新人教版初二数学上册整式的乘除试题
- 格式:doc
- 大小:124.50 KB
- 文档页数:4
整式的乘法与因式分解测试题一、选择题(20分)1、下列多项式中,可以提取公因式的是( )A 、22y x -B 、x x +2C 、y x -2D 、222y xy x ++ 2、化简33)(x x -⋅的结果是( )A 、6x -B 、6xC 、5xD 、5x -3、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---4、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+5、下列多项式中,没有公因式的是( )A 、()y x a +和(x +y )B 、()b a +32和()b x +-C 、()y x b -3和 ()y x -2D 、()b a 33-和()a b -66、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±247、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 8、已知a 、b 是△ABC 的的两边,且a 2+b 2=2ab ,则△ABC 的形状是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、不确定9、下面是某同学的作业题: ○13a+2b=5ab ○24m 3n-5mn 3=-m 3n ○35236)2(3x x x -=-⋅ ○44a 3b ÷(-2a 2b)=-2a ○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、410、()()1333--⋅+-m m 的值是( )A 、1B 、-1C 、0D 、()13+-m二、填空题(30分)11、计算:(-x 3y )2= (x 2)3÷x 5=12、分解因式: x 2+y 2-2xy=13、计算:(-8)2004 (-0.125)2003= ,22005-22004= .14、若A =3x -2,B =1-2x ,C =-5x ,则A ·B +A ·C = .15、x n =5,y n =3,则(xy)2n = 若2x =m ,2y =n ,则8x+y = .16、已知x +y =1,那么221122x xy y ++的值为_______. 17、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是18、若0a >且2x a =,3y a =,则x y a-的值为______ 19.计算:2(2)a a -÷= .(-2a)·(14a 3)=______ 20、化简(200920083)31∙- =三、计算(15分)21、(2m-3)(2m+5) 22、20052-2006×200423、4(x+1)2-(2x+5)(2x-5)24、()()()()232233574x xy xy xy y y x -⋅--⋅-+- 25、()()()737355322+---a a a四、分解因式(20分)26、(m+1)(m-1)-(1-m) 27、2241y x +-28、6xy 2-9x 2y-y 3 29、(2a-b)2+8ab30、2222c b ab a -+- 31、x a a x 2222---32、342+-x x 33、24822--x x34、y xy y x 3652-+ 35、1002924+-x x五、解答下列问题36、已知,8=+n m ,15=mn 求22n mn m +-的值37、先化简,再求值: 其中;;38、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.39、先化简,再求值: 其中: ;40、阅读:分解因式x 2+2x-3解:原式=x 2+2x+1-1-3=(x 2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法。
2016-2017学年度第一学期八年级数学期末复习专题整式乘除与因式分解姓名:_______________班级:_______________得分:_______________一选择题:1.若8×2x=5y+6,那么当y=﹣6时,x应等于()A.﹣4B.﹣3C.0D.42.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b33.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b24.计算(x-1)(-x-1)的结果是()A.﹣x2+1B.x2﹣1C.﹣x2﹣1D.x2+15.若a+b=5,ab=-24,则a2 +b2 的值等于( )A.73B.49C.43D.236.多项式的公因式是()A. B. C. D.7.下列多项式能用平方差公式因式分解的是( )A. B. C. D.8.若m-n=-1,则(m-n)2-2m+2n的值是( )A.3B.2C.1D.-19.若9a2+24ab+k是一个完全平方式,则k=()A.2b2B.4b2C.8b2D.16b210.一个正方形的边长增加,面积相应增加,则这个正方形的边长为()A.6B.5C.8D.711.计算1982等于()A.39998;B.39996;C.39204;D.39206;12.若,,则的值是()(A)9 (B)10 (C)2(D)113.把多项式分解因式结果正确的是()A. B. C. D.14.下列各式从左到右的变形属于分解因式的是()A. B.C. D.15.已知x-y=3,x-z=,则(y-z) 2+5(y-z)+的值等于()A.;B.;C.;D.0;16.观察下列各式:①abx-adx;②2x2y+6xy2;③8m3-4m2+2m+1;④a3+a2b+ab2-b3;⑤(p+q)x2y-5x2(p+q)+6(p+q)2;⑥a2(x+y)(x-y)-4b(y+x).其中可以用提公因式法因式分解的是( )A.①②⑤B.②④⑤C.②④⑥D.①②⑤⑥17.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1B.2C.3D.418.若x2﹣x+1=0,则等于()A. B. C. D.19.如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于( )A.9B.27C.54D.8120.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二填空题:21.已知2x+3y﹣4=0,则9x•27y的值为.22.[(-x)2] n·[-(x3)n]=______.23.若b为常数,且是完全平方式,那么b= .24.若x2+2(m﹣3)x+16是完全平方式,则m= .25.已知a+b=7,ab=13,那么a2-ab+b2=_______.26.若三项式4a2-2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式.27.多项式kx2-9xy-10y2可分解因式得(mx+2y)(3x-5y),则k=________,m=________.28.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三简答题:29.已知3m=2,3n=5.(1)求3m+n的值;(2)32m﹣n的值.30.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.31.你能化简(a-1)(a99+a98+a97+……+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a-1)(a+1)= ;(a-1)(a2+a+1)= ;(a-1)(a3+a2+a+1)= ;……由此猜想(a-1) (a99+a98+a97+……+a2+a+1)= .(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+……+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?32.数学课上老师出了一道题,计算:.小明看后说:“太繁琐了,我是做不出来”;小亮思考后说:“若设=x,先运用整体思想将原式代换,再进行整式的运算,就简单了”.小明采用小亮的思路,很快就计算出了结果,请你根据小亮思路完成计算.33.在形如的式子中,我们已经研究过已知a和b,求N,这种运算就是乘方运算.现在我们研究另一种情况:已知a和N,求b,我们把这种运算叫做对数运算.定义:如果(a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作.例如:因为23=8,所以;因为,所以.(1)根据定义计算: ①=______;②=_____;③=______;④如果,那么x=_______.(2)设则(a >0,a ≠1,M 、N 均为正数),因为,所以所以,即.这是对数运算的重要性质之一,进一步,我们还可以得出:= _.(其中M 1、M 2、M 3、……、M n 均为正数,a >0,a ≠1)(a >0,a ≠1,M 、N 均为正数).(3)结合上面的知识你能求出的值吗?四计算题:34.(x﹣2y+4)(x﹣2y﹣4)35.(﹣3a)3﹣(﹣a)•(﹣3a)2.36.4ab[2a2﹣3b(ab﹣ab2)]37.(x﹣1)(x+2)﹣3x(x+3)38.(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)39.参考答案1、B2、B3、C4、A5、A6、D7、D8、A9、D 10、B 11、C 12、B 13、D 14、B 15、D;16、D.17、C 18、C 19、B 20、A 21、81 .22、; 23、, 24、﹣1或7 .25、10 26、答案不唯一,如-3a2或-2a或6a或; 27、9 3 28、(n+3)2=3(2n+3)29、【解答】解:(1)∵3m=2,3n=5,∴3m+n=3m•3n=2×5=10;(2)∵3m=2,3n=5,∴32m﹣n=(3m)2÷3n=22÷5=.30【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.31、(1),………。
