2016年扬州市中考数学试题及答案解析版
- 格式:doc
- 大小:586.00 KB
- 文档页数:24
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤13.(3分)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)当a=2016时,分式的值是.12.(3分)以方程组的解为坐标的点(,y)在第象限.13.(3分)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.三、解答题(共10小题,满分96分)19.(8分)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.24.(10分)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)(2016•扬州)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤1【解答】解:由题意得,﹣1≥0,解得≥1.故选B.3.(3分)(2016•扬州)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=(3﹣1)2=22,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.(3分)(2016•扬州)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N 的大小关系为()A.M<N B.M=N C.M>N D.不能确定【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(3分)(2016•扬州)以方程组的解为坐标的点(,y)在第二象限.【解答】解:,∵①﹣②得,3+1=0,解得=﹣,把的值代入②得,y=+1=,∴点(,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.17.(3分)(2016•扬州)如图,点A在函数y=(>0)的图象上,且OA=4,过点A作AB⊥轴于点B,则△ABO的周长为2+4.【解答】解:∵点A在函数y=(>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C=AB+OB+OA=2+4.△ABO故答案为:2+4.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.【解答】解:设未30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴>29.5解得,a<6,又∵a>0,即a的取值范围是:0<a<6.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+3=9+;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,≥﹣2,解不等式②得,<1,∴不等式组的解集为﹣2≤<1.∴不等式组的最大整数解为=0,21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=,则EM=8﹣,CM=10﹣6=4,在Rt△CEM中,(8﹣)2+42=2,解得:=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【解答】解:设普通列车的速度为为m/h,动车的平均速度为1.5m/h,由题意得,﹣=1,解得:=120,经检验,=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180m/h.答:该趟动车的平均速度为180m/h.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=120°,AB=AC,作AD⊥BC于D,则∠B=30°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=,则OA=OB=OE=2,AG=,∴DG=OE=2,根据AC=AB得:4=+2+2﹣,=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CF=CE,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=4,即:a=b=4;(2)当△AEF是直角三角形时,①当∠AFE=90°时,∴∠AFD+∠CFE=90°,∵∠CEF+∠CFE=90°,∴∠AFD=∠CEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF∴AF=EF,在△ADF和△FCE中∴△ADF≌△FCE,∴FC=AD=4,CE=DF=CD+FC=8,∴a=8,b=4②当∠AEF=90°时,同①的方法得,CF=4,CE=8,∴a=4,b=8.(3)ab=32,理由:如图,∵AB∥CD∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(12分)(2016•扬州)如图1,二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=(>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC 于点N.若在点T运动的过程中,为常数,试确定的值.【解答】解:(1)∵二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=2﹣2,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴=时,=.∴当=时,点T运动的过程中,为常数.。
2016年江苏省扬州市中考数学试题及参考答案与解析一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.12D.12-2.函数y x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤13.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B.C.D.5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6则这12A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7.已知219M a=-,279N a a=-(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.当a=2016时,分式242aa--的值是.12.以方程组221y xy x=+⎧⎨=-+⎩的解为坐标的点(x,y)在第象限.13.若多边形的每一个内角均为135°,则这个多边形的边数为.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD 的周长为.16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.17.如图,点A在函数4yx=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.三、解答题(本大题共10小题,满分96分)19.(8分)(1)计算:216cos30 3-⎛⎫-︒ ⎪⎝⎭;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组()224113x xxx-+⎧⎪⎨-+⎪⎩≤<,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D 四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.23.(10分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M 处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF 是平行四边形; (2)若AB=6,AC=10,求四边形AECF 的面积.24.(10分)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度. 25.(10分)如图1,△ABC 和△DEF 中,AB=AC ,DE=DF ,∠A=∠D .(1)求证:BC EFAB DE=; (2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也就确定,我们把这个比值记作T (A ),即T (A )=()()A BCA AB∠=∠的对边底的邻边腰,如T (60°)=1. ①理解巩固:T (90°)= ,T (120°)= ,若α是等腰三角形的顶角,则T (α)的取值范围是 ;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T (160°)≈1.97,T (80°)≈1.29,T (40°)≈0.68)26.(10分)如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC .(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2,求⊙O 的半径和BF 的长.27.(12分)已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与边BC 、DC 的延长线交于点E 、F ,连接EF .设CE=a ,CF=b .(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.28.(12分)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,2ONOM为常数,试确定k的值.参考答案与解析一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.12D.12-【知识考点】有理数的除法.【思路分析】根据因数等于积除以另一个因数计算即可得解.【解答过程】解:1÷(﹣2)=12 -.故选D.【总结归纳】本题考查了有理数的除法,是基础题,熟练掌握因数、因数和积的关系是解题的关键.2.函数y x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤1【知识考点】函数自变量的取值范围.【思路分析】根据被开方数大于等于0列式计算即可得解.【解答过程】解:由题意得,x﹣1≥0,解得x≥1.故选B.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答过程】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.【总结归纳】本题考查了同底数幂的乘除法,合并同类项以及幂的乘方与积的乘方的计算,熟记计算法则即可解答该题.4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()。
2016年江苏扬州市中考数学试卷(Word版) 2016年江苏扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1、实数是()A、有理数B、无理数C、正数D、负数2、2015年我国大学生毕业人数将达到xxxxxxx人,这个数据用科学记数法表示为()A、7.49×10^6B、7.49×10^5C、74.9×10^4D、0.749×10^73、如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A、音乐组B、美术组C、体育组D、科技组4、下列二次根式中的最简二次根式是()A、√30B、√12C、√8D、√(3×2)5、如图所示的物体的左视图为()无法排版,无法确定答案)6、如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A、△ABC绕点C顺时针旋转90°,再向下平移3B、△ABC绕点C顺时针旋转90°,再向下平移1C、△ABC绕点C逆时针旋转90°,再向下平移1D、△ABC绕点C逆时针旋转90°,再向下平移37、如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin C>sin D;②cos C>cos D;③tan C>tan D中,正确的结论为(。
