毕业答辩-线阵CCD与线阵CMOS特性的测量比较
- 格式:ppt
- 大小:3.79 MB
- 文档页数:14
百万像素高清摄像中CCD与CMOS的分析比较随着安防行业的发展,视频监控网络化、数字化的趋势越来越明显。
从1998年第一台网络摄像机初现国内市场,伴随着互联网的迅速普及和网络技术的日益成熟,目前网络摄像机行业已进入爆发式的增长阶段。
其中的百万像素高清摄像机,在经过近两年的市场培育后,成为当前安防市场上最热门的话题。
百万像素高清摄像机主要由两个核心部分组成:图像传感器以及压缩处理芯片。
其中,图像传感器是图像采集处理部分的核心。
众所周知,目前的图像传感器主要分为CCD和CMOS两大阵营。
在传统观念中,CCD具有高解析度、低噪点等优点;而CMOS由于噪点问题,一直与电脑摄像头、手机摄像头等低画质的电子产品联系在一起。
其实不然,现在CMOS摄像机绝非只局限于简单、低端的应用,甚至在高清摄像领域有了与CCD一较高下的实力。
本文就CCD与CMOS的工作原理、区别、优劣和适用场合作出详细的分析。
CCD和CMOS传感器的工作原理CCD是英文ChargeCoupledDevice的缩写,中文翻译为电荷耦合器件。
它是1969年美国贝尔实验室的W·B·博伊尔(W·B·Boyle)和G·E·史密斯(G·E·Smith)等人研制出来的,其使用一种高感光度的半导体材料制成,包含众多感光元件,每个感光元件叫一个像素,CCD可以看做这些像素的集合体。
当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位产生的信号加在一起,就构成了一幅完整的画面。
而CMOS英文全称是Comple -mentaryMetal-OxideSemicon -ductor,即互补金属氧化物半导体,与CCD一样也是记录光线变化的半导体。
CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带负电(N极)和正电(P极)的半导体,这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
CMOS与CCD的较量引言早期,CCD是无可争议的霸主,绝大部分数码相机都采用CCD成像,只有佳能在自己的高端单反相机型号上采用CMOS元件。
不过近年来,CMOS 发展势头迅猛,几乎已经在家用单反相机中一统江湖,因此很多分析人士认为,未来CMOS将取代CCD,成为数码相机的首选。
进入2010年,CCD 和CMOS的竞争已经进入了白热化阶段,CMOS越来越多地被消费类数码相机所采用。
1 目前数码相机的两种成像元件1.1 CCD图像传感器CCD(电荷耦合元件,Charge-coupled Device)是一种半导体器件,能够把光学影像转化为数字信号。
从结构上讲CCD分为三层,分别是“微型镜头”、“分色滤色片”和“感光层”。
为了提高CCD的采光率,就要增加单一像素的受光面积,但是一味提高采光率很容易导致画质下降。
而“微型镜头”层相当于在感光层前面加上一副眼镜,使得感光面积不受传感器的开口面积影响,而是通过微型镜片的表面积来控制感光面积。
CCD 的第二层是“分色滤色片”,用于分离RGB色彩。
CCD最为重要的是第三层“感光片”,这层主要是负责将穿过滤色层的光源信号转换成电子信号,并将信号传送到影像处理芯片,将影像还原。
1.2 CMOS图像传感器CMOS(互补性氧化金属半导体,ComplementaryMetal-OxideSemiconductor),与CCD类似,在数码相机CMOS中也是可以记录光线变化的半导体。
它主要是由硅和锗这两种元素做成的,在CMOS上共存着带N(带正电)级和P(带负电)级的半导体,受光之后这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。
然而,CMOS的缺点就是容易出现噪点,这主要是因为早期的设计结构使CMOS在处理快速变化的影像时由于电流变化过于频繁而会产生过热的现象。
2 CCD与CMOS的优缺点比较CCD具有的优点很多,包括灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等。
CMOS和CCD是两种不同的光电转换技术,两者也经历了不同的技术发展阶段。
当前CMOS图像传感器科技发展迅猛,整个安防领域从Sensor端开始竞争白热化,在Ipcam、模拟高清的噱头效应下,已经很少有人关注CCD,这从绝大多数安防企业不再向Sony下计划,以及传闻Sony计划停产CCD就能看出端倪。
但从CMOS和CCD的比较而言,了解两者之间的差异,在琳琅满目的传感器应用方案面前,根据实际应用进行选择,选对方案,有很重要的实际意义,特别是在激烈竞争中的战略选型。