整式的乘除与因式分解一、填空(每 2 分,共 32 分)1.-x2·(-x)3·(-x)2=__________ .2.分解因式: 4mx+6my=_________.3.( a 5 ) 4 ? (a2 ) 3___ ____ .4.(1 2010199=__________ .)_________; 4× 0.2535.用科学数法表示-0.0000308 = ___________.221,③226.①a-4a+4,②a+a+4a-a+ 1,?④4a +4a+1,?以上各式中属于完全平方式44的有 ______(填序号).7.( 4 2-2)÷(- 2) =________.a b b a8.若x+y= 8,x2y2= 4,x2+y2= _________.9.算: 832+83×34+172=________.10.(12a 2m 1b m 320a m 1b2 m 4+4a m 1b m 2 )4a m b m 1.11.已知x2y 212, x y2,则x.y12.代数式 42+ 3+ 9 是完全平方式,=___________.x mx m13.若a 2 b22b 1 0 ,a, b=.14.已知正方形的面是9x 26xy y 2(x>0,y>0),利用分解因式,写出表示正方形的的代数式.15.察下列算式:32—12= 8, 52—32=16, 72—52= 24,92—72= 32,⋯,将你的律用式子表示出来:____________________________ .16.已知x1 3 ,那么 x41_______.x x4二、解答(共68 分)17.( 12 分)算:( 1)(- 3xy2)3·(1x3y)2;6(2) 4a2x2·(-2a4x3y3)÷(-1a5xy2);521(3)22)(2 x y) ;( 4)x2( x 2)( x 2)-( x 1 2(2x y)(4 x y) .x18.( 12 分)因式分解:(1)3x 12x3;( 2)2a( x21) 22ax2;(3)x2y 2 1 2xy ;(4)(a b)(3a b) 2(a 3b)2 (b a) .19.( 4 分)解方程:( x 3)( 2x 5) (2 x 1)( x 8)41 .20.( 4 分)长方形纸片的长是15 ㎝,长宽上各剪去两个宽为 3 ㎝的长条,剩下的面积是原面积的3.求原面积.5221.( 4 分)已知x2+ x-1=0,求 x3+2x2+3的值.22.( 4 分)已知a b2, ab 2 ,求1a3b a2b21ab 3的值.2223.( 4 分)给出三个多项式:1 x2x 1,1x23x 1,1x2x,请你选择掿其中两222个进行加减运算,并把结果因式分解.24.( 4 分)已知a2b22a 4b 5 0 ,求 2a24b 3 的值.25.( 4 分)若(x 2++)(x2- 2x- 3)展开后不含x2,x3项,求p、q的值.px q26.( 4 分)已知a、b、c是△ABC的三边的长,且满足a22b 2 c 22b(a c)0 ,试判断此三角形的形状.3答案一、填空题1.x72 .2m(2 x 3 y) 3 .a26 4 .10,165. 3.08 10 56.①②④ 7.b2a98.12 9 .10000 10.3a m 1b25ab m 3ab11 .2 12. 4 13.a2, b114 .3x y 15.(2n 1)2(2 n1)28n16.65二、解答题17.( 1 )-3x9y8;(2)16ax4y;(3)16x48x2 y2y4;(4)( x1)218 .( 1 )45x3x(12x)(12x) ;(2) 2a( x2x1)(x2x1) ;(3) (x y1)(x y1) ;(4)8( a2221 .4 22.4 23 .略 24 .7 25 .p2, q7b) (a b) 19.3 20.180cm26.等边三角形4。
分类练习题及答案【练习1】 已知yx yx 11,200080,200025+==则等于 . 【练习2】 满足3002003)1(>-x 的x 的最小正整数为 .【练习3】 化简)2(2)2(2234++-n n n 得 . 【练习4】 计算220032003])5[()04.0(-⨯得 .【练习5】 4)(z y x ++的乘积展开式中数字系数的和是 .【练习6】若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式;求a ;b ;c . 【练习7】若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-15【练习8】 若=-+-=-+=++z y x z y x z y x 则,473,6452 .【练习9】 如果代数式2,635-=-++x cx bx ax 当时的值是7;那么当2=x 时;该代数式的值是 .【练习10】 多项式12+-x x 的最小值是 .分类练习题及答案【练习1】下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma【练习2】-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy【练习3】把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b) B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)【练习4】把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)【练习5】下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)【练习6】观察下列各式①2a+b和a+b;②5m(a-b)和-a+b;③3(a+b)和-a -b;④x2-y2和x2和y2。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x ﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc ﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
一、选择题1.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 2.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 3.下列运算正确的是( ) A .()23636a = B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅=4.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭5.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4C .﹣6D .6 6.若3a b +=,1ab =,则()2a b -的值为( )A .4B .5C .6D .77.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x --D .()()111n x x x -+- 8.已3,2x y a a ==,那么23x y a +=( ) A .10 B .15C .72D .与x ,y 有关 9.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 10.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+111.若y 2+4y +4+1x y +-=0,则xy 的值为( )A .﹣6B .﹣2C .2D .612.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 二、填空题13.已知18m x =,16n x =,则2m n x +的值为________. 14.因式分解269x y xy y -+-=______.15.已知10的整数部分是a .小数部分是b ,则2a b -=______.16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.18.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对22)放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)19.已知,a b 满足1,2a b ab -==,则a b +=____________20.分解因式:2a 2﹣8=______.三、解答题21.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③ 任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.22.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.23.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -824.化简:2(3)3(2)m n m m n +-+.25.先化简,再求值:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a ,其中a =12. 26.已知29a =,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于本身的数,求a b c d +--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 2.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.3.B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.4.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.5.A解析:A【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24,∴6(x-y )=24,∴x-y=4,∴y-x=-4,故选:A .【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.6.B解析:B【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果.【详解】∵3a b +=,∴22()3a b +=,即2229a ab b ++=,将1ab =代入上式得:229217a b +=-⨯=.∵222()2a b a b ab -=+-,∴2()725a b -=-=.故选:B .【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键. 7.D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 8.C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 9.