)A、①②B、②③C、①②③D、①③8、已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A、a>1B、a≤2C、1<a≤2D、1≤a≤2二、填空题(本大题共有10小题,每小题3分,共30分)9、-3的相反数是 310、因式分解:x(x-9)=011、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 (9,1)12、色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:抽取的体检表数n 色盲患者的频数m 色盲患者的频率m/n50 3 0.06100 7 0.07200 13 0.065400 29 0.073500 37 0.074800 55 0.0691000 69 0.0691200 85 0.0711500 105 0.072000 138 0.069表格已经排版好,无需修改)2016年江苏扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1、实数中,以下哪些是有理数?A、有理数B、无理数C、正数D、负数2、2015年我国大学生毕业人数将达到xxxxxxx人,这个数据用科学记数法表示为()A、7.49×10^6B、7.49×10^5C、74.9×10^4D、0.749×10^73、如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A、音乐组B、美术组C、体育组D、科技组4、以下二次根式中,哪个是最简二次根式?A、√30B、√12C、√8D、√(3×2)5、如图所示的物体的左视图为()无法排版,无法确定答案)6、如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A、△ABC绕点C顺时针旋转90°,再向下平移3B、△ABC绕点C顺时针旋转90°,再向下平移1C、△ABC绕点C逆时针旋转90°,再向下平移1D、△ABC绕点C逆时针旋转90°,再向下平移37、如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin C>sin D;②cos C>cos D;③tan C>tan D中,哪个结论是正确的?A、①②B、②③C、①②③D、①③8、已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A、a>1B、a≤2C、1<a≤2D、1≤a≤2二、填空题(本大题共有10小题,每小题3分,共30分)9、-3的相反数是 310、因式分解:x(x-9)=011、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 (9,1)12、以下是从男性体检信息库中随机抽取的体检表中的色盲患者数据。
2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(2016·江苏扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【考点】有理数的除法.【分析】根据因数等于积除以另一个因数计算即可得解.【解答】解:1÷(﹣2)=﹣.故选D.2.(2016·江苏扬州)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.3.(2016·江苏扬州)下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(2016·江苏扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(2016·江苏扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(2016·江苏扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(2016·江苏扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(2016·江苏扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(2016·江苏扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【考点】几何概率.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(2016·江苏扬州)当a=2016时,分式的值是2018.【考点】分式的值.【分析】首先将分式化简,进而代入求出答案.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(2016·江苏扬州)以方程组的解为坐标的点(x,y)在第二象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(2016·江苏扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(2016·江苏扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(2016·江苏扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【考点】菱形的性质.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.=4AD=4×6=24.C菱形ABCD故答案为:24.16.(2016·江苏扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.17.(2016·江苏扬州)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为2+4.【考点】反比例函数图象上点的坐标特征.【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【解答】解:∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C△ABO=AB+OB+OA=2+4.故答案为:2+4.18.(2016·江苏扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.【考点】二次函数的应用.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设未来30天每天获得的利润为y,y=(20+4t)﹣(20+4t)a化简,得y=﹣4t2+t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴≥﹣4×302+×30+1400﹣20a解得,a≤5,又∵a>0,即a的取值范围是:0<a≤5.三、解答题(共10小题,满分96分)19.(2016·江苏扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(2016·江苏扬州)解不等式组,并写出该不等式组的最大整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,21.(2016·江苏扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D级所在的扇形的圆心角.(2)根据D等级的人数=总数﹣A等级的人数﹣B等级的人数﹣C等级的人数可补全图形.(3)先求出等级为D人数所占的百分比,然后即可求出大概的等级为D的人数.【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(2016·江苏扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【考点】列表法与树状图法.【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(2016·江苏扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B 落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM 中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(2016·江苏扬州)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【考点】分式方程的应用.【分析】设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,根据走过相同的路程360km,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:该趟动车的平均速度为120km/h.25.(2016·江苏扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)【考点】相似形综合题.【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.26.(2016·江苏扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E 作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【考点】切线的性质.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(2016·江苏扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A 旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【考点】四边形综合题.【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.【解答】解:(1)∵四边形ABCD是正方形,∴∠ACF=∠DCD=90°,∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CE=CE,∵CE=a,CF=b,∴a=b;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴,∴,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(2016·江苏扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤13.(3分)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)当a=2016时,分式的值是.12.(3分)以方程组的解为坐标的点(,y)在第象限.13.(3分)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.三、解答题(共10小题,满分96分)19.(8分)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.24.(10分)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)(2016•扬州)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤1【解答】解:由题意得,﹣1≥0,解得≥1.故选B.3.(3分)(2016•扬州)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=(3﹣1)2=22,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.(3分)(2016•扬州)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N 的大小关系为()A.M<N B.M=N C.M>N D.不能确定【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(3分)(2016•扬州)以方程组的解为坐标的点(,y)在第二象限.【解答】解:,∵①﹣②得,3+1=0,解得=﹣,把的值代入②得,y=+1=,∴点(,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.17.(3分)(2016•扬州)如图,点A在函数y=(>0)的图象上,且OA=4,过点A作AB⊥轴于点B,则△ABO的周长为2+4.【解答】解:∵点A在函数y=(>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C=AB+OB+OA=2+4.△ABO故答案为:2+4.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a的取值范围应为0<a<6.【解答】解:设未30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴>29.5解得,a<6,又∵a>0,即a的取值范围是:0<a<6.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+3=9+;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,≥﹣2,解不等式②得,<1,∴不等式组的解集为﹣2≤<1.∴不等式组的最大整数解为=0,21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=,则EM=8﹣,CM=10﹣6=4,在Rt△CEM中,(8﹣)2+42=2,解得:=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【解答】解:设普通列车的速度为为m/h,动车的平均速度为1.5m/h,由题意得,﹣=1,解得:=120,经检验,=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180m/h.答:该趟动车的平均速度为180m/h.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=120°,AB=AC,作AD⊥BC于D,则∠B=30°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=,则OA=OB=OE=2,AG=,∴DG=OE=2,根据AC=AB得:4=+2+2﹣,=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CF=CE,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=4,即:a=b=4;(2)当△AEF是直角三角形时,①当∠AFE=90°时,∴∠AFD+∠CFE=90°,∵∠CEF+∠CFE=90°,∴∠AFD=∠CEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF∴AF=EF,在△ADF和△FCE中∴△ADF≌△FCE,∴FC=AD=4,CE=DF=CD+FC=8,∴a=8,b=4②当∠AEF=90°时,同①的方法得,CF=4,CE=8,∴a=4,b=8.(3)ab=32,理由:如图,∵AB∥CD∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(12分)(2016•扬州)如图1,二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=(>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC 于点N.若在点T运动的过程中,为常数,试确定的值.【解答】解:(1)∵二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=2﹣2,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴=时,=.∴当=时,点T运动的过程中,为常数.。
