完成制冷这个大任务嘛!
哎呀呀,蒸汽压缩式制冷剂又不一样啦!这就好比是一场刺激的赛跑。
压缩机就像是一个爆发力超强的运动员,把制冷剂气体狠狠地压缩。
就像我们给自行车打气一样,气体会变得很热很热哦。
接着冷凝器这个“冷静大师”出场啦,它把热的制冷剂气体变成液体,让它冷静下来。
然后呢,膨胀阀这个“小机灵鬼”出现了,它让制冷剂液体通过,就像给运动员开了一道小门,让它们能快速通过。
最后,蒸发器这个“魔法屋”让制冷剂液体变成气体,在这个过程中吸收热量,实现制冷啦!你说妙不妙呀?
那到底哪种更好呢?这可没有绝对的答案哦!吸收式制冷剂比较适合在一些有特殊需求的地方,比如需要安静的场所。
而蒸汽压缩式制冷剂呢,则在很多常见的制冷设备中发挥着重要作用,像我们家里的空调呀。
它们各有各的特点和优势,就看我们怎么根据实际情况去选择啦!总之,这两种工作原理都超级神奇,不是吗?让我们一起为这些神奇的科技点赞吧!。
吸收式制冷原理与压缩式制冷原理制冷技术在现代生活中起到了至关重要的作用,无论是家庭、商业还是工业领域,都离不开制冷设备的应用。
在制冷技术中,吸收式制冷和压缩式制冷是两种常见的原理。
本文将详细介绍吸收式制冷原理和压缩式制冷原理的工作原理、优缺点和应用领域。
一、吸收式制冷原理吸收式制冷是一种基于热力学原理的制冷方法,其核心是利用热能来驱动制冷循环。
吸收式制冷系统由吸收器、发生器、冷凝器、蒸发器和溶液泵等组成。
1. 工作原理吸收式制冷系统的工作原理基于两种不同的流体之间的吸收作用。
一般情况下,吸收剂和制冷剂是两种不同的流体。
制冷剂在蒸发器中吸收热量,变成蒸汽状态,然后进入吸收器。
吸收器中的吸收剂将制冷剂吸收,并形成一种稳定的溶液。
溶液被泵送到发生器中,在高温下分离出制冷剂和吸收剂。
制冷剂进入冷凝器,释放热量并冷凝成液体状态,然后通过节流阀进入蒸发器,循环再次开始。
2. 优缺点吸收式制冷相较于压缩式制冷有一些独特的优点。
首先,吸收式制冷系统无需机械压缩和运转,因此噪音小、振动小,运行稳定可靠。
其次,吸收式制冷系统使用的制冷剂通常为无毒、无污染物质,对环境友好。
另外,吸收式制冷系统具有较大的制冷量,适用于一些大型的制冷设备。
然而,吸收式制冷系统也存在一些缺点。
首先,由于吸收剂和制冷剂的性质不同,需要较高的温度来实现吸收和分离,因此能源消耗较大。
其次,吸收式制冷系统体积较大,需要占用较多的空间。
3. 应用领域吸收式制冷系统多用于工业和商业领域,特别是一些对噪音和振动敏感的场所,如酒店、医院和实验室等。
此外,吸收式制冷系统还广泛应用于太阳能制冷系统,利用太阳能来驱动制冷循环,实现能源的可持续利用。
二、压缩式制冷原理压缩式制冷是一种常见的制冷方法,其核心是通过机械压缩和扩压来实现制冷效果。
压缩式制冷系统由压缩机、冷凝器、蒸发器和节流阀等组成。
1. 工作原理压缩式制冷系统的工作原理基于制冷剂的压缩和膨胀过程。
首先,制冷剂在蒸发器中吸收热量,变成蒸汽状态。
热能驱动制冷原理热能驱动制冷原理是一种新型制冷技术,其原理是通过转换热能来达到制冷的效果。
它有很多种方式和方法,本文将阐述其中一种基本的工作步骤。
第一步:制冷剂吸收热能热能驱动制冷装置最先需要完成的就是吸收热能。
制冷装置通过吸收低温环境中的热能,来使制冷剂从液态转变为气态。
这时,制冷剂会带着这些低温热能蒸发,同时其温度也会升高。
第二步:热能传递到吸收剂在这一步中,制冷装置需要将吸收到的热能传递到吸收剂中。