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.10.C解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n n n n a b a b +++=+ ,故答案正确;C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.11.A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 12.D解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.二、填空题13.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘 解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18mx =,16n x =求值即可. 【详解】 解:()2222111684m n m n m n x x x xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】 此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.14.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.15.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 18.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.19.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 20.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.22.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.24.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.25.a ﹣12,0 【分析】先根据完全平方公式和多项式乘以多项式算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a=[4a 2﹣4a+1﹣4a 2+1+2a 2+4a ﹣a ﹣2]÷2a=[2a 2﹣a]÷2a=a ﹣12, 当a =12时,原式=0. 【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.26.a+b-c-|d|的值为1或-5.【分析】先确定a ,b ,c ,d 的值,分类代入代数式计算即可.【详解】∵a 2=9 ∴a =±3,∵b 是最大的负整数 ,∴b=-1,∵c 是绝对值最小的数,∴c=0,∵d的倒数是他本身,∴d=±1,|d|=1,①当a=3,b=-1,c=0,|d|=1,原式=3+(-1)-0-1=1,②当a=-3,b=-1,c=0,|d|=1,原式=-3+(-1)-0-1=-5,综上a+b-c-|d|的值为1或-5.【点睛】本题考查代数式求值问题,掌握代数式求值的方法,关键是根据条件确定a,b,c,d的值是解题关键.。
人教版八年级上册数学整式的乘法与因式分解检测题(Word版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.在矩形ABCD中,AD=3,AB=2,现将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D【解析】【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=-故选D.【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.4.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).5.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.6.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.7.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.9.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.10.下列因式分解正确的是( )A .()()2444x x x -=+-B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.12.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.13.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.14.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.15.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】 本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.16.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.17.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.19.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b ) 2 =7 2 =49,∴a 2 -ab+b 2 =(a+b ) 2 -3ab=49-39=10,故答案为10.20.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.。
整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。
一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .72.下列各式由左边到右边的变形中,是分解因式的为( ) A .2105525x x x x x -=⋅- B .()a x y ax ay +=+C .()22442x x x -+=- D .()()2163443x x x x x -+=-++3.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅=4.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .125.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .9 6.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4 C .﹣6 D .6 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-38.下列计算中能用平方差公式的是( ). A .()()a b a b -+- B .1133x y y x ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+9.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.7510.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .511.下列运算中,正确的是( ) A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题13.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.14.分解因式:32m n m -=________. 15.因式分解269x y xy y -+-=______.16.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.17.若294x kx ++是一个完全平方式,则k 的值为_____. 18.已知正实数a ,满足17a a-=,则1a a +=________.19.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____ 20.分解因式:2a 2﹣8=______.三、解答题21.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-①22()(94)x y a b =-+② 2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.22.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8, 解:原式=a 2+6a +8+1-1=a 2+6a +9-1 =(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2) ②M =a 2-2a -1,利用配方法求M 的最小值. 解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2. 请根据上述材料解决下列问题: (1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值.23.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式); (2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题: ①10.39.7⨯②(2)(2)m n p m n p +--+ 25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.26.阅读材料:把形2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b abab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果. 【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答. 