高中物理·矢量三角形的巧妙运用
- 格式:ppt
- 大小:3.82 MB
- 文档页数:25
力的平衡问题中矢量三角形法则的应用发表时间:2015-09-23T14:52:31.663Z 来源:《素质教育》2015年10月总第187期供稿作者:李政[导读] 重庆市渝南田家炳中学高中阶段,学习处理力的平衡问题的方法虽然有力的合成法、正交分解法、对称法等等,若能恰当应用力的三角形法则,能使一些问题更加简单。
李政重庆市渝南田家炳中学401346摘要:动力学中的平衡问题,特别是力学平衡问题,在整个高中物理教学中占据相当大的比重。
学习好平衡类问题,也有助于解决非平衡类的综合问题,能较好地“扫清”物理学习过程中的一大障碍。
文章对三力类的力学平衡问题进行了举例说明,在灵活应用上以期达到抛砖引玉、举一反三之功效。
关键词:力的平衡矢量三角形处理技巧高中阶段,学习处理力的平衡问题的方法虽然有力的合成法、正交分解法、对称法等等,若能恰当应用力的三角形法则,能使一些问题更加简单。
特别是三个力或者等效的三个力的平衡问题,对受力的物体作力的矢量图,可通过平移使三个力组成一个首位相连的矢量三角形,然后据正弦定理、余弦定理、相似三角形等数学知识求解。
解析:选小球为研究对象,其受力情况如图所示,用平行四边形定则作出相应的“力三角形OAB”,其中OA的大小、方向均不变,为小球的重力;AB的方向不变,始终与斜面垂直向上;推动斜面时,FT、mg与支持力FN构成的矢量三角形中,FT的方向逐渐趋于水平,FN 对应的边长由小逐渐增大,FT先减小后增大,故D正确。
方法总结:矢量三角形法分析动态平衡问题的步骤。
1.选某一状态的研究对象进行受力分析。
2.若是三个力类的平衡问题,需先画出两个变化的力的合力(即大小不变的那个力的反方向的力)。
3.根据已知量的变化情况再画出一系列状态的三角形。
4.判定未知量大小、方向的变化。
在力学中巧用矢量三角形法则作者:刘卫东来源:《中学生数理化·教与学》2011年第03期一、矢量加、减运算的图示矢量的加、减运算,即矢量的合成与分解是处理物理问题必备的数学方法.矢量加减依据平行四边形法则,也可简化为三角形(或多边形)法则.其图解方法如图1.若已知矢量A、B,如图1(a),当求C=A+B,即作矢量的加法时,可将A、B两矢量依次首(有向线段箭头)尾(有向线段末端)相接后,由A的尾画到B的首的有向线段即为C,如图1(b);当求C=A-B,即作矢量的减法时,通常将表示A、B两矢量的有向线段末端重合,即从同一点出发分别画出两相减矢量,由B的有向线段箭头画到A矢量箭头的有向线段即为C,如图1(c).运用这种方法也可以进行多个矢量连续相加或相减.我们可以归纳如下.图解方法求矢量和:相加各矢量依次首尾相接后,连接第一个“加数”尾与最后一个“加数”头的有向线段即为各矢量之和.图解方法求矢量差:末端共点分别作相减矢量,连接两箭头,方向指向“被减数”的有向线段即为该二矢量之差.二、运动的合成与分解当物体实际发生的运动较为复杂时,我们可将其等效为同时参与几个简单的运动,前者称作合运动,后者则称作物体实际的分运动.这种双向的等效操作过程叫运动的合成与分解,是研究复杂运动的重要方法.运动的合成与分解遵循如下原理:1.独立性原理构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律运动进行,不会因有其他运动的存在而发生变化.2.等时性原理合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.3.矢量性原理描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量运算.三、矢量三角形在共点力平衡中的运用物体在三个不彼此平行的力的作用下处于平衡状态,这三个力必在同一平面内共点,其合力为零.这三个力组成一个封闭的三角形,解答此类题目时用矢量三角形法则,分析一些动态变化时定性处理问题简捷、直观、明了.