2016年江苏省扬州市邗江区中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.下列哪个数与﹣3的乘积等于1()A.﹣3 B.3 C.D.﹣2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6D.÷=33.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>04.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数 C.平均数D.极差6.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位7.如图,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°8.下列说法:①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;②八边形的内角和度数为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程的解为;⑤已知菱形的一个内角为60°,一条对角线为,则另一对角线为2.其中正确的结论有()个.A.2 B.3 C.4 D.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为.10.因式分解:3x2﹣27=.11.一次函数y=2x+4交x轴于点A,则点A的坐标为.12.若x、y为实数,且|x+2|+=0,则(x+y)2016=.13.如图,已知DE∥BC,且DE经过△ABC的重心G,若BC=6cm,那么DE等于cm.14.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为cm.15.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是.16.如图,一次函数y1=kx+b与反比例函数y2=的图象相交于两点(﹣1,3)、(3,﹣1),则当y1<y2时,x的取值范围是.17.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1D n C n的面积为S n,则S2016=.的面积为S1,△B3D2C2的面积为S2,…,△B n+1三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤)19.计算:(﹣)﹣1﹣3tan30°+(1﹣)0+.20.先化简,再求代数式的值:,其中m=1.21.如图,在6×8的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)在图中△ABC的内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;(2)连接(1)中的AA′,则线段AA′的长度是.22.“十年树木,百年树人”,教师的素养关系到国家的未来.扬州市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教6名选手的各项成绩见表:()笔试成绩的平均数是;(2)写出说课成绩的中位数为,众数为;(3)已知序号为1,2,3,4号选手的总分成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?23.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).24.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?25.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.26.扬州文昌阁位于汶河路、文昌路交叉处,为江苏省扬州市地标建筑.(如图①),喜爱数学实践活动的小明查资料得知:建于明代万历十三年,属于扬州府学建筑群,旧日阁上悬有“邗上文枢“匾额.扬州府学建筑,已陆续圮毁,现仅存文昌阁,为扬州市级文物保护单位.小伟决定用自己所学习的知识测量文昌阁的高度.如图②,他在C处利用高为0.45m测角仪CD,测得文昌阁最高点A的仰角为30°,又前进了28m到达E处,又测得文昌阁最高点A 的仰角为60°.请你帮助小伟算算文昌阁的高度.(结果保留两位小数,≈1.4,≈1.7)27.在⊙O中,AB、CD为两条弦,AB=CD,AB、CD交于点E,连结BD.(1)如图1,求证:∠B=∠D:(2)如图2,连结D并延长交弦AB于点F,连结AO交弦CD于点G,已知AB⊥CD.①求证:CG=BF;②当CE=DG时,若BF=3,求⊙O的半径.28.如图①,抛物线y=ax2+bx+c与x轴正半轴交于点A,B两点,与y轴交于点C,直线y=﹣x+2经过A,C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴,并从点C开始以每秒1个单位长度的速度沿y轴负半轴方向平移,且分别交y轴、线段BC于点E,D两点,同时动点P从点B出发,向BO方向以每秒2个单位长的速度运动(如图②),连接DP,设点P的运动时间为t秒(t<2),若以P,B,D为顶点的三角形与△ABC相似,求t的值;(3)在(2)的条件下,若△EDP是等腰三角形,求t的值.2016年江苏省扬州市邗江区中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.下列哪个数与﹣3的乘积等于1()A.﹣3 B.3 C.D.﹣【考点】倒数.【分析】直接利用有理数除法运算法则进而得出答案.【解答】解:∵一个数与﹣3的乘积等于1,∴这个数为:1÷(﹣3)=﹣,故选:D.2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6D.÷=3【考点】二次根式的乘除法;二次根式的加减法.【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法计算,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选D.3.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.4.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理求出∠C,即可判定△ABC的形状.【解答】解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数 C.平均数D.极差【考点】统计量的选择.【分析】由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选:A.6.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位【考点】圆周角定理;勾股定理.【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.从而得到EF即可是直径,根据勾股定理计算即可.【解答】解:连接EF,∵OE⊥OF,∴EF是直径,∴EF====10.故选:B.7.如图,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【考点】圆周角定理;圆内接四边形的性质.【分析】在优弧BD上取点A,连接AD,AB,首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数,然后根据圆内接四边形的性质可得出结论.【解答】解:如图,在优弧BD上取点A,连接AD,AB,∵∠BOD=88°,∴∠BAD=88°÷2=44°.∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°.故选D.8.下列说法:①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;②八边形的内角和度数为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程的解为;⑤已知菱形的一个内角为60°,一条对角线为,则另一对角线为2.其中正确的结论有()个.A.2 B.3 C.4 D.5【考点】直角三角形斜边上的中线;解分式方程;多边形内角与外角;菱形的性质;方差.【分析】根据直角三角形斜边上的中线等于斜边的一半可判断出①的正误;根据多边形的内角和公式:(n﹣2)•180°(n≥3)且n为整数)可以计算出②的正误;根据方差公式可计算出③的正误;解分式方程可判断出④的正误;⑤要分两种情况进行讨论.【解答】解:①根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=4,故此说法正确;②八边形的内角和度数为:(8﹣2)×180°=1080°,故此说法正确;③2、3、4、3这组数据的平均数为(2+3+4+3)÷4=3,方差为 [(2﹣3)2+(3﹣3)2+(4﹣3)2+(3﹣3)2]=0.5,故此说法正确;④分式方程的解为,说法正确;⑤已知菱形的一个内角为60°,一条对角线为,则另一对角线为2或6,故此说法错误;故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为9.42×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106,故答案为:9.42×10610.因式分解:3x2﹣27=3(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).11.一次函数y=2x+4交x轴于点A,则点A的坐标为(﹣2,0).【考点】一次函数图象上点的坐标特征.【分析】根据一次函数解析式,令y=0,求得x的值,即可得到点A的坐标.【解答】解:一次函数y=2x+4中,当y=0时,0=2x+4,解得x=﹣2,∴点A的坐标为(﹣2,0).故答案为:(﹣2,0)12.若x、y为实数,且|x+2|+=0,则(x+y)2016=1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据绝对值与算术平方根的和为零,可得绝对值与算术平方根同时为零,可得x、y的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,∴(x+y)2016=1.故答案为:1.13.如图,已知DE∥BC,且DE经过△ABC的重心G,若BC=6cm,那么DE等于4cm.【考点】三角形的重心.【分析】利用重心到顶点的距离与重心到对边中点的距离之比为2:1,进而求出答案.【解答】解:连接AG并延长到BC上一点N,∵△ABC的重心G,DE∥BC,∴△ADG∽△ABN,BN=CN,DG=GE,∴==,∴=,解得:DG=2,∴DE=4.故答案为:4.14.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.【考点】相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.【分析】首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.15.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是30.【考点】圆锥的计算.【分析】圆锥的底面周长即为侧面展开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【解答】解:将l=20π,n=120代入扇形弧长公式l=中,得20π=,解得r=30.故答案为:30.16.如图,一次函数y1=kx+b与反比例函数y2=的图象相交于两点(﹣1,3)、(3,﹣1),则当y1<y2时,x的取值范围是﹣1<x<0或x>3.【考点】反比例函数与一次函数的交点问题.