吸收剂是一种能够将蒸气吸收进来的物质,它的热容量较高。
因此,通过将热能传递给吸收剂,制冷剂的温度就能够降下来。
第三步:混合制冷剂和吸收剂在这一步中,制冷装置需要将制冷剂和吸收剂进行混合。
这样一来,吸收剂就会将制冷剂吸收进来,从而导致了吸收剂的温度和压力的升高。
而制冷剂则会从气态转变为液态,温度也随之下降。
第四步:制冷装置输出制冷效果在前三步骤中,制冷装置已经将低温热能转化为制冷效应,并且温度也随之下降。
这时,制冷装置需要输出制冷效果,降低环境温度。
为此,制冷装置会将吸收剂和混合液推入制冷机组中,制冷机组会将制冷剂的温度从低温传递给制冷单元,并将有害的废气排出。
总结热能驱动制冷技术是新型的制冷技术,它通过转换热能来达到制冷效果。
制冷装置通过吸收低温环境中的热能,来使制冷剂从液态转变为气态。
之后,制冷装置需要将吸收到的热能传递给吸收剂,混合制冷剂和吸收剂,并输出制冷效果。
这种制冷技术可以实现低碳无污染,是一种非常值得推广的技术。
第2章制冷剂和载冷剂制冷剂又称制冷工质,它是在制冷系统中完成制冷循环的工作介质。
制冷剂在蒸发器内气化吸收被冷却介质的热量而制冷,又在高温下把热量放给周围介质,重新成为液态制冷剂,不断进行制冷循环。
蒸气压缩式制冷装置是利用制冷剂的集态变化来达到制冷的目的,因此,制冷剂的性能直接影响制冷循环的技术经济指标。
2 . 1 制冷剂制冷剂的种类有几十种,但在工业上常用的不过10余种。
2 . 1 . 1 对制冷剂的要求1.对制冷剂的要求(1)用常温的水或空气做冷却介质时,制冷剂相应的冷凝压力不太高,以减少制冷装置的承受能力。
在工作温度范围内其相应的蒸发压力不低于大气压力,避免制冷系统的低压部分出现负压,防止空气渗入系统。
同时,冷凝压力和蒸发压力之比不要过大,以免压缩终了的温度过高、压缩机的容积效率过低。
(2)通常要求制冷剂的单位容积制冷量要大,这样可以缩小压缩机的尺寸。
(3)由于在临界温度以上,无论加多大的压力都不能使制冷剂液化,因此,制冷剂的临界温度要高,便于用常温的冷却介质进行冷凝。
凝固温度要低,以获得较低的蒸发温度。
便于用一般的冷却水或空气进行冷凝。
压缩终了温度不要太高,以免压缩机的润滑条件恶化。
(4)制冷剂的粘度和密度应尽可能小,以减少制冷剂在系统中的阻力。
(5)导热系数要大,可以提高热交换设备的传热系数,减少传热面积,使热交换器耗用的金属材料减少。
(6)对制冷装置所用的材料无腐蚀性,与润滑油不起化学作用;高温下不分解,热稳定性好。
(7)对人体无害,无燃烧和爆炸危险,使用安全。
(8)易于取得,价格便宜。
(9)对大气臭氧层没有破坏作用。
(10)对全球气候变暖影响程度小完全满足上述所有要求的制冷剂是很难寻觅的,各种制冷剂总是在某些方面有其长处,而在另一些方面又有其不足。
并且使用要求、运行条件和机器种类及容量不同,对于制冷剂性质要求的考虑侧重面也就不同,所以应该按照主要条件来选择相应的制冷剂。
目前所采用的制冷剂都存在一些缺点,因此在选用制冷剂时,应根据实际情况,主要条件符合即可选用。
技术资料空气调节用制冷技术习题绪论1. 什么是制冷?2. 人工制冷的方法都有哪些?空气调节领域最常用的两种制冷方法是什么?3. 什么液体汽化制冷?第一章 蒸气压缩制冷的热力学原理1. 蒸气压缩制冷循环系统主要由哪些部件组成,各有何作用?2. 在图示有液体过冷,又有回汽过热的制冷循环中,写出各热力设备名称、其中发生的热力过程及制冷剂在各热力设备前后所处的状态(温度、压力、物态)压缩机1234( )( )( )绝热压缩高温高压过热气体3. 制冷剂在蒸气压缩制冷循环中,热力状态是如何变化的?4. 试画出单级蒸气压缩式制冷理论循环的lg p -h 图,并说明图中各过程线的含义。