有时定量计算时也简捷、方便,避免大量用三角函数求极值的烦琐过程,能收到事半功倍的效果.1.共点力平衡时力变化的定性讨论例1如图2(a),DAB为半圆支架,两细绳OA、OB接于圆心O,其下悬重力为G的物体.若OA细绳固定不动,将细绳OB的B端沿半圆支架从水平位置逐渐缓慢移至竖直位置C 的过程中,细绳OA和细绳OB对节点O的拉力大小如何变化?解析:选节点O为研究对象,节点在拉力G、TA、TB三个力的作用下始终处于共点力的平衡状态,G的大小和方向都确定;TA的方向确定但大小不定;TB的大小和方向都不定,根据图2(b)中力的封闭矢量三角形可以看出,在OB向上靠近OC的过程中,TA一直减小,TB先减小后增大.2.共点力平衡时力变化的定量计算例2如图3,质量为m的物体放在水平地面上,用水平向右的拉力F拉物体,使物体沿水平向右匀速运动,已知物体和水平面间的动摩擦因数为,μ在保持拉力F大小不变的情况下改变其方向,但仍使物体沿原方向匀速运动,则拉力F′与原拉力F间的夹角θ为多大?解析:略.总之,凡遇到物体受三个共点力作用,处于平衡问题时,若一个力的大小与方向都确定,另一个力的方向也确定,求这个力的大小及第三个力的大小如何变化时,利用矢量三角形定性讨论比较方便.。
力的矢量三角形法则矢量是物理学中非常重要的概念,它可以描述物体的方向和大小。
力作为一种矢量,也可以用矢量的三角形法则进行求解。
矢量的三角形法则是一种基本的矢量加法图解方法,通过它可以求解多个力矢量合成之后的合力。
假设有两个力矢量F1和F2,它们的起点都位于同一个点O,我们要求解它们的合力F。
首先,我们将F1和F2的起点都放在点O,然后将F1的终点与F2的起点相连接,得到一条直线OA。
然后将F2的终点与F1的起点相连接,得到一条直线OB。
最后,将OA和OB相连得到一条直线OC,这条直线OC 就表示了力矢量F的方向和大小。
根据三角形法则,我们可以得到以下几个结论:1.F1、F2和F三者共面。
这意味着这三个力矢量必须在同一个平面内,不会出现其中一个力矢量垂直于另外两个力矢量的情况。
2.F1、F2和F三者共起点。
这说明这三个力矢量都是从同一个起点O 出发的。
3.F1、F2和F三者闭合成一个三角形。
这是因为根据三角形法则,OC就是根据F1、F2和F三者的相对位置构成的三角形的边。
4.F的大小等于三角形OC的长度。
由于OC表示力矢量F的大小和方向,所以F的大小等于OC的长度。
5.F的方向可以由OC与OA的夹角决定。
夹角的方向由OA的方向决定,因此可以通过测量OA与OC的夹角来确定F的方向。
如果有更多的力矢量需要求和,我们可以继续使用三角形法则。
假设现在还有一个力矢量F3,我们可以先使用三角形法则求解F1和F2的合力F12,然后再使用三角形法则求解F12和F3的合力F123值得注意的是,三角形法则适用于平面上的力矢量求和。
如果力矢量位于空间中,我们需要使用平行四边形法则进行求解。
三角形法则的应用范围非常广泛,无论是力学领域还是其他领域,都可以使用三角形法则对矢量进行求解。
在物理学中,矢量是许多物理量,如力、速度、加速度等的表示方式,因此三角形法则在物理学中具有非常重要的作用。
总结起来,矢量的三角形法则是一种基本的矢量加法图解方法,通过它我们可以求解多个力矢量合成之后的合力。
矢量三角形法则矢量三角形法则是矢量运算中的一个重要原理,它描述了矢量之间的关系和运算规律。
矢量三角形法则是矢量代数的基础,它在物理学、工程学、数学等领域都有着广泛的应用。
矢量是具有大小和方向的量,它可以用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
矢量之间的运算包括加法、减法、数量乘法等,而矢量三角形法则就是描述了矢量加法的规律。
矢量加法的规律可以用三角形法则来表示。
假设有两个矢量a 和b,它们的起点都在原点O处,终点分别为A和B。