【分析】根据一次函数与反比例函数图象的交点、结合图象解答即可.【解答】解:由图象可知,当﹣1<x<0或x>3时,y1<y2,故答案为:﹣1<x<0或x>3.17.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【考点】全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1D n C n的面积为S n,则S2016=.的面积为S1,△B3D2C2的面积为S2,…,△B n+1【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,所以S2=×=,同样的道理,即可求出S3,s n,得到答案.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,C1=×1×1=,∴S△AB1连接B1、B2、B3、B4点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×==,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×==,…s n=,则S2016==,故答案为:.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤)19.计算:(﹣)﹣1﹣3tan30°+(1﹣)0+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质化简,计算即可得到结果.【解答】解:原式=﹣2﹣3×+1+2=﹣2﹣+1+2=﹣1.20.先化简,再求代数式的值:,其中m=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把m的值代入进行计算即可.【解答】解:原式=•=,当m=1时,原式==﹣.21.如图,在6×8的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)在图中△ABC的内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;(2)连接(1)中的AA′,则线段AA′的长度是.【考点】作图-位似变换.【分析】(1)利用OA,利用网格特点,分别画出OA、OB、OC的中点A′、B′、C′,则△A′B′C′满足条件;(2)利用勾股定理计算出OA的长,然后利用点A′为OA的中点可得到线段AA′的长度.【解答】解:(1)如图,△A′B′C′为所作;(2)OA==2,∵OA′:OA=1:2,∴点A′为OA的中点,∴AA′=.故答案为.22.“十年树木,百年树人”,教师的素养关系到国家的未来.扬州市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教66名选手的各项成绩见表:)笔试成绩的平均数是76;(2)写出说课成绩的中位数为85.5,众数为85;(3)已知序号为1,2,3,4号选手的总分成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?【考点】众数;加权平均数;中位数.【分析】(1)根据平均数的计算公式进行计算即可;(2)根据中位数和众数的概念求解即可;(3)根据加权平均数的计算方法求出5号和6号选手的成绩,再进行比较即可得出答案.【解答】解:(1)笔试成绩的平均数是:=76(分).故答案为:76;(2)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,则中位数是(85+86)÷2=85.5,85出现了2次,出现的次数最多,则众数是85.故答案为:85.5,85;(3)5号选手的成绩为:66×0.2+88×0.3+94×0.5=86.6(分),6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9(分),∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.23.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).【考点】列表法与树状图法.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案.(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),∴这样的点落在如图所示的圆内的概率为:.24.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)需先算出从2013年到2015年,每年盈利的年增长率,然后根据2013年的盈利,算出2014年的利润;(2)相等关系是:2016年盈利=2015年盈利×(1+每年盈利的年增长率).【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160,解得x1=0.2,x2=﹣2.2(不合题意,舍去),则1500(1+x)=1500(1+0.2)=1800.答:该公司2014年盈利1800万元.(2)2160×(1+0.2)=2592(万元).答:预计2016年盈利2592万元.25.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,=BC•EG=6×3=18.∴S菱形BCFE26.扬州文昌阁位于汶河路、文昌路交叉处,为江苏省扬州市地标建筑.(如图①),喜爱数学实践活动的小明查资料得知:建于明代万历十三年,属于扬州府学建筑群,旧日阁上悬有“邗上文枢“匾额.扬州府学建筑,已陆续圮毁,现仅存文昌阁,为扬州市级文物保护单位.小伟决定用自己所学习的知识测量文昌阁的高度.如图②,他在C处利用高为0.45m测角仪CD,测得文昌阁最高点A的仰角为30°,又前进了28m到达E处,又测得文昌阁最高点A 的仰角为60°.请你帮助小伟算算文昌阁的高度.(结果保留两位小数,≈1.4,≈1.7)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义分别用AG表示出FG、CG,根据CG﹣FG=40列出算式求出AG 的长,计算即可.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==AG,在Rt△ACG中,tan∠ACG=,∴CG==AG,∵CG﹣FG=40,∴AG﹣AG=28,∴AG=14,∴AB=14+0.45≈24.25.答:文昌阁的高度AB约为24.25米.27.在⊙O中,AB、CD为两条弦,AB=CD,AB、CD交于点E,连结BD.(1)如图1,求证:∠B=∠D:(2)如图2,连结D并延长交弦AB于点F,连结AO交弦CD于点G,已知AB⊥CD.①求证:CG=BF;②当CE=DG时,若BF=3,求⊙O的半径.【考点】圆的综合题.【分析】(1)如图1,利用弦、弧的关系得到=,则=,然后根据圆周角定理可得∠B=∠D;(2)如图2,先由(1)得∠B=∠EDB=45°,再利用圆周角定理得到∠AOD=2∠B=90°,然后证明△AOF≌△DOG得到GD=AF,于是有CG=BF;②设CE=2x,DG=5x,则AF=DG=5x,接着表示出AE=CE=2x,EG=3﹣2x,DE=3+3x,EF=3x,然后通过证明△AEG∽△DEF,则利用相似比可求出x=1,从而得到EG=1,AE=2,DG=5,再利用勾股定理计算出AG=,最后证明△AEG∽△DOG,则利用相似比可计算出OD.【解答】(1)证明:如图1,∵AB=CD,∴=,∴﹣=﹣,即=,∴∠B=∠D;(2)①证明:如图2,∵AB⊥CD,∴∠BED=90°,由(1)得∠B=∠EDB,∴∠B=45°,∴∠AOD=2∠B=90°,∴∠AOF=∠BOG=90°,∵∠1+∠3=∠2+∠3=90°,∴∠1=∠2,在△AOF和△DOG中,∴△AOF≌△DOG,∴GD=AF,∵AB=CD,∴CG=BF;②设CE=2x,DG=5x,则AF=DG=5x,∵∠B=∠EDB,∴EB=ED,∵AB=CD,∴AE=CE=2x,由①得CG=BF=3,∴EG=3﹣2x,DE=DG+EG=5x+3﹣2x=3+3x,EF=AF﹣AE=5x﹣2x=3x,∵∠1=∠2=∠AGE,∠AEG=∠DEF=90°,∴△AEG∽△DEF,∴AE:DE=EG:EF,即2x:(3+3x)=(3﹣2x):3x,解得x1=1,x2=﹣(舍去),∴EG=1,AE=2,DG=5,在Rt△AEG中,AG==,∵∠2=∠AGE,∠AEG=∠DCG,∴△AEG∽△DOG,∴AE:OD=AG:DG,即2:OD=:5,解得OD=2,∴⊙O的半径是2.28.如图①,抛物线y=ax2+bx+c与x轴正半轴交于点A,B两点,与y轴交于点C,直线y=﹣x+2经过A,C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴,并从点C开始以每秒1个单位长度的速度沿y轴负半轴方向平移,且分别交y轴、线段BC于点E,D两点,同时动点P从点B出发,向BO方向以每秒2个单位长的速度运动(如图②),连接DP,设点P的运动时间为t秒(t<2),若以P,B,D为顶点的三角形与△ABC相似,求t的值;(3)在(2)的条件下,若△EDP是等腰三角形,求t的值.【考点】二次函数综合题.【分析】(1)求出A、B两点坐标,可以设抛物线为y=a(x﹣2)(x﹣4),把点C坐标代入即可求出a.(2)分两种情形①当△DBP∽△CBA时,=,②当△DBP∽△ABC时,=,列出方程即可解决.(3)分三种情形①当DE=EP ②当DE=DP③当EP=DP,分别列出方程即可解决问题.【解答】解:(1)在y=﹣x+2中,令x=0,y=2;令y=0,x=2,得A(2,0),C(0,2),又∵AB=2,∴B(4,0),∴设抛物线为y=a(x﹣2)(x﹣4),把C点坐标代入,得8a=2,a=,∴抛物线解析式为y=x2﹣x+2.(2)∵AB=2,AC=2,BC=2.BP=2t,CE=t,又∵DE∥x轴,∴=,∴=,∴CD=t,∴DB=2﹣t.当△DBP∽△CBA时,=,∴=,∴t=;当△DBP∽△ABC时,=,∴=,∴t=.(3)∵DE ∥OB ,∴=,∵CE=t∴DE=2t ,∵直线BC 为y=﹣x +2,∴D (2t ,﹣t +2),E (0,2﹣t ),P (4﹣2t ,0),EP==(2﹣t ),DP=;①当DE=EP 时,2t=﹣t +2,∴t=2(﹣2)=10﹣4<2; ②当DE=DP 时,4t 2=t 2﹣4t +4+16t 2﹣32t +16,13t 2﹣36t +20=0,t 1=<2,t 2=2(舍); ③当EP=DP 时,5(2﹣t )2,=16(1﹣t )2+(2﹣t )2, 2﹣t=±2(1﹣t ),t 1=<2,t 2=0(舍).综上所述,符合条件的t 值有:t 1=10﹣4,t 2=,t 3=.2016年10月16日。
数学精品复习资料扬州市2016年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .12-2.函数y =x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6则这12A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁 7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
将该矩形纸片剪去3个 等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( ) A .6 B .3 C .2.5 D .2二、填空题(本大题共有10小题,每小题3分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)(2016•扬州)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤13.(3分)(2016•扬州)下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2017年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)(2016•扬州)当a=2016时,分式的值是.12.(3分)(2016•扬州)以方程组的解为坐标的点(x,y)在第象限.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.17.(3分)(2016•扬州)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.28.(12分)(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【分析】根据因数等于积除以另一个因数计算即可得解.【解答】解:1÷(﹣2)=﹣.故选D.【点评】本题考查了有理数的除法,是基础题,熟练掌握因数、因数和积的关系是解题的关键.2.(3分)(2016•扬州)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2016•扬州)下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.【点评】本题考查了同底数幂的乘除法,合并同类项以及幂的乘方与积的乘方的计算,熟记计算法则即可解答该题.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.【点评】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.