理论力学(6)
- 格式:ppt
- 大小:273.50 KB
- 文档页数:81
第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕcos )(r R x A += (1) ϕsin )(r R y A += (2) α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R =ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为hv AC v AP v ABθθω2000cos cos ===6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:R v R v A A ==ωR v R v B B 22==ω B A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。
第六章 分析力学滔滔长江东逝水,浪花淘尽英雄。
达朗贝尔,拉格朗日,哈密顿等许多前贤相聚于此“力学论剑”,其“冲击波”使非线性问题也不攻自破。
长江后浪推前浪,你或许在此能够加倍“忘乎因此‘。
微分方程将叱咤风云。
[要点分析与总结]1虚功原理:(平稳时)理想条件下,力学系的平稳条件是各质 点上的主动力所作的虚功之和为零:10ni i i W F r δδ==•=∑用广义坐标来表述:310n ii i x W F q q ααδδ=∂==∂∑ 2达朗贝尔原理(动力学下的虚功原理): 1()0ni i i i i W F m r r δδ==-•=∑〈析〉r δ,W δ均是在时刻未转变(0dt =)时所假想的量,而广义坐标a q 能够是角度,长度或其它的独立的坐标变量。
3拉格朗日方程()d T TQ dt q q ααα∂∂-=∂∂ (1,2,3,,)a s =在保守力下,取拉氏数 L T V =-方程为:()0d L L dt q q αα∂∂-=∂∂ 假设拉氏数中L 不显含广义坐标q β,那么:0Lq β∂=∂ 即 循环积分: Lp const q ββ∂==∂ 4微振动非线性系统在小角度近似下,对拉氏方程的应用 5哈密顿函数与正那么方程 (1) 哈密顿函数1(,,)sH p q t L p q ααα==-+∑式中T Lp q q ααα∂∂==∂∂为广义坐标动量 (2) 正那么方程Hq P Hp q H Lt tαααα∂=∂∂=-∂∂∂=-∂∂ (1,2,3,,)a s =假设哈氏函数H 中不显含广义坐标q β,那么:0Hp q ββ∂=-=∂ 即:循环积分 Tp const q ββ∂==∂ 在稳固条件下(H 中不显含t ),12sp q T ααα==∑那么有能量积分:H T V =+6泊松括号1[,]()sG H G HG H q p p q ααααα=∂∂∂∂=-∂∂∂∂∑ 7哈密顿原理与正那么变换 (1)哈密顿原理保守力系下:210t t Ldt δ=⎰概念:21t t S Ldt =⎰为主函数(3) 正那么变换通过某种变数的变换,找到新的函数*H ,使正那么方程的形式不变(相当于坐标变换)。
第六章 作业解答参考6-1 图示曲柄滑杆机构中,滑杆上有一圆弧形滑道,其半径R =100 mm ,圆心O 1在导杆BC 上。
曲柄长OA = 100 mm ,以等角速度ω= 4 rad /s 绕O 轴转动。
求导杆BC 的运动规律以及当曲柄与水平线间的交角φ为30°时,导杆BC 的速度和加速度。
解:由题意可知,导杆BC 作平移运动,因此其上各点运动情况都完全相同,在此取导杆BC 上O 1点的运动代替导杆BC 的运动。
以O 点为原点、沿OC 方向取坐标轴O x (如右图所示),并设O 1A 与x 轴间的夹角为θ,则由题意可知:4t t θϕω===因此,O 1点的运动方程为:1cos cos 200cos 4mm x OA O A t ϕθ=⋅+⋅= ()其速度表达式为: d 800sin 4mm/s d x v t t==- () 加速度表达式为: 222d 3200cos 4mm/s )d x a t t==- ( 当430t ϕ==︒时,有:22400mm/s 0.400m/s 16003mm/s 2.77m/sBC BC v a =-=-⎧⎪⎨=-≈-⎪⎩ 、 即:导杆BC 的运动规律是:运动方程——()200cos4mm x t =、速度——()800sin 4mm/s v t =-、加速度——()23200cos 4mm/s a t =-;当曲柄与水平线间的交角φ为30° 时,导杆BC 的速度和加速度分别为:-0.400 m /s 、-2.77 m /s 2 。