那么a+b的矢量和就是从O到C的矢量,其中C是由A和B的终点构成的三角形的第三个顶点。
这个三角形就是矢量三角形,而矢量三角形法则就是描述了矢量和的大小和方向。
根据矢量三角形法则,矢量和的大小等于矢量a和b的大小的几何和,即|a+b| = |a| + |b|。
而矢量和的方向则是由矢量a和b 的方向决定的,具体来说,矢量和的方向是由矢量a和b的夹角决定的,如果夹角为锐角,那么矢量和的方向与矢量a和b的方向相同;如果夹角为钝角,那么矢量和的方向与矢量a和b的方向相反。
矢量三角形法则还可以推广到多个矢量的情况。
如果有多个矢量a1, a2, ..., an,它们的起点都在原点O处,终点分别为A1,A2, ..., An,那么这些矢量的和就是从O到P的矢量,其中P是由A1, A2, ..., An构成的多边形的重心。
这个多边形就是矢量多边形,而矢量多边形法则就是描述了多个矢量和的大小和方向。
根据矢量多边形法则,多个矢量的和的大小等于这些矢量的大小的几何和,即|a1+a2+...+an| = |a1| + |a2| + ... + |an|。
而多个矢量的和的方向则是由这些矢量的方向决定的,具体来说,多个矢量的和的方向是由这些矢量的夹角决定的,如果夹角为锐角,那么矢量和的方向与这些矢量的方向相同;如果夹角为钝角,那么矢量和的方向与这些矢量的方向相反。
矢量三角形法则和矢量多边形法则是矢量运算中的基本原理,它们描述了矢量之间的关系和运算规律,为矢量运算提供了重要的理论基础。
平衡问题:物体不受力或所受合外力为零,这是物体处于平衡的条件。
解决此类问题的方法很多,包括正交分解法、矢量三角形法、相似三角形法、利用拉密定理……矢量三角形:矢量合成的平行四边形定则可以用矢量三角形法则来等效替代。
把代表两个分矢量的有向线段首尾相连,则合矢量就从第一个矢量的起点到第二个矢量的末端。
以此类推,若一个物体在三个共点力作用下处于平衡状态,则代表三个力的有向线段必定构成封闭三角形。
利用矢量三角形法在处理三力平衡问题和两力的加速(减速)问题时是非常方便的,像摩擦角这样四力动态平衡问题,用起来也很方便!尤其是动态平衡中求极值的问题迅速得到解决,而且非常直观。
解决动态平衡的一般步骤如下:①确定研究对象;②分析对象状态和受力情况,画出示意图;③将各力首尾相连,画出封闭的矢量三角形;④根据题意,画出动态变化的边角关系;⑤确认未知量变化情况。
一、两力作用下的动力学问题例1、如图所示,固定的斜面A和放在斜面上的楔形木块B的倾角均为θ=30°,已知斜面A的上表面和木块B的表面均光滑,木块B 的质量为M,上面放有质量为m的小球C,当用平行于斜面的力F 作用在木块上时,木块B和小球C保持相对静止,求推力F及木块B对小球C的弹力的大小。
解析:解决动力学问题,先对物体进行受力分析。
选择小球为研究对象,小球受到重力和B对小球的支持力(两个力),作加速运动;选择整体为研究对象,小球和木块受到重力,支持力和推力。
根据条件,小球和木块加速度相同,根据牛顿第二定律,解决此题的关键是求出木块B和小球C保持相对静止时的加速度大小。
由于小球与木块相对静止,故小球C受到的合力方向必定和木块B 的加速度的方向相同(平行于斜面),即沿斜面向下。
用三角形法则作出小球受到的合力(N与G的箭头收尾相连,以便画出合力),如图所示。
由于弹力N的方向与木块B的上表面垂直,因此弹力的方向与竖直方向的夹角为60°,不难看出,矢量三角形为等边三角形,即N=ma=mg,小球的加速度大小为g,以球和木块整体为对象,由牛顿第二定律可知解得推力的大小为:二、三力作用下的动态平衡问题例2、如图所示,光滑的小球静止在斜面和竖直放置的木板之间,已知球重为G,斜面的倾角为θ,现使木板沿逆时针方向绕O点缓慢转动,求小球对斜面和挡板的压力怎样变化?解析:选择小球为研究对象,分析小球受力如图所示,小球受重力G、挡板的支持力N1和斜面的支持力N2,小球在这三个力的作用下处于平衡状态,这三个力可构成矢量三角形(如上图)。