【点评】此题考查了中位数和众数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.【点评】本题考查几何最值问题、等腰直角三角形性质等知识,解题的关键是探究出如何确定三个等腰直角三角形,属于中考选择题中的压轴题.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2017年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【分析】首先将分式化简,进而代入求出答案.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.【点评】此题主要考查了分式的值,正确化简分式是解题关键.12.(3分)(2016•扬州)以方程组的解为坐标的点(x,y)在第二象限.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.【点评】本题考查的是二元一次方程组的解,熟知各项限内点的坐标特点是解答此题的关键.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,故答案为:80.【点评】本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.【点评】本题主要考查略圆周角定理、等腰直角三角形的判定与性质、勾股定理;由圆周角定理得到,得出AC=CD是解题的关键.17.(3分)(2016•扬州)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为2+4.【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【解答】解:∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C△ABO=AB+OB+OA=2+4.故答案为:2+4.【点评】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴≥﹣4×302+(260﹣4a)×30+1400﹣20a解得,a≤5,又∵a>0,即a的取值范围是:0<a≤5.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式、特殊角的三角函数值等考点的运算.同时考查了整式的混合运算,涉及了完全平方公式、平方差公式、合并同类项的知识点.注意运算顺序以及符号的处理.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,【点评】此题是一元一次不等式组的整数解题,主要考查了不等式得解法和不等式组的解集的确定及整数解的确定,解本题的关键是不等式的解法运用.21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【分析】(1)根据A等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D级所在的扇形的圆心角.(2)根据D等级的人数=总数﹣A等级的人数﹣B等级的人数﹣C等级的人数可补全图形.(3)先求出等级为D人数所占的百分比,然后即可求出大概的等级为D的人数.【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).【点评】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM 中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【分析】设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,根据走过相同的路程360km,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:该趟动车的平均速度为120km/h.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(160°)≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.【点评】本题考查的是相似三角形的判定和性质、等腰三角形的性质以及T(A)的定义,正确理解T(A)的定义、掌握相似三角形的判定定理和性质定理是解题的关键.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.【点评】本题考查了切线的性质,由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系,由此得出平行和角的关系,根据两个角相等的三角形是等腰三角形可得△ABC是等腰三角形;第二问运用了直角三角形30°角的性质及等腰三角形和矩形的有关性质,关键是找出恰当的等量关系式:AC=AB,设未知数,列关于x的一元一次方程得出结论.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.【解答】解:(1)∵四边形ABCD是正方形,∴∠ACF=∠DCD=90°,∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CE=CE,∵CE=a,CF=b,∴a=b;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴,∴,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分) 1.与﹣2的乘积为1的数是( ) A .2B .﹣2C .D .﹣2.函数y=中,自变量x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x ≤1 3.下列运算正确的是( ) A .3x 2﹣x 2=3 B .a •a 3=a 3 C .a 6÷a 3=a 2 D .(a 2)3=a 64.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( )A .B .C .D .5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A .B .C .D .A .2,20岁B .2,19岁C .19岁,20岁D.19岁,19岁7.已知M=a﹣1,N=a 2﹣a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=N C .M >N D .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A .6B .3C .2.5D .2二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 .10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 .11.当a=2016时,分式的值是 .12.以方程组的解为坐标的点(x ,y )在第 象限.13.若多边形的每一个内角均为135°,则这个多边形的边数为 . 14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1= °.15.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE=3,则菱形ABCD 的周长为 .16.如图,⊙O 是△ABC 的外接圆,直径AD=4,∠ABC=∠DAC ,则AC 长为 .17.如图,点A 在函数y=(x >0)的图象上,且OA=4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 .18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .三、解答题(共10小题,满分96分) 19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b )(a ﹣b )﹣(a ﹣2b )2,其中a=2,b=﹣1. 20.解不等式组,并写出该不等式组的最大整数解.21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A 、B 、C 、D 四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了 名学生的生物成绩.扇形统计图中,D 等级所对应的扇形圆心角度数为 °; (2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D ?22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩. (1)小明和小刚都在本周日上午去游玩的概率为 ; (2)求他们三人在同一个半天去游玩的概率. 23.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)若AB=6,AC=10,求四边形AECF 的面积.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度. 25.如图1,△ABC 和△DEF 中,AB=AC ,DE=DF ,∠A=∠D .(1)求证: =;(2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也就确定,我们把这个比值记作T (A ),即T (A )==,如T (60°)=1.①理解巩固:T (90°)= ,T= ,若α是等腰三角形的顶角,则T (α)的取值范围是 ;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1). (参考数据:T ≈1.97,T (80°)≈1.29,T (40°)≈0.68)26.如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC .(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣,求⊙O 的半径和BF 的长.27.已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与边BC 、DC 的延长线交于点E 、F ,连接EF .设CE=a ,CF=b .(1)如图1,当∠EAF 被对角线AC 平分时,求a 、b 的值; (2)当△AEF 是直角三角形时,求a 、b 的值;(3)如图3,探索∠EAF 绕点A 旋转的过程中a 、b 满足的关系式,并说明理由. 28.如图1,二次函数y=ax 2+bx 的图象过点A (﹣1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图象上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y=kx (k >0)的图象与该二次函数的图象交于O 、C 两点,点T 为该二次函数图象上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴交OC 于点N .若在点T 运动的过程中,为常数,试确定k 的值.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分) 1.与﹣2的乘积为1的数是( ) A .2B .﹣2C .D .﹣【考点】有理数的除法.【分析】根据因数等于积除以另一个因数计算即可得解. 【解答】解:1÷(﹣2)=﹣.故选D .2.函数y=中,自变量x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x ≤1 【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解. 【解答】解:由题意得,x ﹣1≥0, 解得x ≥1. 故选B .3.下列运算正确的是( )A .3x 2﹣x 2=3B .a •a 3=a 3C .a 6÷a 3=a 2D .(a 2)3=a 6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A 、原式=(3﹣1)x 2=2x 2,故本选项错误; B 、原式=a 1+3=a 4,故本选项错误; C 、原式=a 6﹣3=a 3,故本选项错误; D 、原式=a 2×3=a 6,故本选项正确. 故选:D .4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( )A .B .C .D .【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D ,俯视图为选项B ,左视图为选项C . 故选A .5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A .B .C .D .【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断. 【解答】解:A 、不是中心对称图形,故错误; B 、不是中心对称图形,故错误; C 、是中心对称图形,故正确; D 、不是中心对称图形,故错误; 故选:C .A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁 【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数, 则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D .7.