【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式; B 、()a x y ax ay +=+,不是分解因式; C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式;故选:C . 【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.3.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.4.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.5.C解析:C 【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3, ∴3x 2−4x +6=3, ∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C . 【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.6.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.7.C解析:C 【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可. 【详解】∵2a =1,b 是2的相反数, ∴1a =±,b=-2, 当a=1时,a+b=1-2=-1, 当a=-1时,a+b=-1-2=-3, 故选:C . 【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键.8.B解析:B 【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可.【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式. 故选:B . 【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.9.D解析:D 【分析】 先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭=20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯ =34-, 故选:D . 【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.10.A解析:A 【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解 【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么: 第1次输出的结果是5 第2次输出的结果是16 第3次输出的结果是8 第4次输出的结果是4 第5次输出的结果是2 第6次输出的结果是1 第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等 故选:A 【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律11.C解析:C 【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可. 【详解】 解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意. 故选:C . 【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.12.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1, ∴x y 的立方根为﹣1, 故选:B . 【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5 【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可. 【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6 ∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6, ∴m=-5或5或1或-1, ∴m 的最大值为5, 故答案为:5. 【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.14.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键 解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可. 【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+. 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2 【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.16.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值.【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=,∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.17.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 18.【分析】根据应用完全平方公式求出的值即可求出的值【详解】解:=9=9+2=11故答案为:【点睛】本题考查完全平方公式的应用需要对已知式子平方灵活运用完全平方公式是解决本题的关键解析:11 【分析】 根据17a a -=,应用完全平方公式,求出221a a+的值,即可求出1a a +的值. 【详解】 解:17a a -=,217a a ⎛⎫∴-= ⎪⎝⎭, ∴22127a a +-=, ∴221a a+=9, 222112a a a a ⎛⎫∴+=++ ⎪⎝⎭=9+2=11, 0a >,10a a ∴+>, 111a a∴+=, 故答案为:11.【点睛】本题考查完全平方公式的应用,需要对已知式子平方,灵活运用完全平方公式是解决本题的关键.19.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,①+②,得2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.20.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.22.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.23.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==,而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.24.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯- 22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.(1)()22a -;(2)25-;(3)△ABC 为等边三角形,理由见解析.【分析】(1)根据完全平方公式即可因式分解;(2)先将原式化成最简式,然后将2226100a a b b ++-+=,分成两个完全平方公式的形式,根据非负数的性质求出a 、b 的值,代入最简式中计算即可;(3)将已知等式化成几个平方和的形式,再利用非负数的性质求解即可.【详解】解:(1)∵()22442a a a -+=-,故答案为:()22a -;(2)()()()33242a b a b a b ab ab +-+-÷=()2222222a b ab a b ab -+-÷=222222223a b a b a b -+-=-∵2226100a a b b ++-+=,∴()()22130a b ++-=, ∴13a b =-=,,把13a b =-=,代入上式得:()222223213322725a b -=⨯--⨯=-=-; (3)△ABC 为等边三角形,理由如下:∵222426240a b c ab b c ++---+=,∴()()()2221310a b c b -+-+-=, ∴01010a b c b -=-=-=,,,∴1a b c ===,∴△ABC 为等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负数的应用.。
义务教育基础课程初中教学资料整式的乘除与因式分解水平测试一、试试你的身手(每小题3分,共30分)1.请你写出一个二次三项式:______.2.已知:210x x --=,则2222002x x -+的值为______.3.单项式27x y -的系数是______,次数是______. 4.化简2(2)2(2)a a a +-+=______.5.如果32n =,则223n +=______.6.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是22()()()x y x y x y -++,若取9x =,9y =时,则各个因式的值是:22()0()18()162x y x y x y -=+=+=,,,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取1010x y ==,时,用上述方法产生的密码是______(写出一个即可).7.观察下列等式:22101-=,22213-=,32325-=,22437-=,……用含自然数n 的等式表示这种规律为______.8.分解因式23a a +=______.9.分解因式2244a ab b ++=______.10.多项式291x +加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是______(填上一个你认为正确的即可).二、相信你的选择(每小题3分,共30分)1.下列式子:2a ,a+b ,a+b =b+a ,2x >4,22a b +,x ,0中,整式的个数有( ).A .5个B .4个C .3个D .2个2.a ,b 两数的平方和用代数式表示为( ).A .22a b +B .2()a b +C .2a b +D .2a b +3.当整式a+b 的值为3时,代数式221a b ++的值是( ).A .5B .6C .7D .84.