5. 已知R22的压力为0.1MPa ,温度为10℃。
求该状态下R22的比焓、比熵和比体积。
6.已知工质R134a参数值如下表所示,请查找lg p-h图填入未知项。
7.什么单位容积制冷能力、跨临界循环8.有一个单级蒸气压缩式制冷系统,高温热源温度为30℃,低温热源温度为-15℃,分别采用R22和R717为制冷剂,试求其工作时理论循环的性能指标。
9.单级蒸气压缩式制冷实际循环与理论循环有何区别?试说明针对这些区别应如何改善理论循环。
10.什么是回热循环?它对制冷循环有何影响?11.某空调用制冷系统,制冷剂为氨,所需制冷量为48kW,空调用冷水温度tc=10℃,冷却水温度tw=32℃,试进行制冷剂的热力计算。
计算中取蒸发器端部传热温差δt0=5 ℃,冷凝器端部传热温差δtk=8 ℃,节流前制冷剂液体过冷度δtsc=5 ℃,吸气管路有害过热度δtsh=5 ℃,压缩机容积效率ηv =0.8,指示效率ηi=0.8。
12.在同一T-S图上绘出理想循环(逆卡诺循环)与理论循环的循环过程,比较两种循环,指出理论循环有哪些损失(在图中用阴影面积表示)。
针对这些损失,说明如何改善蒸汽压缩制冷的理论循环。
13.活塞式压缩机,制冷量为1120kw,各状态点参数如下:h1=1780kJ/kg,ν1=0.25m3/kg,h2=1950kJ/kg,h4=650kJ/kg,计算q0、qk、qv、wc、Mr、φk、Pth、εth。
制冷与空调技术作业指导书第1章制冷与空调技术概述 (3)1.1 制冷技术发展简史 (3)1.2 空调技术发展简史 (4)1.3 制冷与空调技术的关系 (4)第2章制冷原理及制冷循环 (5)2.1 制冷原理 (5)2.2 制冷循环类型 (5)2.3 制冷剂的性质与选择 (5)第3章压缩式制冷系统 (6)3.1 压缩机 (6)3.1.1 压缩机的作用 (6)3.1.2 压缩机的类型 (6)3.1.3 压缩机的选型 (6)3.2 冷凝器与蒸发器 (6)3.2.1 冷凝器 (6)3.2.1.1 冷凝器的类型 (6)3.2.1.2 冷凝器的设计与选型 (6)3.2.2 蒸发器 (6)3.2.2.1 蒸发器的类型 (6)3.2.2.2 蒸发器的设计与选型 (7)3.3 节流装置 (7)3.3.1 节流装置的作用 (7)3.3.2 节流装置的类型 (7)3.3.3 节流装置的选型与安装 (7)第4章吸收式制冷系统 (7)4.1 吸收式制冷原理 (7)4.1.1 吸收式制冷基本概念 (7)4.1.2 吸收式制冷循环 (7)4.2 溶液的性质与选择 (7)4.2.1 溶液的性质 (7)4.2.2 溶液的选择 (7)4.3 吸收式制冷系统的设计与优化 (8)4.3.1 设计原则 (8)4.3.2 系统优化 (8)4.3.3 设计要点 (8)第5章空调系统概述 (8)5.1 空调系统的分类 (8)5.2 空调系统的组成 (9)5.3 空调系统的工作原理 (9)第6章空调系统的负荷计算与设备选型 (10)6.1 空调系统负荷计算 (10)6.1.2 负荷计算方法 (10)6.1.3 负荷计算步骤 (10)6.2 空调设备选型 (10)6.2.1 