*6-2 图示为把工件送入干燥炉内的机构,叉杆OA = 1.5 m ,在铅垂面内转动,杆AB = 0.8 m ,A 端为铰链,B 端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m /s ,杆AB 始终铅垂。
设运动开始时,角0ϕ=。
求运动过程中角φ与时间的关系,以及点B 的轨迹方程。
解:由题意可知,杆AB 作平移运动,其上各点的运动情况完全相同,因此:0.05m/s A B v v ==设l = OA = 1.5 m ,则有: A v l ϕ=即: d 1.50.05d t ϕ= 1d d 30t ϕ=将上式对时间积分可得: 30t C ϕ=+ (其中C 为积分常数) 由题意可知,t = 0 时,0ϕ=,代入上式可解得:C = 0 故有: 30t ϕ= ——此即所求的运动过程中角φ与时间t 的关系。
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
理论力学6章作业题解6-5 半圆形凸轮以匀速v =10mm/s 沿水平方向向左运动,活塞杆AB 长l ,沿铅直方向运动。
当运动开始时,活塞杆A 端在凸轮的最高点上。
如凸轮的半径R =80mm ,求活塞B 的运动方程和速度方程。
解答 选铅直方向为y 坐标,圆心与轮心O 高程相同,则活塞B 的运动方程为)( 1006400)(222mm l t AB vt R y +-=+-=速度方程为)/( 641022s mm t t dt dy v --== 6-9 点M 以匀速率u 在直管OA 内运动,直管OA 又按t w j =规律绕O 转动。
当t=0时, M 在O 点,求其在任一瞬时的速度及加速度的大小。
解答 采用直角坐标法建立M 点的运动方程。
îíì====)sin(sin )cos(cos t ut ut y t ut ut x w j w j 速度分量及大小为îíì+==-==)cos()sin(/)sin()cos(/t t u t u dt dy v t t u t u dt dx v yx w w w w w w 222)(1t u v v v y x w +=+=加速度分量及大小为ïîïíì-+==---==)sin()cos()cos(/)cos()sin()cos(/22t t u t u t u dt dv a t t u t u t u dt dv a y yx x w w w w w w w w w w w w 222)(4t u a a a y x w w +=+=6-12 一点作平面曲线运动,其速度方程为3=x v 、)4sin(2t v y p p =,其中速度单位为m/s ,时间单位为s 。
已知初瞬时该点在坐标原点,试求该点的运动方程和轨迹方程。
解 求直角坐标表示的运动方程。
第6章 运动学基础一、是非题(正确的在括号内打“√”、错误的打“×”)1.动点速度的大小等于其弧坐标对时间的一阶导数,方向一定沿轨迹的切线。
( √ ) 2. 动点加速度的大小等于其速度大小对时间的一阶导数,方向沿轨迹的切线。
( × ) 3.在实际问题中,只存在加速度为零而速度不为零的情况,不存在加速度不为零而速度为零的情况。
( × ) 4.两个刚体做平动,某瞬时它们具有相同的加速度,则它们的运动轨迹和速度也一定相同。
( × ) 5.定轴转动刚体的角加速度为正值时,刚体一定越转越快。
( × ) 6.两个半径不等的摩擦轮外接触传动,如果不出现打滑现象,两接触点此瞬时的速度相等,切向加速度也相等。
( √ )二、填空题1. 描述点的运动的三种基本方法是矢径法、直角坐标法和自然坐标法。
2. 点做圆周运动,加速度由切向加速度和法向加速度组成,其中切向加速度反映了速度大小随时间的变化率,方向是沿圆周的切线;法向加速度反映了速度的方向随时间的变化率,方向是沿圆周的法线。
3. 质点运动时,如果d d st和22d d s t 同号,则质点做加速运动,反之则做减速运动。
4. 刚体运动的两种基本形式为平动和定轴转动。
5. 刚体平动的运动特征是刚体在运动的过程中其内的任一直线始终和原来的位置平行。
6. 定轴转动刚体上点的速度可以用矢积表示,它的表达式为r ωv ⨯=;刚体上点的加速度可以用矢积表示,它的表达式为v ωr εa ⨯+⨯=。