若单项式2222m n n n a b +-+与57a b 是同类项,则n m 的值是( ).A .3-B .1-C .13D .35.下列运算正确的是( ).A . 236a a a ⋅=B .33a a a ÷=C .235()a a =D .224(3)9a a =6.计算220032003(0.04)(5)⎡⎤-⎣⎦得( ). A .1 B .1- C .200315 D .200315-7.化简2(2)(2)a a a ---g 的结果是( ).A .0B .22aC .26a -D .34a -8.下列多项式能进行因式分解的是( ).A .2x y -B .21x +C .22x y y ++D .244x x -+9.若215(3)()x mx x x n +-=++,则m 的值为( ).A .5-B .5C .2-D .210.从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是( ).A .22()()a b a b a b -=+-B .22()2a b a ab b -=-+C .222()2a b a ab b +=++D .2() a ab a a b +=+三、挑战你的技能(本大题共60分)1.(每小题4分,共8分) a b a b(1)化简221()()242x y x y y x ⎛⎫+---+ ⎪⎝⎭; (2)计算233222(168)8x y z x y z x y +÷.2.(每小题4分,共8分)分解因式:(1)2ab a -;(2)2242a a -+-.3.(本题8分)请先观察下列算式,再填空:223181-=⨯,225382-=⨯.(1)2275-=8×______;(2)229(______)84-=⨯;(3)22(______)985-=⨯;(4)2213(______)8______-=⨯;……通过观察归纳,写出反映这种规律的一般结论:______________.4.(本题8分)设2a b +=-,求222a b ab ++的值.5.(本题8分)请写出一个三项式,使它能先提公因式,再运用公式来分解.6.(本题10分)你能很快算出21995吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数都可以写成10n+5(n为自然数),即求2n+的值,试分析n=1,(105)n=2,n=3,…这些简单情形,从中探索规律,并归纳猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:2=可以写成100×1×(1+1)+25;152252=可以写成100×2×(2+1)+25;256252=可以写成100×4×(4+1)+25;452025……2=,可以写成______,7556252=可以写成______.857225(2)从第(1)题的结果,归纳、猜想,得2n+=______,并利用整式运算的(105)知识给予说明.(3)根据上面的归纳猜想,计算出21995=______.7.(本题10分)我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式2++=+++.x a x b x a b x ab()()即2()()()+++=++是否可以分解因式呢?当然可以,而且也很简单.x a b x ab x a x b如:(1)22++=+++⨯=++;56(32)32(3)(2)x x x x x x(2)22--=+-++-⨯=-+.56(61)(6)1(6)(1)x x x x x x请你仿照上述方法,把下列多项式分解因式:(1)287-+;x x(2)2718+-.x x参考答案一、1.略(答案不惟一) 2.2004 3.17-,3 4.24a - 5.36 6.103010(答案不惟一) 7.22(1)21n n n --=- 8.(31)a a + 9.2(2)a b + 10.6x (答案不惟一)二、1.A 2.A 3.C 4.B 5.D 6.A 7.C 8.D 9.C 10.A三、1.解:(1)221()()242x y x y y x ⎛⎫+---+ ⎪⎝⎭222282x y y x =--+-28y =-. (2)233222(168)82x y z x y z x y yz xz +÷=+.2.解:(1)22 (1)(1)(1)ab a a b a b b -=-=+-.(2)2222422(21)2(-1)a a a a a -+-=--+=-.3.(1)3;(2)7;(3)11;(4)11,6;一般结论是22(21)(21)8n n n +--=(n 为正整数).4.解:2222222()(2)22222a b a ab b a b ab ++++-+====. 5.略(答案不惟一).6.(1)100×7×(7+1)+25,100×8×(8+1)+25;(2)100n (n +1)+25,说明略;(3)3980025.7.解:(1)287x x -+2(17)(1)(7)x x =+--+-⨯-(1)(7)x x =--.(2)22718(29)(2)9(2)(9)x x x x x +-=+-++-⨯=-+.。
整式的乘除专题练习 幂的运算:nm nma a a +=⋅,nm nmaa a -=÷,mnn m aa =)(,mm m b a ab =)(1.基础练习:=⋅52a a =⋅64a a =⋅a a 5 =⋅⋅352a a a =--43)()(b a b a =--52)()(y x y x =--43)()(m n n m=÷57a a =÷28a a =÷a a 5=÷÷239a a a =-÷-26)()(b a b a =-÷-510)()(y x y x =-÷-47)()(m n n m =43)(a =54)10( =44)(a =-43])[(b a =-45])[(y x =423)2(b a =-432)(b a =-342)(b a =-222)2(y x =-33)21(n m2.应用提高:.,3,21;)(5,3;5,2;5,3;5,3233m m n mm m m n m n m n m n m n m n m x x x ab b a a a a a a a a a a ++÷+==========求已知,求已知,求已知,求已知,求已知 的值。
求已知;,求已知,求已知,求已知,求已知n xy y x b b b a a a x x x n n m m m n m n m n m n m n m n m ,21682)(3,7;3,6;2,8;6,2222=⋅⋅========-÷+单项式乘以单项式 :将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
=⋅-⋅abc b a ab 2)31(322 =-⋅)74(4722xy z y=⋅-22343)32(xyz y x =-⋅-⋅-)4()2()3(32223y x xy y x n m b a b a b a m n n m ,,10)5(28521312求)已知(--=⋅⋅+-+单项式乘以多项式_____________)(=-+d c b a)23234()2()2()232()161()2(2243b ab b a ab x x x x x +-⋅--⋅+--⋅-m x x nx mx x x x x x m m 项,求的结果中不含)若(的值。
第十一練:整式乘除和冪運算【练习1】 已知yx yx11,200080,200025+==则等於 . 【练习2】 滿足3002003)1(>-x のx の最小正整數為 . 【练习3】 化簡)2(2)2(2234++-n n n 得 .【练习4】 計算220032003])5[()04.0(-⨯得 .【练习5】 4)(z y x ++の乘積展開式中數字係數の和是 .【练习6】若多項式7432+-x x 能表示成c x b x a ++++)1()1(2の形式,求a ,b ,c . 【练习7】若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-15【练习8】 若=-+-=-+=++z y x z y x z y x 则,473,6452 .【练习9】 如果代數式2,635-=-++x cx bx ax 当時の值是7,那麼當2=x 時,該代數式の值是 .【练习10】 多項式12+-x x の最小值是 .【练习1】下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma【练习2】-6xyz+3xy2-9x2yの公因式是()A.-3x B.3xz C.3yz D.-3xy【练习3】把多項式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式の結果是()A.8(7a-8b)(a-b) B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)【练习4】把(x-y)2-(y-x)分解因式為()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)【练习5】下列各個分解因式中正確の是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)【练习6】觀察下列各式①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a -b,④x2-y2和x2和y2。