已知M=a ﹣1,N=a 2﹣a(a 为任意实数),则M、N 的大小关系为() A .M <NB .M=NC .M >ND .不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M 与N 代入N ﹣M 中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a ﹣1,N=a 2﹣a (a 为任意实数), ∴,∴N >M ,即M <N .故选A8.如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A .6B .3C .2.5D .2【考点】几何问题的最值.【分析】以BC 为边作等腰直角三角形△EBC ,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG ⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF ,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分面积的最小【解答】解:如图以BC 为边作等腰直角三角形△EBC ,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG ⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF ,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5. 故选C .二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:12000=1.2×104, 故答案为:1.2×104. 10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【考点】几何概率.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案. 【解答】解:∵黑色三角形的面积占总面积的=, ∴刚好落在黑色三角形区域的概率为; 故答案为:.11.当a=2016时,分式的值是 2018 .【考点】分式的值.【分析】首先将分式化简,进而代入求出答案. 【解答】解:==a+2,把a=2016代入得: 原式=2016+2=2018. 故答案为:2018.12.以方程组的解为坐标的点(x ,y )在第 二 象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x 、y 的值,再根据各象限内点的坐标特点即可得出结论. 【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣, 把x 的值代入②得,y=﹣+1=, ∴点(x ,y )的坐标为:(﹣,), ∴此点在第二象限. 故答案为:二.13.若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【考点】菱形的性质.【分析】由菱形的性质可得出AC ⊥BD ,AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得出AD 的长,结合菱形的周长公式即可得出结论. 【解答】解:∵四边形ABCD 为菱形, ∴AC ⊥BD ,AB=BC=CD=DA , ∴△AOD 为直角三角形.∵OE=3,且点E 为线段AD 的中点, ∴AD=2OE=6.C 菱形ABCD =4AD=4×6=24. 故答案为:24.16.如图,⊙O 是△ABC 的外接圆,直径AD=4,∠ABC=∠DAC ,则AC 长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC 可得,得出则AC=CD ,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC 的长. 【解答】解:连接CD ,如图所示: ∵∠B=∠DAC , ∴, ∴AC=CD , ∵AD 为直径, ∴∠ACD=90°,在Rt △ACD 中,AD=6, ∴AC=CD=AD=×4=2,故答案为:2.17.如图,点A 在函数y=(x >0)的图象上,且OA=4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 2+4 .【考点】反比例函数图象上点的坐标特征.【分析】由点A 在反比例函数的图象上,设出点A 的坐标,结合勾股定理可以表现出OA 2=AB 2+OB 2,再根据反比例函数图象上点的坐标特征可得出AB •OB 的值,根据配方法求出(AB+OB )2,由此即可得出AB+OB 的值,结合三角形的周长公式即可得出结论. 【解答】解:∵点A 在函数y=(x >0)的图象上, ∴设点A 的坐标为(n ,)(n >0). 在Rt △ABO 中,∠ABO=90°,OA=4, ∴OA 2=AB 2+OB 2, 又∵AB •OB=•n=4,∴(AB+OB )2=AB 2+OB 2+2AB •OB=42+2×4=24, ∴AB+OB=2,或AB+OB=﹣2(舍去). ∴C △ABO =AB+OB+OA=2+4. 故答案为:2+4.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 0<a ≤5 . 【考点】二次函数的应用.【分析】根据题意可以列出相应的不等式,从而可以解答本题. 【解答】解:设未来30天每天获得的利润为y , y=(20+4t )﹣(20+4t )a 化简,得y=﹣4t 2+t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴≥﹣4×302+×30+1400﹣20a解得,a ≤5, 又∵a >0,即a 的取值范围是:0<a ≤5.三、解答题(共10小题,满分96分) 19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b )(a ﹣b )﹣(a ﹣2b )2,其中a=2,b=﹣1.【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果; (2)根据完全平方公式和平方差公式化简,然后把a 、b 的值代入计算.. 【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b )(a ﹣b )﹣(a ﹣2b )2 =a 2﹣b 2﹣a 2+4ab ﹣4b 2 =4ab ﹣5b 2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.解不等式组,并写出该不等式组的最大整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集. 【解答】解:解不等式①得,x ≥﹣2, 解不等式②得,x <1,∴不等式组的解集为﹣2≤x <1. ∴不等式组的最大整数解为x=0,21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A 、B 、C 、D 四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了 50 名学生的生物成绩.扇形统计图中,D 等级所对应的扇形圆心角度数为 36 °;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D ?【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)根据A 等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D 级所在的扇形的圆心角.(2)根据D 等级的人数=总数﹣A 等级的人数﹣B 等级的人数﹣C 等级的人数可补全图形.(3)先求出等级为D 人数所占的百分比,然后即可求出大概的等级为D 的人数. 【解答】解:(1)15÷30%=50(名), 50﹣15﹣22﹣8=5(名), 360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D 等级所对应的扇形圆心角度数为36°. 故答案为:50,36;(2)50﹣15﹣22﹣8=5(名), 如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D .22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩. (1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【考点】列表法与树状图法. 【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得. 【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果, 其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种, ∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=; 答:他们三人在同一个半天去游玩的概率是. 故答案为:(1).23.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB=6,AC=10,求四边形AECF 的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题). 【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD ,AD ∥BC ,∠ANF=90°,∠CME=90°,易得AN=CM ,可得△ANF ≌△CME (ASA ),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x ,则EM=8﹣x ,CM=10﹣6=4,在Rt △CEM 中,利用勾股定理可解得x ,由平行四边形的面积公式可得结果. 【解答】(1)证明:∵折叠,∴AM=AB ,CN=CD ,∠FNC=∠D=90°,∠AME=∠B=90°, ∴∠ANF=90°,∠CME=90°, ∵四边形ABCD 为矩形, ∴AB=CD ,AD ∥BC , ∴AM=CN ,∴AM ﹣MN=CN ﹣MN , 即AN=CM ,在△ANF 和△CME 中,,∴△ANF ≌△CME (ASA ), ∴AF=CE , 又∵AF ∥CE ,∴四边形AECF 是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8, 设CE=x ,则EM=8﹣x ,CM=10﹣6=4, 在Rt △CEM 中, (8﹣x )2+42=x 2, 解得:x=5,∴四边形AECF 的面积的面积为:EC •AB=5×6=30.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度. 【考点】分式方程的应用.【分析】设普通列车的速度为为xkm/h ,动车的平均速度为1.5xkm/h ,根据走过相同的路程360km ,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解. 【解答】解:设普通列车的速度为为xkm/h ,动车的平均速度为1.5xkm/h ,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意. 答:该趟动车的平均速度为120km/h .25.如图1,△ABC 和△DEF 中,AB=AC ,DE=DF ,∠A=∠D .(1)求证: =;(2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也就确定,我们把这个比值记作T (A ),即T (A )==,如T (60°)=1.①理解巩固:T (90°)=,T=,若α是等腰三角形的顶角,则T (α)的取值范围是 0<T (α)<2 ;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1). (参考数据:T ≈1.97,T (80°)≈1.29,T (40°)≈0.68) 【考点】相似形综合题. 【分析】(1)证明△ABC ∽△DEF ,根据相似三角形的性质解答即可; (2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T (A )的定义解答即可. 【解答】解:(1)∵AB=AC ,DE=DF , ∴=,又∵∠A=∠D , ∴△ABC ∽△DEF , ∴=;(2)①如图1,∠A=90°,AB=AC , 则=,∴T (90°)=,如图2,∠A=90°,AB=AC ,作AD ⊥BC 于D , 则∠B=60°, ∴BD=AB ,∴BC=AB , ∴T=;∵AB ﹣AC <BC <AB+AC , ∴0<T (α)<2,故答案为:;;0<T (α)<2; ②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π, 设扇形的圆心角为n °, 则=8π,解得,n=160, ∵T ≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.26.如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC .(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣,求⊙O 的半径和BF 的长.【考点】切线的性质.