数字逻辑课后习题答案(华中科技大学出版社,欧阳星明主编)课件
- 格式:ppt
- 大小:7.25 MB
- 文档页数:73
习 题 七1. 用4位二进制并行加法器设计一个实现8421码对9求补的逻辑电路。
解答设8421码为B 8B 4B 2B 1 ,其对9的补数为C 8C 4C 2C 1 ,关系如下:相应逻辑电路图如图1所示。
图 12. 用两个4位二进制并行加法器实现2位十进制数8421码到二进制码解答设两位十进制数的8421码为D 80D 40D 20D 10D 8D 4D 2D 1 ,相应二进制数为B 6B 5B 4B 3B 2B 1B 0,则应有B 6B 5B 4B 3B 2B 1B 0 = D 80D 40D 20D 10×1010+D 8D 4D 2D 1,运算如下:× D 80 1D 40 0 D 20 1 D 10 0 + D 80 D 40 D 80 D 20D 40 D 10 D 8D 20D 4 D 10D 2 D 1B 6B 5B 4 B 3B 2B 1B 0据此,可得到实现预定功能的逻辑电路如图2所示。
图 23. 用4位二进制并行加法器设计一个用8421码表示的1位十进制加法解答分析:由于十进制数采用8421码,因此,二进制并行加法器输入被加数和加数的取值范围为0000~1001(0~9),输出端输出的和是一个二进制数,数的范围为0000~10011(0~19,19=9+9+最低位的进位)。
因为题目要求运算的结果也是D 8 D 10D 2D 10 D 18421码,因此需要将二进制并行加法器输出的二进制数修正为8421码。
设输出的二进制数为FC 4 F 4 F 3 F 2 F 1,修正后的结果为'1'2'3'4'4F F F F FC ,可列出修正函数真值表如表1所示。
根据表1写出控制函数表达式,经简化后可得:据此,可画出逻辑电路图如图3所示。
图34. 用一片3-8线译码器和必要的逻辑门实现下列逻辑函数表达式。
解答假定采用T4138和与非门实现给定函数功能,可将逻辑表达式变换如下:逻辑电路图如图4所示。
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
习 题 五1. 简述时序逻辑电路与组合逻辑电路的主要区别。
解答组合逻辑电路:若逻辑电路在任何时刻产生的稳定输出值仅仅取决于该时刻各输入值的组合,而与过去的输入值无关,则称为组合逻辑电路。
组合电路具有如下特征:②信号是单向传输的,不存在任何反馈回路。
时序逻辑电路:若逻辑电路在任何时刻产生的稳定输出信号不仅与电路该时刻的输入信号有关,还与电路过去的输入信号有关,则称为时序逻辑电路。
时序逻辑○1○2 电路中包含反馈回路,通过反馈使电路功能与“时序”○3 电路的输出由电路当时的输入和状态(过去的输入)共同决定。
2. 作出与表1所示状态表对应的状态图。
表 1解答根据表1所示状态表可作出对应的状态图如图1所示。
图13.已知状态图如图2所示,输入序列为x=11010010,设初始状态为A,求状态和输出响应序列。
图 2解答状态响应序列:A A B C B B C B输出响应序列:0 0 0 0 1 0 0 14. 分析图3所示逻辑电路。
假定电路初始状态为“00”,说明该电路逻辑功能。
图 3 解答○1根据电路图可写出输出函数和激励函数表达式为 xK x,J ,x K ,xy J y xy Z 1111212=====○2 根据输出函数、激励函数表达式和JK 触发器功能表可作出状态表如表2所示,状态图如图4所示。
表2图4○3由状态图可知,该电路为“111…”序列检测器。
5. 分析图5所示同步时序逻辑电路,说明该电路功能。
图5解答○1根据电路图可写出输出函数和激励函数表达式为 )(D ,x y x D y y x Z 21112121212y x y y y y y x ⊕=+=+=○2 根据输出函数、激励函数表达式和D 触发器功能表可作出状态表如表3所示,状态图如图6所示。