第十四章整式的乘除专题一幂的运算核心考点一同底数幂的乘法(m,n都是正整数) ,即:同底数幂相乘,底数不变,指数相加.03. 若则n= .核心考点二幂的乘方(m,n都是正整数),即:幂的乘方,底数不变,指数相乘.06. 已知可变形为则a, b,c的大小关系是 .核心考点三积的乘方(其中a为正整数),即:积的乘方,每一个因数分别乘方.08. 已知则核心考点四逆用幂的运算法则09.已知: 则值为 ( )A. 17B. 36C. 48D. 7210. 已知: 则:11. 已知: 则12. 已知: 则m= , n= .13.已知:2"=a, 3"=b, n是正整数,则用含有a,b的式子表示( 的值为.14. 若则A. 2B. 3C. 6D. 1215.已知: 3"=a, 81"=b, m, n为正整数, 则3³ᵐ⁺¹²ⁿ的值为 ( )A. a³b³B. 27abC. 3a+12b16按一定规律排列的一列数: 2¹, 2², 2³, 2⁵,2⁸, 2¹³, …, 若x, y, z表示这列数中的连续三个数,猜想x,y,z满足的关系式是 .核心考点五幂的运算法则综合运用17. 已知求的值. 18. 已知求的值.19. 是否存在整数a, b, c满足若存在,求出a,b,c的值;若不存在,说明理由.专题二整式的乘除核心考点一单项式与单项式的乘法单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.01. 计算:1202. 计算:核心考点二单项式与多项式的乘法单项式与多项式相乘,就是根据分配律用单项式去乘以多项式的每一项,再把所得的积相加.核心考点三多项式与多项式的乘法多项式与多项式相乘,先用一个多项式的每一项去乘以另一个多项式的每一项,再把所得的积相加,即|①|②| ①②③④(a+b)(m+n)= am+ an+ bm+ bn|③↑④↑04. (1) (x+2)(x-4)= ,核心考点四整式的除法08. [(2x-y)(2x+y)+y(y-6x)]÷2x.核心考点五降次代换09. 若则10. 已知则代数式的值是 ( )A. 31B. -31C. 41D. -4111. 已知. 求(x-1)(x-3)(x-5)(x-7)的值.核心考点六多项式相乘展开后与待定参数12. 若的积中不含x的二次项,则常数m的值为 ( )A. 0 B13. 若的展开式中不含x³项和x²项,则m"的值= .14. 已知a, b, x, y满足a+b=x+y=3, ax+ by=7, 求的值.15. 已知将x=0代入这个等式中可以求出a₀=1.用这种方法可以求得的值为( )A. -16B. 16C. -1D. 116. 若则:(1) a+b+c+d+e+f= ; (2) f= .17已知, 若多项式. 被x+3整除,说明时,多项式的值为0,即当x=-3时,多项式为0,我们可以把x=-3代入多项式,值为0,可得方程,求出k的值为若多项式.去除以x+3时,余数为6,说明. 时,多项式的值为6,即当. 时,多项式为6,我们可以把x=-3代入多项式,值为6,可得方程,求出k的值为- 结合上述知识,解决下列问题:(1) 若能被x-2整除,则a的值为;(2) 若除以x+2时, 余数为4, 则a的值为 ;(3) 若能被x-2与x+3整除, 则a-b的值为 ;(4) 若去除以x-2时,余数为1去除以x+3时,余数为- 求a, b的值.核心考点一整式的运算与求值01 计算:02先化简, 再求值: 其中x=0.5, y=-1.核心考点二待定参数03.已知( 其中p,q为正整数,则04. 如果二次三项式中有一个因式是3a-2,那么k的值为 .05以下关于x的各个多项式中, a, b, c, m, n均为常数.(1) 根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x-2)6-2( ax+b)( mx+n) am bn(2) 已知既不含二次项,也不含一次项,求的值;(3)多项式M与多项式的乘积为则2a+b+c的值为.核心考点一整式的运算与图形01.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆.若a+b=4,求剩下的钢板的面积.02.如图将一个边长为a的小正方形与四个边长均为b的大正方形拼接在一起(其中a<b) , 则四边形ABCD的面积为 ( )03.在长方形ABCD内, 将两张边长分别为a和b(a>b) 的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S₁,图2 中阴影部分的面积为S₂.当AD-AB=2时, 的值为 ( )A. 2aB. 2bC. 2a-2bD. -2b核心考点二图形的拼接与整式的乘法04有足够多的如图所示的正方形和长方形的卡片.(1)选取1号,2号,3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式( 成立,请画出这个正方形;(2) 小明想用类似(1) 的方法解释多项式乘法( 那么用2号卡片张,3号卡片张;(3)如果选取1号,2号,3号卡片分别为1张,2张,3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图.专题五平方差公式的应用及构造平方差公式: (核心考点一平方差公式的基本应用01. 计算: (2) (b+2a)(2a-b);(3) (-x+2y)(-x-2y);核心考点二平方差公式在多项式计算中的应用02. (1) (y+2)(y-2)-(y-1)(y+5);核心考点三平方差公式的构造03. 计算:04. 计算下列各式,完成所提出的问题:…计算:① ;05.若则(06. 已知实数a, b, x, y满足求的值.07. 设a, b, c, d都是自然数, 且求d-b的值.专题六 完全平方公式完全平方公式:核心考点一 完全平方公式的基本应用01. 计算:核心考点二 含参数的完全平方式02. 若是关于x ,y 的完全平方式,则03. 若 是一个完全平方式,则m 的值为 .核心考点三 完全平方公式的拓展应用04. 计算:(5) 求证: 1999×2000×2001×2002+1是一个整数的平方, 并求出这个整数.核心考点四完全平方公式补充公式的应用05. 已知且a=1, 试求( 的值.06. 设求的值.07. 已知求的最小值.专题七完全平方公式的变形与应用核心考点一利用完全平方公式求a+b, a-b, ab, a²-b²的值01.已知求 xy和x-y的值;02. 已知求和x+y的值;03.若(2026-a)(2025-a)=2024, 则(核心考点二利用完全平方公式求的值04.例: 已知求的值.解:因为所以则所以观察以上解答,解答以下问题:已知(1) 求下列各式的值:(2) 直接写出的值 .05. 已知:x²-3x+1=0, 则的值为 .06. 已知则的值为 ( )A. 136B. 169C. 194D. 19607. 若则专题八配方法与完全平方式的构造核心考点一配方构造完全平方式01. 将二次三项式进行配方,正确的结果是 ( )B. (x-2)²-1 D. (x-2)²+302.关于x的二次三项式有最小值-10, 则常数a= .03.a, b为实数, 整式的最小值是 ( )A. -13B. -4C. -9D. -504.已知, 则x+y+z= .05.已知a, b, c满足则a-b+c的值为 ( )A. -1B. 5C. 6D. -7核心考点二配方构造完全平方式求最值、比较大小06.简读以下材料井解决问题:①若a-b≥0,则a≥b;若a-b≤0,则a≤b;有最小值1;有最小值-9.(1)求的最小值;(2) 已知比较P与Q的大小.核心考点三配方法求最值应用题07.我们已学习了完全平方公式:观察下列式子:x并回答下列问题.则(2) 解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块长方形花圃,为了设计一个面积尽可能大的花圃,按图设长方形一边长度为x米,回答下列问题:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积是多少平方米?专题九 乘法公式的几何背景核心考点一 乘法公式与图形结合01如图1,在长为2b ,宽为b 的长方形中去掉两个边长为a 的小正方形. 然后将图2中的阴影部分剪下,并将剪下的阴影部分从中间剪开,得到两个形状,大小完全相同的小长方形. 将这两个小长方形与剩下的图形拼成如图3 中的长方形,上述操作能够验证的等式是( )02.四张长为a, 宽为b(a>b) 的长方形纸片, 按如图的方式拼成一个边长为 (a+b) 的正方形,图中空白部分的面积为阴影部分的面积为S₂, 若则a:b= .03. 探究:如图1,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿线剪开,如图所示,拼成图2的长方形.(1) 请你分别表示出这两个图形中阴影部分的面积 ; ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示);应用:请应用这个公式完成计算:04.(1) 用边长分别为a ,b 的两个正方形和长宽分别为a ,b 的两个长方形按如图摆放可拼成一个大正方形,用两种不同的方法可以表示图中阴影部分的面积和. 请你用一个等式表示( a²+b², ab 之间的数量关系 ;(2) 根据(1) 中的数量关系,解决如下问题:①已知 求m-n 的值;②已知(求的值.05. 我们知道,在学习了课本阅读材料:《综合与实践一面积与代数恒等式》后,利用图形的面积能解释得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD 的面积. 可以得到代数恒等式:(2) 已知求 ab+ ac+ bc的值;(3) 若n, t满足如下条件:,求t的值.核心考点二杨辉三角与整式乘法06.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如下图所示) 就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)"(n为正整数) 的展开式(按a的次数由大到小的顺序排列) 的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着展开式中各项的系数等等.(1) 根据上面的规律,展开式的各项系数中最大的数为;(2) 直接写出式于的值为;(3)若求的值.专题十因式分解核心考点一因式分解的定义01. 下列各式从左到右的变形,是因式分解的是 ( )核心考点二提公因式法02. 把下列各式分解因式:(4) 2a(b+c)-3(b+c); (5)6(x-2)+x(2-x);核心考点三运用公因式法03. 把下列各式分解因式:(1) 1-25b²;(6) x⁴-y⁴;核心考点四分组分解法04. 分解因式:(2) 2ax-10ay+5by- bx;核心考点五 十字相乘法05. 把下列各式分解因式:核心考点六 配方法06. 分解因式:核心考点七 换元法07. 把下列各式分解因式:专题十一因式分解的应用核心考点一对因式分解结果的判断01.下列因式分解结果正确的是 ( )02.下列因式分解结果正确的是 ( )核心考点二多步骤因式分解03.因式分解:(2) (p-3)(p-1)+1.04. 因式分解:05.将下列多项式因式分解:06.因式分解:核心考点三利用因式分解求值07. 若则a-b= .08.若则a+b-c的值是 ( )A. 2B. 5C. 20D. 5009. 已知a, b满足则x, y的大小关系是 ( )A. x≤yB. x≥yC. x>yD. x<y10.已知( 则((x-2027)²的值是 .11. 已知a=2019x+2016, b=2019x+2017, c=2019x+2018, 求多项式( 的值.核心考点四利用图形理解因式分解12.如图,将下列四个图形拼成一个大长方形,再据此写出一个多项式的因式分解:核心考点五试根法因式分解13. 对于多项式我们把. 代入此多项式,发现. 能使多项式的值为0,由此可以断定多项式. 中有因式( (注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式( 于是我们可以把多项式写成:分别求出m,n后再代入就可以把多项式. 因式分解.(1) 求式子中m, n的值;(2) 以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式.。