下面就两种图像传感技术的主要特点差异在应用端的实际意义进行简单的描述。
CCD图像传感器和CMOS图像传感器的主要技术指标有像素、靶面尺寸、感光度、电子快门、帧率和信噪比,等等。
帧率代表单位时间所记录或者播放的图片的数量,连续播放一系列图片就会产生动画效果,根据人类的视觉系统,当图片的播放速度大于15幅/秒的时候,人眼就基本看不出来图片的跳跃;在达到24幅/s~30幅/s之间时就已经基本觉察不到闪烁现象了。
每秒的帧数,或者帧率表示图形传感器在处理场时每秒钟能够更新的次数。
高的帧率可以得到更流畅、更逼真的视觉体验。
靶面尺寸,也就是图像传感器感光部分的大小。
一般用英寸来表示,和电视机一样,通常这个数据指的是这个图像传感器的对角线长度,如常见的有1/3英寸,靶面越大,意味着通光量越好,而靶面越小则比较容易获得更大的景深。
比如1/2英寸可以有比较大的通光量,而1/4英寸可以比较容易获得较大的景深。
自Sony创造Super HAD CCD到EXVIEW HAD CDD一直统治着CCD 甚至整个安防领域的市场。
除了品牌效应、品质信心、需求惯性以外,是因为CCD最大的产品特性就是感光灵敏度更好,EXVIEW HAD CCD更是在近红外成像部分有更大的突破,夜视效果更佳出色。
国产MCCD采取首创三级Fd技术,更是在CCD基础上取得了更高的灵敏度和动态范围,可以呈现更完美的夜视效果。
CCD与CMOS的差异对比
1、CMOS-采用滚动曝光(rolling shutter),在监控目标物品快速移
动时画面容易产生拖尾、重影(见图一),并容易产生色飘(见图二)
图一
图二
2、CMOS-采用全景曝光(global shutter),每一帧图像都可清晰、
适合的图像分辨率,在监控目标快速移动时画面真实,适合大型平安城市治安及路面监控的需求(图三、图四)。
图三
图四
3、CMOS-没有快门概念,在高亮场景会出现过度曝光现象
4、CCD-可以设置快门,也可适应外界光线的变化(快门值
1/50`~1/10000连续可调),另通过设置快门可对快速运动物体捕捉。
5、摄像机的清楚度取决于图像传感器的性能,CCD与CMOS两种感
光芯片相比,CCD传感器在低照度、分辨率、噪声控制、高质量图像输出、动态影像表现方面都要优于COMS,所以绝大部分专业摄像机仍是选择CCD作为感光芯片,且高清百万像素网络摄像机选用的Sony最高级ICX系列感光芯片具超低敏捷度照度,在黑暗的环境下取得更清楚的图像,是普通摄像机无法实现的。
6、武汉市公安局在《武汉市城市视频监控系统适用产品供货资格(第
一批)政府采购项目》招标文件中对IP摄像机产品要求“采用1/3英寸CCD传感器”。
1、信息读取方式:CCD电荷耦合器存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。
CMOS光电传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。
2、速度:CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。
3、电源及耗电量:CCD电荷耦合器大多需要三组电源供电,耗电量较大;CMOS光电传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。
4、成像质量:CCD电荷耦合器制作技术起步早,技术成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS光电传感器有一定优势。
由于CMOS光电传感器集成度高,各光电传感元件、电路之间距离很近,相互之间的光、电、磁干扰较严重,噪声对图像质量影响很大,使CMOS光电传感器很长一段时间无法进入实用。
近年,随着CMOS 电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。
从发展差异看CCD与CMOS传感器市场端倪
CCD在影像品质等方面均优于CMOS,而CMOS则具有低成本、低功耗、以及高整合度的特点。
不过,随着CCD与CMOS传感器技术的进步,两者的差异在逐渐减小,新一代的CCD 传感器一直在功耗上作改进,而CMOS传感器则在改善分辨率与灵敏度方面的不足。
相信不断改进的CCD与CMOS传感器将为我们带来更加美好的数码影像世界。
CCD与CMOS图像传感器性能比较目前在夜视仪中使用的低照度传感器有两种,CCD及CMOS。
CMOS与CCD图像传感器相比,具有功耗低、摄像系统尺寸小、可将信号处理电路与MOS图像传感器集成在一个芯片上等优点。
但其图像质量(特别是低亮度环境下)与系统灵活性与CCD的相比相对较低。
由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型/微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。