表3图6○3由状态图可知,该电路是一个三进制可逆计数器(又称模3可逆计数器),当x=0时实现加1计数,当x=1时实现减1计数。
6.分析图7所示逻辑电路,说明该电路功能。
数字逻辑第四版(欧阳星明著)课后习题答案下载数字逻辑第四版(欧阳星明著)课后答案下载第1章基础概念11.1概述11.2基础知识21.2.1脉冲信号21.2.2半导体的导电特性41.2.3二极管开关特性81.2.4三极管开关特性101.2.5三极管3种连接方法131.3逻辑门电路141.3.1DTL门电路151.3.2TTL门电路161.3.3CML门电路181.4逻辑代数与基本逻辑运算201.4.1析取联结词与正“或”门电路201.4.2合取联结词与正“与”门电路211.4.3否定联结词与“非”门电路221.4.4复合逻辑门电路221.4.5双条件联结词与“同或”电路241.4.6不可兼或联结词与“异或”电路241.5触发器基本概念与分类251.5.1触发器与时钟271.5.2基本RS触发器271.5.3可控RS触发器291.5.4主从式JK触发器311.5.5D型触发器341.5.6T型触发器37习题38第2章数字编码与逻辑代数392.1数字系统中的编码表示392.1.1原码、补码、反码412.1.2原码、反码、补码的运算举例472.1.3基于计算性质的几种常用二-十进制编码48 2.1.4基于传输性质的几种可靠性编码512.2逻辑代数基础与逻辑函数化简572.2.1逻辑代数的基本定理和规则572.2.2逻辑函数及逻辑函数的表示方式592.2.3逻辑函数的标准形式622.2.4利用基本定理简化逻辑函数662.2.5利用卡诺图简化逻辑函数68习题74第3章数字系统基本概念763.1数字系统模型概述763.1.1组合逻辑模型773.1.2时序逻辑模型773.2组合逻辑模型结构的数字系统分析与设计81 3.2.1组合逻辑功能部件分析813.2.2组合逻辑功能部件设计853.3时序逻辑模型下的数字系统分析与设计923.3.1同步与异步933.3.2同步数字系统功能部件分析943.3.3同步数字系统功能部件设计993.3.4异步数字系统分析与设计1143.4基于中规模集成电路(MSI)的数字系统设计1263.4.1中规模集成电路设计方法1263.4.2中规模集成电路设计举例127习题138第4章可编程逻辑器件1424.1可编程逻辑器件(PLD)演变1424.1.1可编程逻辑器件(PLD)1444.1.2可编程只读存储器(PROM)1464.1.3现场可编程逻辑阵列(FPLA)1484.1.4可编程阵列逻辑(PAL)1494.1.5通用阵列逻辑(GAL)1524.2可编程器件设计1604.2.1可编程器件开发工具演变1604.2.2可编程器件设计过程与举例1604.3两种常用的HDPLD可编程逻辑器件164 4.3.1按集成度分类的可编程逻辑器件164 4.3.2CPLD可编程器件1654.3.3FPGA可编程器件169习题173第5章VHDL基础1755.1VHDL简介1755.2VHDL程序结构1765.2.1实体1765.2.2结构体1805.2.3程序包1835.2.4库1845.2.5配置1865.2.6VHDL子程序1875.3VHDL中结构体的描述方式190 5.3.1结构体的行为描述方式190 5.3.2结构体的数据流描述方式192 5.3.3结构体的结构描述方式192 