制冷设备选型 (10)6.2.2 制热设备选型 (10)6.2.3 送风设备选型 (10)6.3 空调系统设计要点 (11)6.3.1 合理布局空调系统 (11)6.3.2 选用合适的空调形式 (11)6.3.3 优化控制系统 (11)6.3.4 节能措施 (11)6.3.5 保证室内空气质量 (11)第7章空调系统的自动控制 (11)7.1 自动控制基础 (11)7.1.1 自动控制概念 (11)7.1.2 自动控制原理 (11)7.1.3 自动控制系统的组成 (11)7.2 空调系统常用传感器与执行器 (12)7.2.1 传感器 (12)7.2.2 执行器 (12)7.3 空调系统自动控制策略 (12)7.3.1 室内温度控制策略 (12)7.3.2 室内湿度控制策略 (12)7.3.3 能效优化控制策略 (13)第8章制冷与空调系统的能效评价 (13)8.1 能效评价标准与方法 (13)8.1.1 能效评价标准 (13)8.1.2 能效评价方法 (13)8.2 制冷系统能效优化 (14)8.2.1 选择高效制冷压缩机 (14)8.2.2 优化制冷循环系统 (14)8.2.3 改进冷凝器和蒸发器设计 (14)8.2.4 提高系统的自动化控制水平 (14)8.3 空调系统能效优化 (14)8.3.1 选择高效空调设备 (14)8.3.2 优化空调系统设计 (14)8.3.3 提高空调系统的自动化控制水平 (14)8.3.4 利用可再生能源 (14)第9章制冷与空调系统的安装与调试 (14)9.1 制冷与空调系统的安装 (14)9.1.1 安装前的准备工作 (15)9.1.2 设备安装 (15)9.1.3 管道安装 (15)9.2 制冷与空调系统的调试 (15)9.2.1 调试前的准备工作 (15)9.2.2 制冷与空调系统调试 (16)9.3 制冷与空调系统的维护与保养 (16)9.3.1 定期检查 (16)9.3.2 定期保养 (16)9.3.3 应急处理 (16)第10章制冷与空调新技术与发展趋势 (16)10.1 制冷新技术 (16)10.1.1 环保制冷剂研究与应用 (16)10.1.2 热泵技术 (17)10.1.3 磁制冷技术 (17)10.1.4 太阳能制冷技术 (17)10.2 空调新技术 (17)10.2.1 变频空调技术 (17)10.2.2 热泵空调技术 (17)10.2.3 空气源热泵技术 (17)10.2.4 新型空调系统 (17)10.3 制冷与空调技术的发展趋势与展望 (17)10.3.1 制冷与空调技术的节能与环保 (17)10.3.2 智能化与网络化 (17)10.3.3 制冷与空调系统的集成与优化 (18)10.3.4 新型制冷与空调技术的研究与应用 (18)第1章制冷与空调技术概述1.1 制冷技术发展简史制冷技术是人类在摸索和利用自然规律的过程中逐渐发展起来的。
一、制冷技术1、吸收式制冷吸收式制冷是利用某些具有特殊性质的工质对,通过一种物质对另一种物质的吸收和释放,产生物质的状态变化,从而伴随吸热和放热过程。
吸收式制冷的原理:常用的工质对有氨水和水/溴化锂。
吸收制冷的基本原理一般分为以下五个步骤:(1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度的溶液,并使溶液中的大部分低沸点制冷剂蒸发出来。
(2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体,再经节流器降压到蒸发压力。