矢量三角形法则在物理解题中的应用夏显奇(师大学2011级学科教学(物理)教育硕士)摘要:矢量合成的平行四边形定则可以用矢量三角形法则来等效替代,应用矢量三角形法则可以求解动态平衡问题,求物理量的极值及研究抛体运动,利用矢量三角形法则再结合数学知识,可以使很多物理问题迅速得到解决,而且非常直观显见、简捷。
关键词:矢量三角形;动态平衡;极值;抛体运动;直观1.引言矢量概念是高中物理教学中引进的重要概念之一,在物理中,将有大小和方向的量称为矢量,如力、位移、速度、加速度、动量、冲量等物理量都是矢量。
平行四边形是一切矢量合成的普遍法则,在许多矢量合成与分解的问题中,尤其是一些动态变化的问题,应用平行四边形法则导出的矢量三角形法则进行分析求解就显得很方便快捷。
矢量三角形法则作图简单,线条较少,图象清晰,在讨论某些变化的矢量或矢量的增量时,有时比平行四边形法则更清楚、方便。
矢量三角形不但可以处理力的问题,它同样可以处理与速度、加速度、动量等有关的矢量问题。
2.矢量三角形的建立2.1矢量三角形1B C C B乙oF2FF1丙FA o F1A F2oF2FF1丙C图1在图1甲中,F是共点力F和F的合力,构成平行四边形,该12平行四边形含有两个全等的三角形,每一个三角形都包含了三个矢量的大小和方向,因此,如果我们只取其中的一个三角形,如图1乙所示,从O点出发,把代表F和F的线段OA、AC首尾相接地画出来,12连接O和C,从O指向C的矢量就表示合力F的大小和方向。
上述作图法叫做力的三角形定则,其合矢量与分矢量的关系是:两个分矢量首尾相接,分矢量与合矢量首首相接,尾尾相接,作三角形OBC,如图1丙所示,同样可以求出F和F的合力F。
图1乙、丙中矢量三角12uur uur ur形的数学表达式为:F+F=F。
122.2矢量三角形2F3F1F'3F2F2F3F1甲乙图2三个力F、F、F使物体处于平衡状态,如图2甲,由力的平衡知123识知道,F、F的合力F'与力F等大、反向,如果把F平移到F'的123333位置上,则构成如图2乙的三角形。
矢量三角形法物理全文共四篇示例,供读者参考第一篇示例:矢量三角形法是物理学中非常重要的一种方法,它可以用来分析和解决各种复杂的物理问题。
在研究物理学的过程中,我们经常会遇到各种力的作用,而这些力往往是以矢量的形式存在的,需要进行矢量运算来求解。
矢量三角形法是一种简单而实用的方法,可以帮助我们计算矢量的合成、分解、夹角以及方向等。
通过矢量三角形法,我们可以将一个复杂的矢量问题转化为简单的几何问题,从而更加容易地理解和解决。
在物理学中,很多问题都可以通过矢量三角形法来解决,比如力的合成、速度的合成、加速度的分解等。
下面我们将通过一些具体的例子来说明矢量三角形法的应用。
我们来看一个力的合成问题。
假设有两个力F1和F2作用在一个物体上,它们的大小和方向分别为F1=5N, F2=8N, θ1=30°, θ2=60°。
我们需要计算这两个力的合成结果。
首先我们将这两个力画成矢量图,然后通过矢量三角形法来计算它们的合成力。
根据矢量三角形法,我们可以先计算出F1和F2的水平和垂直分量,再将这些分量相加得到合成力的大小和方向。
对于F1=5N, θ1=30°,它的水平分量为F1x=5*cos30°=5*√3/2=4.33N,垂直分量为F1y=5*sin30°=5*1/2=2.5N。
对于F2=8N, θ2=60°,它的水平分量为F2x=8*cos60°=4N,垂直分量为F2y=8*sin60°=6.93N。
然后将两个力的水平和垂直分量相加,得到合成力的水平分量F=4.33+4=8.33N,垂直分量F=2.5+6.93=9.43N。
通过勾股定理计算出合成力的大小和方向,即F=sqrt(8.33^2+9.43^2)=12.66N,θ=tan^(-1)(9.43/8.33)=47.39°。
这两个力的合成结果为12.66N,方向为47.39°。