7. 刚体绕定轴转动时,在任一瞬时各点具有相同的角速度和角加速度,且各点轨迹均为 圆周。
8. 定轴转动刚体内点的速度分布规律为任何一条通过轴心的直径上各点的速度,若将速度矢的端点连成直线,此直线通过轴心。
9. 半径均为R 的圆盘绕垂直于盘面的O 轴做定轴转动,其边缘上一点M 的加速度如图6.23所示,试问两种情况下圆盘的角速度和角加速度的大小分别为:图(a):=ω0;=εRa。
第8章 刚体平面运动概述和运动分解一、是非题(正确的在括号内打“√”、错误的打“×")1.平面图形的角速度与图形绕基点转动的角速度始终相等。
( √ ) 2.刚体平面运动可视为随同基点的平动和绕基点转动的合成运动. ( √ ) 3.平面图形上如已知某瞬时两点的速度为零,则此平面图形的瞬时角速度和瞬时角加速度一定为零。
( × ) 4.在某一瞬时平面图形上各点的速度大小都相等,方向都相同,则此平面图形一定作平动,因此各点的加速度也相等. ( × ) 5.车轮沿直线轨道滚而不滑,某瞬时车轮与轨道的接触点为车轮的速度瞬心,其速度为零,故速度瞬心的加速度亦为零. ( × ) 6.当0=ω时,平面图形上两点的加速度在此两点连线上的投影相等。
( √ ) 7.平面图形在其平面内运动,某瞬时其上有两点的加速度矢相同,其上各点速度在该瞬时一定相等。
( √ ) 二、填空题1.刚体在运动过程中,其上任一点到某一固定平面的距离保持不变,这种运动称为刚体的 平面运动。
刚体的平面运动可简化为平面图形在其自身平面内的运动。
2.平面图形的运动可分解为随基点的平动和绕基点的转动。
平动为牵连运动,它与基点的选择有关;转动为相对运动,它与基点的选择无关。
3.通常把平面运动的角速度和角加速度直接称为刚体的角速度和角加速度,而无须指明它们是对哪个基点而言。
4.平面图形上各点的加速度的方向都指向同一点,则此瞬时平面图形的角加速度等于零。
5.相对某固定平面作平面运动的刚体,则刚体上与此固定平面垂直的直线都作平动。
三、选择题1.正方平面图形在其自身平面内作平面运动。
已知四点A 、B 、C 、D 的速度大小相等,方向如图8.23(a )、(b )图所示,问下列结论哪个正确。
( D )(A) (a)、(b )图的运动都是可能的 (B) (a)、(b)图的运动都是不可能的 (C) 只有(a)图的运动是可能的(D) 只有 (b)图的运动是可能的C vADBCA vB vC vD v(a)ADBCA vB vD v(b)图8。
6-1在图示四连杆机构中,已知:匀角速度O ω,OA =B O 1=r 。
试求在°=45ϕ且AB ⊥B O 1的图示瞬时,连杆AB 的角速度AB ω及B 点的速度。
解:连杆AB 作平面运动,由基点法得BA A B v v v +=由速度合成的矢量关系,知φcos v A BA =v杆AB 的角速度)(/AB /O BA AB 2122+==ωωv (逆时针)B 点的速度2245/r cos v O A B ω=°=v (方向沿AB )6-2. 在图示四连杆机构中,已知:3.021===L B O OA m ,匀角速度2=ωrad/s 。
在图示瞬时,11==L OB m ,且杆OA 铅直、B O 1水平。
试求该瞬时杆B O 1的角速度和角加速度。
解:一.求1ω60230..OA v A =×=⋅=ω m/s取A 为基点,则有BA A B v v v += 得 23.0/6.0ctg v v A B ===ϕ m/sm09.2)3.01()3.0/6.0(sin /v v 2/122A BA =+×==ϕ杆B O 1的角速度67630211../BO /v B ===ω rad/s 顺时针 二.求1ε取点A 为基点,则有n BA A a a a a a ++=+ττBA nB B将上式向X 轴投影21222857s /m .B O /ctg v )sin AB /v (OA ctg a )sin /a (a a a sin a cos a sin a BBA n B n BA A B nBA A n B B +=⋅+⋅+⋅−=++−=−=+−ϕϕωϕϕϕϕϕττ杆B O 1的角加速度7.1923.0/8.57/11===B O a B τεrad/s 2逆时针6-3.图示机构中,已知:OA =0.1m , DE =0.1m ,m 31.0=EF ,D 距OB 线为h=0.1m ;rad 4=OA ω。