(3)制冷剂经节流进入蒸发器中,吸收被冷却系统中的热量而激化成蒸发压力下的制冷剂蒸气。
(4)在发生器A中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。
(5)吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。
在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。
吸收式制冷机利用溶液在一定条件下能析出低沸点组分的蒸气,在另一条件下又能强烈地吸收低沸点组分蒸气这一特性完成制冷循环。
目前吸收式制冷机中多采用二元溶液作为工质,习惯上称低沸点组分为制冷剂,高沸点组分为吸收剂,二者组成工质对。
原理图:吸收式制冷的特点:吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
整套装置除了泵和阀件外,绝大部分是换热器,运转安静,振动小;同时,制冷机在真空状态下运行,结构简单,安全可靠,安装方便。
在当前能源紧缺,电力供应紧张,环境问题日益严峻的形势下,吸收式制冷技术以其特有的优势已经受到广泛的关注。
(1) 无原动力,直接使用热原理,因此机器坚固亦无震动,少噪音,能安装于任何地点,从地室一直到屋顶均可。
太阳能吸收式制冷的工作原理太阳能吸收式制冷是一种利用太阳能进行制冷的技术,它利用太阳能热能将低温反射器中的制冷剂加热至高温并蒸发,然后利用吸收剂将蒸发的制冷剂吸收,再通过解吸器将制冷剂释放并通过冷凝器将其冷却成液体,最终再次循环使用。
以下将详细介绍太阳能吸收式制冷的工作原理。
首先,太阳能吸收式制冷系统需要一个太阳能收集器来收集太阳能。
太阳能收集器主要由太阳能反射器和吸收器组成。
反射器用于捕捉太阳能并将其聚焦在吸收器上。
通过这样的方式,太阳能可以被有效地利用。
在吸收器内部,装有制冷剂。
制冷剂通常是氨或者水。
当太阳能被聚焦在吸收器上时,制冷剂被加热至高温并蒸发。
这一过程使得制冷剂由液态变为气态,同时吸收了大量的热量。
随后,蒸发的制冷剂通过管道输送至吸收器中。
在吸收器中,制冷剂与吸收剂发生化学反应。
吸收剂通常是水和氨水混合物。
这种混合物具有很强的吸收能力,可以将蒸发的制冷剂吸收,并形成溶液。
接下来,溶液经过管道输送至解吸器中。
在解吸器中,通过加热,能够将吸收剂从溶液中解吸出来,重新变为气态。
解吸过程产生的热量可以作为制冷系统的附加能源,提高系统的效率。
解吸后的吸收剂被循环回到吸收器中,继续进行吸收的过程。
而制冷剂则经过解吸器被输送至冷凝器中。
在冷凝器中,制冷剂被冷却成液体状态。
这一过程需要通过散热器来散发掉热量,使得制冷剂冷却下来。
经过冷凝器冷却后的液态制冷剂被输送至蒸发器中。
在蒸发器中,制冷剂通过蒸发来吸收空调箱内部的热量,从而使得空调箱内部降温。
整个循环过程完成后,制冷剂再次被输送至太阳能收集器处,重复进行加热、蒸发、吸收、解吸和冷凝的循环。
这样就实现了通过太阳能来进行制冷的过程。
太阳能吸收式制冷系统的工作原理具有一定的优点。
首先,它能够利用太阳能作为能源,减少对传统能源的依赖,具有环保的特点。
其次,由于太阳能具有广泛分布的特点,因此太阳能吸收式制冷系统具有较好的适用性。
另外,通过合理设计吸收剂和制冷剂的配比,可以提高系统的制冷效率,使得制冷系统更加节能。