一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅=3.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-54.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2105.若3a b +=,1ab =,则()2a b -的值为( ) A .4B .5C .6D .76.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 8.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>9.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a += C .()2424m m --=-+D .33a b ab +=10.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽11.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫- ⎪⎝⎭的值是( ) A .0B .1C .-2D .-112.下列运算正确的是( ) A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.若231m n -=,则846m n -+=________.14.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.15.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.16.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.17.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 18.若2x y a +=,2x y b -=,则22x y -的值为____________. 19.分解因式3225a ab -=____.20.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 23.(1)23235ab a b ab (2)23233x xxx24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______; (2)请用两种不同的方法求图2中阴影部分的面积. ①________________; ②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 26.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.3.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项, ∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.4.B解析:B所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.B解析:B 【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果. 【详解】 ∵3a b +=,∴22()3a b +=,即2229a ab b ++=, 将1ab =代入上式得:229217a b +=-⨯=. ∵222()2a b a b ab -=+-, ∴2()725a b -=-=. 故选:B . 【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键.6.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.8.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.A解析:A 【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确. 故选A. 【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.10.C解析:C 【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解. 【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2 =(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ), 由已知可得:我爱昭通, 故选:C . 【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.11.D解析:D 【分析】先对()()22113(21)a b ab ++=-进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫- ⎪⎝⎭进行因式分解即可. 【详解】∵()()22113(21)a b ab ++=-, ∴2222163a b a b ab +++=-,22222440a b ab a b ab +-+-+=,()()2220a b ab -+-=,∴a b =,2ab =,∴1121bb a ab a a⎛⎫-=-=-=-⎪⎝⎭ 故选:D .本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6 【分析】将原式化为82(23)m n --,再整体代入即可. 【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6. 故答案为:6. 【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.14.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9 【分析】根据新定义得出a ,b 的值,再求和即可.解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.15.20或30【分析】把表格中的前两对值代入求出m与n的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n =-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=20;当点C在点B右侧时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.16.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1 【分析】根据积的乘方的逆运算和幂的乘方计算即可 【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦==故答案为:1 【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键17.【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案. 【详解】根据题意得:20a b c ++=,2342a b c ++= ∴204223a b c b c =--=-- ∴222b c =-∴20202222a b c c c c =--=-+-=- ∴()()2222222644w a b c c c c =⨯=--=-+-故答案为:222644c c -+-. 【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.18.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab . 【分析】应用平方差把多项式22x y -因式分解,再整体代入即可. 【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.19.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.三、解答题21.(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分,∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+-22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 26.4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦ ()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-= 【点睛】 本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。