【分析】(1)连接OE ,根据切线性质得OE ⊥DE ,与已知中的ED ⊥AC 得平行,由此得∠1=∠C ,再根据同圆的半径相等得∠1=∠B ,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE ,再设与半径有关系的边OG=x ,通过AB=AC 列等量关系式,可求得结论. 【解答】解:(1)△ABC 是等腰三角形,理由是: 如图1,连接OE , ∵DE 是⊙O 的切线, ∴OE ⊥DE , ∵ED ⊥AC , ∴AC ∥OE , ∴∠1=∠C , ∵OB=OE , ∴∠1=∠B , ∴∠B=∠C ,∴△ABC 是等腰三角形;(2)如图2,过点O 作OG ⊥AC ,垂足为G ,则得四边形OGDE 是矩形, ∵△ABC 是等腰三角形, ∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x ,则OA=OB=OE=2x ,AG=x , ∴DG=0E=2x ,根据AC=AB 得:4x=x+2x+2﹣, x=1,∴0E=OB=2,在直角△OEF 中,∠EOF=∠A=30°, cos30=,OF==2÷=,∴BF=﹣2,⊙O 的半径为2.27.已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与边BC 、DC 的延长线交于点E 、F ,连接EF .设CE=a ,CF=b .(1)如图1,当∠EAF 被对角线AC 平分时,求a 、b 的值; (2)当△AEF 是直角三角形时,求a 、b 的值;(3)如图3,探索∠EAF 绕点A 旋转的过程中a 、b 满足的关系式,并说明理由. 【考点】四边形综合题.【分析】(1)当∠EAF 被对角线AC 平分时,易证△ACF ≌△ACE ,因此CF=CE ,即a=b .(2)分两种情况进行计算,①先用勾股定理得出CF 2=8(CE+4)①,再用相似三角形得出4CF=CE (CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC ,而∠ACF=∠ACE=135°,得到△ACF ∽△ECA ,即可. 【解答】解:(1)∵四边形ABCD 是正方形, ∴∠ACF=∠DCD=90°,∵AC 是正方形ABCD 的对角线, ∴∠ACB=∠ACD=45°, ∴∠ACF=∠ACE ,∵∠EAF 被对角线AC 平分, ∴∠CAF=∠CAE , 在△ACF 和△ACE 中,,∴△ACF ≌△ACE , ∴CE=CE ,∵CE=a ,CF=b ,∴a=b ;(2)当△AEF 是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF 是等腰直角三角形,∴AF 2=2FE 2=2(CE 2+CF 2),AF 2=2(AD 2+BE 2),∴2(CE 2+CF 2)=2(AD 2+BE 2),∴CE 2+CF 2=AD 2+BE 2,∴CE 2+CF 2=16+(4+CE )2,∴CF 2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE ,∴△ABE ∽△ECF ,∴, ∴,∴4CF=CE (CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF ,∴∠BAG=∠AFC ,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF )﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC ,∵∠ACF=∠ACE=135°,∴△ACF ∽△ECA ,∴,∴EC ×CF=AC 2=2AB 2=32∴ab=32.28.如图1,二次函数y=ax 2+bx 的图象过点A (﹣1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图象上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y=kx (k >0)的图象与该二次函数的图象交于O 、C 两点,点T 为该二次函数图象上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴交OC 于点N .若在点T 运动的过程中,为常数,试确定k 的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB 为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB 为边时,根据中点坐标公式列出方程组解决问题.(3)设T (m ,m 2﹣2m ),由TM ⊥OC ,可以设直线TM 为y=﹣x+b ,则m 2﹣2m=﹣m+b ,b=m 2﹣2m+,求出点M 、N 坐标,求出OM 、ON ,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx 的图象过点A (﹣1,3),顶点B 的横坐标为1, 则有解得∴二次函数y=x 2﹣2x ,(2)由(1)得,B (1,﹣1),∵A (﹣1,3),∴直线AB 解析式为y=﹣2x+1,AB=2,设点Q (m ,0),P (n ,n 2﹣2n )∵以A 、B 、P 、Q 为顶点的四边形是平行四边形,①当AB 为对角线时,根据中点坐标公式得,则有,解得或∴P (1+,2)和(1﹣,2)②当AB 为边时,根据中点坐标公式得解得或 ∴P (1+,4)或(1﹣,4).(3)设T (m ,m 2﹣2m ),∵TM ⊥OC ,∴可以设直线TM 为y=﹣x+b ,则m 2﹣2m=﹣m+b ,b=m 2﹣2m+,由解得,∴OM==,ON=m •,∴=,∴k=时, =.∴当k=时,点T 运动的过程中,为常数.。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤13.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.当a=2016时,分式的值是.12.以方程组的解为坐标的点(x,y)在第象限.13.若多边形的每一个内角均为135°,则这个多边形的边数为.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.17.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.三、解答题(共10小题,满分96分)19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.解不等式组,并写出该不等式组的最大整数解.21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D 四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.25.如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T (α)的取值范围是;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)26.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC 于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.27.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.28.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【考点】有理数的除法.【分析】根据因数等于积除以另一个因数计算即可得解.【解答】解:1÷(﹣2)=﹣.故选D.2.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.3.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【考点】几何概率.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.当a=2016时,分式的值是2018.【考点】分式的值.【分析】首先将分式化简,进而代入求出答案.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.以方程组的解为坐标的点(x,y)在第二象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【考点】菱形的性质.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.=4AD=4×6=24.C菱形ABCD故答案为:24.16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.17.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为2+4.【考点】反比例函数图象上点的坐标特征.【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【解答】解:∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C△ABO=AB+OB+OA=2+4.故答案为:2+4.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.【考点】二次函数的应用.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设未来30天每天获得的利润为y,y=(20+4t)﹣(20+4t)a化简,得y=﹣4t2+t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴≥﹣4×302+×30+1400﹣20a解得,a≤5,又∵a>0,即a的取值范围是:0<a≤5.三、解答题(共10小题,满分96分)19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.解不等式组,并写出该不等式组的最大整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D 四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D 级所在的扇形的圆心角.(2)根据D等级的人数=总数﹣A等级的人数﹣B等级的人数﹣C等级的人数可补全图形.(3)先求出等级为D人数所占的百分比,然后即可求出大概的等级为D的人数.【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【考点】列表法与树状图法.【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM 中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【考点】分式方程的应用.【分析】设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,根据走过相同的路程360km,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:该趟动车的平均速度为120km/h.25.如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)【考点】相似形综合题.【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.26.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC 于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【考点】切线的性质.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【考点】四边形综合题.【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.【解答】解:(1)∵四边形ABCD是正方形,∴∠ACF=∠DCD=90°,∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CE=CE,∵CE=a,CF=b,∴a=b;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴,∴,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤13.(3分)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)当a=2016时,分式的值是.12.(3分)以方程组的解为坐标的点(,y)在第象限.13.(3分)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.三、解答题(共10小题,满分96分)19.(8分)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.24.(10分)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)(2016•扬州)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤1【解答】解:由题意得,﹣1≥0,解得≥1.故选B.3.