CCD与CMOS图像传感器相比,具较好的图像质量和灵活性,仍然保持高端的摄像技术应用,如天文观察、卫星成像、高分辨率数字照片、广播电视、高性能工业摄像、大部分科学与医学摄像等应用。
CCD器件的灵活性体现为与采用CMOS器件相比,用户可构建更多不同的摄像系统。
CMOS与CCD图像传感器的光电转换原理相同,均在硅集成电路工艺线上制作,工艺线的设备亦相似。
但不同的制作工艺和不同的器件结构使二者在器件的能力与性能上具有相当大的差别。
表1列出CCD与CMOS图像传感器的特点,从表中可见CMOS与CCD图像传感器各有特点,二者互为补充,不会出现谁消灭谁的结局[1],在可预见的未来将并存发展,共同繁荣图像传感器市场。
1.灵敏度灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力。
CCD图像传感器灵敏度较CMOS图像传感器高30%~50%。
这主要因为CCD像元耗尽区深度可达10 mm,具有可见光及近红外光谱段的完全收集能力。
CMOS图像传感器由于采用0.18~ 0.5 mm标准CMOS 工艺,由于采用低电阻率硅片须保持低工作电压,像元耗尽区深度只有1 ~2mm,其吸收截止波长小于650 nm,导致像元对红光及近红外光吸收困难。
2.电子-电压转换率电子-电压转换率表示每个信号电子转换为电压信号的大小。
感光元件CCD及CMOS对比介绍1CCD和CMOS物理结构区别CCD英文全名ChargeCoupledDevice,感光耦合元件,CCD为数码相机中可记录光线变化的半导体,通常以百万像素〈megapixel〉为单位。
数码相机规格中的多少百万像素,指的就是CCD的解析度,也代表着这台数位相机的CCD上有多少感光元件。
CCD主要材质为硅晶半导体,基本原理类似CASIO计算机上的太阳能电池,透过光电效应,由感光元件表面感应来源光线,从而转换成储存电荷的能力。
CCD 元件上安排有通道线路,将这些电荷传输至放大解码原件,就能还原所有CCD上感光元件产生的信号,并构成了一幅完整的画面。
CMOS英文全名ComplementaryMetal-OxideSemiconductor,互补性氧化金属半导体,CMOS和CCD一样同为在数码相机中可记录光线变化的半导体,外观上几乎无分轩轾。
但,CMOS的制造技术和CCD不同,反而比较接近一般电脑晶片。
CMOS的材质主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带-电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理晶片纪录和解读成影像。
图1CCD与COMS原件实物图2CCD与CMOS结构对比CMOS对抗CCD的优势在于成本低,耗电需求少,便于制造,可以与影像处理电路同处于一个晶片上。
但由于上述的缺点,CMOS只能在经济型的数码相机市场中生存。
比较CCD和CMOS的结构,放大器的位置和数量是最大的不同之处,简单地解释:CCD每曝光一次,自快门关闭或是内部时脉自动断线(电子快门)后,即进行像素转移处理,将每一行中每一个像素(pixel)的电荷信号依序传入『缓冲器(电荷储存器)』中,由底端的线路导引输出至CCD旁的放大器进行放大,再串联ADC(类比数字模拟转换器)输出;相对地,在CMOS传感器中,每个象素都会邻接一个放大器及A/D转换电路,用类似内存电路的方式将数据输出。
CCD与CMOS的技术特点
CCD与CMOS的技术特点主要在于成像过程,集成度,功耗,性能指标等方面。
1)成像过程
CCD和CMOS使用相同的光敏材料,因而受光后产生电子的基本原理相同,但是读取过程不同:CCD是在同步信号和时钟信号的配合下以帧或行的方式转移,整个电路非常复杂,读出速率慢;CMOS则以类似DRAM的方式读出信号,电路简单,读出速率高。
2)集成度
采用特殊制造工艺的CCD读出电路比较复杂,很难将A/D 转换、信号处理、自动增益控制、精密放大和存储功能集成到一块芯片上,一般需要多个芯片组合实现,同时还需要一个多通道非标准供电电压。
借助于大规模集成制造工艺,CMOS图像传感器能非常容易地把上述功能集成到单一芯片上,多数CMOS图像传感器同时具有模拟和数字输出信号。
3)电源、功耗和体积
CCD需多种电源供电,功耗较大,体积也比较大。
CMOS只需一个单电源(3V~5V)供电,其功耗相当于CCD的1/10,高度集成CMOS芯片可以做的相当小。
4)性能指标
CCD技术已经相当成熟,而CMOS正处于蓬勃发展时期,虽
然目前高端CMOS图像质量暂时不如CCD,但有些指标(如传输速率等方面)已超过CCD。
由于CMOS具有诸多优点,国内外许多机构已经应用CMOS图像传感器开发出众多产品。