初中数学试卷 桑水出品《整式的乘除》基础测试(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x ( )【答案】x 4;2.2.4(m -n )3÷(n -m )2=___________.【答案】4(m -n ).3.-x 2·(-x )3·(-x )2=__________.【答案】x 7.4.(2a -b )()=b 2-4a 2.【答案】-2a -b .5.(a -b )2=(a +b )2+_____________.【答案】-4ab .6.(31)-2+ 0=_________;4101×0.2599=__________.【答案】10;16. 7.2032×1931=( )·( )=___________.【答案】20+32,20-32,39995. 8.用科学记数法表示-0.0000308=___________.【答案】-3.08×10-5.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.【答案】x -2y ,1x 2-4xy +4y .10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.【答案】-2,35.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是…………………………………………………………………( )(A )a n ·a 2=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6【答案】D .12.x 2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +1【答案】C .13.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n )(21×10n )=102n 【答案】D . 14.化简(a n b m )n ,结果正确的是………………………………………………………( ) (A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )n m n b a 2【答案】C .15.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n (D )(a -b )3=(b -a )3【答案】B .16.下列各组数中,互为相反数的是……………………………………………………( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3 【答案】D .17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-27【答案】C .18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b【答案】B .(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2; 【答案】-43x 9y 8. (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);【答案】516ax 4y . (3)(2a -3b )2(2a +3b )2;【答案】16a 4-72a 2b 2+81b 4.(4)(2x +5y )(2x -5y )(-4x 2-25y 2); 【答案】625y 4-16x 4.(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );【答案】-10ab n -1+7a 2b n -4a n +3.(6)(x -3)(2x +1)-3(2x -1)2.【答案】-10x 2+7x -6.20.用简便方法计算:(每小题3分,共9分)(1)982;【答案】(100-2)2=9604.(2)899×901+1;【答案】(900-1)(900+1)+1=9002=810000.(3)(710)2002·(0.49)1000. 【答案】(710)2·(710)2000·(0.7)2000=49100. (四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.【提示】配方:(a +3)2+(b -5)2=0,a =-3,b =5,【答案】-41.22.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值. 【答案】222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.【答案】a 2+b 2=21[(a +b )2+(a -b )2]=6, ab =41[(a +b )2+(a -b )2]=2. 24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .【答案】用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x 【答案】⎪⎩⎪⎨⎧=-=.237y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).【答案】x >-31.。
卜人入州八九几市潮王学校整式的乘除一.知识填空题:1.同底数幂相除,底数,指数;表达式是;()()=÷mn mn 35;,②,③,④,⑤,⑥y x 32+,⑦()a 23-,⑻()()b b 2224--÷,⑨y x34÷中,是同底数幂相乘的是;是幂的乘方的是;是积的乘方的是;是同底数幂相除的是; 1.在计算()()253322++•-x x x 时,首先把按计算;然后再把和按计算;最后把和合并同类项.二.选择题: 1.以下计算正确的选项是〔〕〔A)55523-=,〔B)623532=•,(C)m m m 53222=•,〔D)a a 33333=•. 22528⨯⨯的正确结果是〔〕. (A)827⨯,〔B)210,(C)8210⨯,〔D)都不对. ()a 222-的结果正确的选项是〔〕 (A)a 24,〔B)a 24-,(C)a 44,〔D 〕a 44-.(B)4.下面计算不正确的选项是〔〕(A)()()m m m 32=•--,(B)()m m m 54=•(C)()()m m m 523-=•--〔D)m m m 532=•. 整式的乘除一.知识填空题: 1.同底数幂相除,底数,指数;表达式是;()()=÷mn mn 35;,②,③,④,⑤,⑥y x 32+,⑦()a 23-,⑻()()b b 2224--÷,⑨y x 34÷中,是同底数幂相乘的是;是幂的乘方的是;是积的乘方的是;是同底数幂相除的是;.二.选择题:1.以下计算正确的选项是〔〕〔A)55523-=,〔B)623532=•,(C)m m m 53222=•,〔D)a a 33333=•. 22528⨯⨯的正确结果是〔〕. (A)827⨯,〔B)210,(C)8210⨯,〔D)都不对. ()a 222-的结果正确的选项是〔〕 (C)a 24,〔B)a 24-,(C)a 44,〔D 〕a 44-.4.以下计算正确的选项是〔〕(A) ()()4222-=--x x x 〔B)()()9332-=+-m m m (C)()()4222+=++a a a 〔D 〕()()5552-=-+yy y . 三.计算题:1.;2.()()1215--+a b b a ;3.()()3232-+x x ;4.()⎪⎭⎫ ⎝⎛+-•+-132224242y x y y x x x .。
2014—2015学年八年级数学(上)周末辅导资料(12) 理想文化教育培训中心 学生姓名: 得分:
一、知识点梳理:
1、乘法公式:(1)平方差公式:b a b a b a 22))((-=-+
(2)完全平方公式:)(b a b a ab 2
222+±=± 2、同底数幂的除法:同底数幂相除,底数不变,指数相减;即 n m n m a a a -=÷(m 、n 为正整数,m >n ,a ≠0);a 0=1(a ≠0);n n a a 1
=-(a ≠0,n 为正整数).
例1:(1)下列各式中,运算结果是22169b a -的是( )
A 、)43)(43(b a b a --+-
B 、)34)(34(a b a b --+-
C 、)34)(34(a b a b -+
D 、)83)(23(b a b a -+
(2)如果22)()(y x M y x +=+-,那么M 等于 ( )
A 、 2xy
B 、-2xy
C 、4xy
D 、-4xy
(3)运算结果为2412x x -+的是 ( )
A 、22)1(x +-
B 、22)1(x +
C 、22)1(x --
D 、2)1(x -
(4)已知2264b Nab a +-是一个完全平方式,则N 等于 ( )
A 、8
B 、±8
C 、±16
D 、±32
例2:计算:
(1)(24)(3)x x +-- (2))1)(1(---xy xy
(3)2)2
332(y x - (4)(3)(2)(3)(3)a a a a -+-+-
(5))1)(1)(1(2++-a a a (6))132)(132(++--y x y x
(7)2)32(z y x +- (8)⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+-n m n m na m n m 223344125.0521
例3:已知(x +y)2=1,(x -y)2=49,求x 2+y 2与xy 的值。
例4:先化简,再求值:[(32)()2(2)(2)]();a b a b a b a b a -+--+÷-其中a=2,b=-1。
三、强化训练:
1、下面的计算错误的是( )
A .x 4·x 3=x 7
B .(-c )3·(-c )5=c 8
C .2×210=211
D .a 5·a 5=2a 10
2、若a m =3,a n =4,则a m+n =( )
A .7
B .12
C .43
D .34
3、下列式子可以用平方差公式计算的是( )
A.))((m n n m +--
B.)32)(32(x y y x +-
C.)76)(76(y x y x -+-
D.)23)(32(a b b a -+
4、若2422549))(________57(y x y x -=--,括号内应填代数式( )
A 、y x 572+
B 、y x 572--
C 、y x 572+-
D 、y x 572-
5、已知52)(2=-+ab b a ,则22b a +的值为( )
A.5
B.10
C.1
D.由b a ,取值确定
6、如果x 2 – x – m = (x + n )(x + 7),那么m 、n 的值是( )
A .m = 56,n = 8
B .m = – 56,n = – 8
C .m = – 56,n = 8
D .m = 56,n = – 8
7、已知2264a mab b -+是一个完全平方式,则m 等于 ( )
A 、8
B 、±8
C 、±16
D 、±32
8、计算:
(1) x (9x -5)-(3x + 1) (3x -1) (2)423324211322343a x a x a x a ⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭
(3))12)(12(-++-y x y x (4)22)32()32(y x y x -+
(5)[(x -2y )+(x -2y )(2y +x )-2x (2x -y )]÷2x .
8、化简求值: (x 2+3x)(x -3)-x(x -2)2+(-x -y)(y -x),其中x =3,y =-2;
9、解方程:1)2)(2(4)32(2=+---x x x
10、阅读下列解答过程,并仿照解决问题:
已知2230x x --=,求3298x x x +--的值。
∵
解:∵2230x x --=,
∴223x x =+,
∴()()32229898232398x x x x x x x x x x x +--=⋅+--=⋅+++-- ()2232398223451x x x x x x =+++--=+--=。
请你仿照上题的解法完成:已知2510x x -+=,求32441x x x ---的值。