(3分)(2016•扬州)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=(3﹣1)2=22,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.(3分)(2016•扬州)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N 的大小关系为()A.M<N B.M=N C.M>N D.不能确定【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(3分)(2016•扬州)以方程组的解为坐标的点(,y)在第二象限.【解答】解:,∵①﹣②得,3+1=0,解得=﹣,把的值代入②得,y=+1=,∴点(,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.17.(3分)(2016•扬州)如图,点A在函数y=(>0)的图象上,且OA=4,过点A作AB⊥轴于点B,则△ABO的周长为2+4.【解答】解:∵点A在函数y=(>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C=AB+OB+OA=2+4.△ABO故答案为:2+4.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a的取值范围应为0<a<6.【解答】解:设未30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴>29.5解得,a<6,又∵a>0,即a的取值范围是:0<a<6.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+3=9+;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,≥﹣2,解不等式②得,<1,∴不等式组的解集为﹣2≤<1.∴不等式组的最大整数解为=0,21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=,则EM=8﹣,CM=10﹣6=4,在Rt△CEM中,(8﹣)2+42=2,解得:=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【解答】解:设普通列车的速度为为m/h,动车的平均速度为1.5m/h,由题意得,﹣=1,解得:=120,经检验,=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180m/h.答:该趟动车的平均速度为180m/h.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=120°,AB=AC,作AD⊥BC于D,则∠B=30°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=,则OA=OB=OE=2,AG=,∴DG=OE=2,根据AC=AB得:4=+2+2﹣,=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CF=CE,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=4,即:a=b=4;(2)当△AEF是直角三角形时,①当∠AFE=90°时,∴∠AFD+∠CFE=90°,∵∠CEF+∠CFE=90°,∴∠AFD=∠CEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF∴AF=EF,在△ADF和△FCE中∴△ADF≌△FCE,∴FC=AD=4,CE=DF=CD+FC=8,∴a=8,b=4②当∠AEF=90°时,同①的方法得,CF=4,CE=8,∴a=4,b=8.(3)ab=32,理由:如图,∵AB∥CD∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(12分)(2016•扬州)如图1,二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=(>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC 于点N.若在点T运动的过程中,为常数,试确定的值.【解答】解:(1)∵二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=2﹣2,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴=时,=.∴当=时,点T运动的过程中,为常数.。
扬州市2016年初中毕业、升学统一考试数学试题(本卷满分150分,考试时间为120分钟)2016.06.17 一、选择题(本大题共有8小题,每题3分,共24分)1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12D .12-2.函数y =x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D 6.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的众数、中位数分别是 ( ) A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=N C .M >N D .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
将该矩形纸片剪去3个 等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( ) A .6 B .3 C .2.5 D .2 二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 。
10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 。
11.当a=2016时,分式242a a --的值是 。
12.以方程组221y x y x ì=+ïí=-+ïî的解为坐标的点(x ,y )在第 象限。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤13.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3 C.a6÷a3=a2D.(a2)3=a6 4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.29.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.当a=2016时,分式的值是.12.以方程组的解为坐标的点(x,y)在第象限.13.若多边形的每一个内角均为135°,则这个多边形的边数为.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.17.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.三、解答题(共10小题,满分96分)19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.解不等式组,并写出该不等式组的最大整数解.21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD 沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.25.如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:(°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)26.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.27.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.28.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【考点】有理数的除法.【分析】根据因数等于积除以另一个因数计算即可得解.【解答】解:1÷(﹣2)=﹣.故选D.2.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.3.下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【考点】几何概率.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.当a=2016时,分式的值是2018.【考点】分式的值.【分析】首先将分式化简,进而代入求出答案.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.以方程组的解为坐标的点(x,y)在第二象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【考点】菱形的性质.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C=4AD=4×6=24.菱形ABCD故答案为:24.16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.17.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为2+4.【考点】反比例函数图象上点的坐标特征.【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【解答】解:∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或﹣2(舍去).∴C△ABO=AB+OB+OA=2+4.故答案为:2+4.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.【考点】二次函数的应用.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设未来30天每天获得的利润为y,y=(20+4t)﹣(20+4t)a化简,得y=﹣4t2+t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴≥﹣4×302+×30+1400﹣20a解得,a≤5,又∵a>0,即a的取值范围是:0<a≤5.三、解答题(共10小题,满分96分)19.(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.解不等式组,并写出该不等式组的最大整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D级所在的扇形的圆心角.(2)根据D等级的人数=总数﹣A等级的人数﹣B等级的人数﹣C等级的人数可补全图形.(3)先求出等级为D人数所占的百分比,然后即可求出大概的等级为D的人数.【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【考点】列表法与树状图法.【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD 沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【考点】分式方程的应用.【分析】设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,根据走过相同的路程360km,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:该趟动车的平均速度为120km/h.25.如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)【考点】相似形综合题.【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T (90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.26.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【考点】切线的性质.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【考点】四边形综合题.【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE (CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.【解答】解:(1)∵四边形ABCD是正方形,∴∠ACF=∠DCD=90°,∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CE=CE,∵CE=a,CF=b,∴a=b;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴,∴,∴()②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P (1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.。