5.4VHDL要素1955.4.1VHDL文字规则1955.4.2VHDL中的数据对象1965.4.3VHDL中的数据类型1975.4.4VHDL的运算操作符2015.4.5VHDL的预定义属性2035.5VHDL的顺序描述语句2055.5.1wait等待语句2055.5.2赋值语句2065.5.3转向控制语句2075.5.4空语句2125.6VHDL的并行描述语句2125.6.1并行信号赋值语句2125.6.2块语句2175.6.3进程语句2175.6.4生成语句2195.6.5元件例化语句2215.6.6时间延迟语句222习题223第6章数字系统功能模块设计2556.1数字系统功能模块2256.1.1功能模块概念2256.1.2功能模块外特性及设计过程2266.2基于组合逻辑模型下的VHDL设计226 6.2.1基本逻辑门电路设计2266.2.2比较器设计2296.2.3代码转换器设计2316.2.4多路选择器与多路分配器设计2326.2.5运算类功能部件设计2336.2.6译码器设计2376.2.7总线隔离器设计2386.3基于时序逻辑模型下的VHDL设计2406.3.1寄存器设计2406.3.2计数器设计2426.3.3并/串转换器设计2456.3.4串/并转换器设计2466.3.5七段数字显示器(LED)原理分析与设计247 6.4复杂数字系统设计举例2506.4.1高速传输通道设计2506.4.2多处理机共享数据保护锁设计257习题265第7章系统集成2667.1系统集成基础知识2667.1.1系统集成概念2667.1.2系统层次结构模式2687.1.3系统集成步骤2697.2系统集成规范2717.2.1基于总线方式的互连结构2717.2.2路由协议2767.2.3系统安全规范与防御2817.2.4时间同步2837.3数字系统的非功能设计2867.3.1数字系统中信号传输竞争与险象2867.3.2故障注入2887.3.3数字系统测试2907.3.4低能耗系统与多时钟技术292习题295数字逻辑第四版(欧阳星明著):内容提要点击此处下载数字逻辑第四版(欧阳星明著)课后答案数字逻辑第四版(欧阳星明著):目录本书从理论基础和实践出发,对数字系统的基础结构和现代设计方法与设计手段进行了深入浅出的论述,并选取作者在实际工程应用中的一些相关实例,来举例解释数字系统的设计方案。
习 题 七1. 用4位二进制并行加法器设计一个实现8421码对9求补的逻辑电路。
解答设8421码为B 8B 4B 2B 1 ,其对9的补数为C 8C 4C 2C 1 ,关系如下:相应逻辑电路图如图1所示。
图 12. 用两个4位二进制并行加法器实现2位十进制数8421码到二进制码解答设两位十进制数的8421码为D 80D 40D 20D 10D 8D 4D 2D 1 ,相应二进制数为B 6B 5B 4B 3B 2B 1B 0,则应有B 6B 5B 4B 3B 2B 1B 0 = D 80D 40D 20D 10×1010+D 8D 4D 2D 1,运算如下:× D 80 1D 40 0 D 20 1 D 10 0 + D 80 D 40 D 80 D 20D 40 D 10 D 8D 20D 4 D 10D 2 D 1B 6B 5B 4 B 3B 2B 1B 0据此,可得到实现预定功能的逻辑电路如图2所示。
图 23. 用4位二进制并行加法器设计一个用8421码表示的1位十进制加法解答分析:由于十进制数采用8421码,因此,二进制并行加法器输入被加数和加数的取值范围为0000~1001(0~9),输出端输出的和是一个二进制数,数的范围为0000~10011(0~19,19=9+9+最低位的进位)。
因为题目要求运算的结果也是D 8 D 10D 2D 10 D 18421码,因此需要将二进制并行加法器输出的二进制数修正为8421码。
设输出的二进制数为FC 4 F 4 F 3 F 2 F 1,修正后的结果为'1'2'3'4'4F F F F FC ,可列出修正函数真值表如表1所示。
根据表1写出控制函数表达式,经简化后可得:据此,可画出逻辑电路图如图3所示。
图34. 用一片3-8线译码器和必要的逻辑门实现下列逻辑函数表达式。
解答假定采用T4138和与非门实现给定函数功能,可将逻辑表达式变换如下:逻辑电路图如图4所示。