四川省雅安中学2020年九年级中考数学一诊试卷 解析版
- 格式:doc
- 大小:401.50 KB
- 文档页数:26
2020年四川省雅安市初中毕业、升学考试数学试卷(全卷满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.实数2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4 B.5 C.6 D.74.下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x45.下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c6.已知+|b﹣2a|=0,则a+2b的值是()A.4 B.6 C.8 D.107.分式=0,则x的值是()A.1 B.﹣1 C.±1 D.08.在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.59.如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为()A.8 B.12 C.6D.1210.如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0 C.k且k≠0 D.k11.如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°12.已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t之间关系的函数图象是()A.B.C.D.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程.13.如图,a∥b,c与a,b都相交,∠1=50°,则∠2=.14.如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.16.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.17.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).答案与解析一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.实数2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解题过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题的关键.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集.【思路分析】根据不等式的解集即可在数轴上表示出来.【解题过程】解:不等式组的解集在数轴上表示正确的是A选项.故选:A.【总结归纳】本题考查了在数轴上表示不等式的解集,解决本题的关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4 B.5 C.6 D.7【知识考点】由三视图判断几何体.【思路分析】在“俯视打地基”的前提下,结合左视图知俯视图最上面一行三个小正方体的上方(第2层)至少还有1个正方体,据此可得答案.【解题过程】解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5,故选:B.【总结归纳】本题主要考查由三视图判断几何体,解题的关键是掌握口诀“俯视打地基,主视疯狂盖,左视拆违章”.4.下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x4【知识考点】整式的加减;同底数幂的乘法.【思路分析】直接利用合并同类项法则以及同底数幂的乘法运算法则分别化简得出答案.【解题过程】解:A、2x+3x=5x,故此选项错误;B、﹣(x+y)=﹣x﹣y,故此选项错误;C、x2•x3=x5,正确;D、x4+x,无法合并,故此选项错误.故选:C.【总结归纳】此题主要考查了同底数幂的乘法以及整式的加减,正确掌握相关运算法则是解题关键.5.下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c【知识考点】命题与定理.【思路分析】判断一件事情的语句,叫做命题.根据定义判断即可.【解题过程】解:由题意可知,A、C、D都是命题,B不是命题.故选:B.【总结归纳】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.6.已知+|b﹣2a|=0,则a+2b的值是()A.4 B.6 C.8 D.10【知识考点】非负数的性质:绝对值;非负数的性质:算术平方根.【思路分析】直接利用绝对值和二次根式的性质分别化简得出答案.【解题过程】解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.【总结归纳】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.7.分式=0,则x的值是()A.1 B.﹣1 C.±1 D.0【知识考点】分式的值为零的条件.【思路分析】直接利用分式为零则分子为零,分母不为零进而得出答案.【解题过程】解:∵分式=0,∴x2﹣1=0且x+1≠0,解得:x=1.故选:A.【总结归纳】此题主要考查了分式的值为零的条件,正确把握分式为零的条件是解题关键.8.在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1 则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.5【知识考点】加权平均数;中位数.【思路分析】直接根据加权平均数和中位数的定义求解即可得.【解题过程】解:这10人投中次数的平均数为=7.4,中位数为=7.5,故选:D.【总结归纳】本题主要考查中位数,解题的关键是掌握中位数和加权平均数的定义.9.如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为()A.8 B.12 C.6D.12【知识考点】锐角三角函数的定义.【思路分析】根据锐角三角函数的边角间关系,先求出AB,再利用勾股定理求出BC.【解题过程】解:法一、在Rt△ACB中,∵sinB===0.5,∴AB=12.∴BC===6.故选:C.法二、在Rt△ACB中,∵sinB=0.5,∴∠B=30°.∵tanB===,∴BC=6.故选:C.【总结归纳】本题考查了解直角三角形.掌握直角三角形的边角间关系是解决本题的关键.10.如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0 C.k且k≠0 D.k【知识考点】一元二次方程的定义;根的判别式.【思路分析】根据关于x的一元二次方程kx2﹣3x+1=0有两个实数根,知△=(﹣3)2﹣4×k ×1≥0且k≠0,解之可得.【解题过程】解:∵关于x的一元二次方程kx2﹣3x+1=0有两个实数根,∴△=(﹣3)2﹣4×k×1≥0且k≠0,解得k≤且k≠0,故选:C.【总结归纳】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.11.如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°【知识考点】三角形的外接圆与外心;切线的性质.【思路分析】连接OC,如图,根据切线的性质得到∠PCO=90°,则利用互余计算出∠POC=62°,然后根据等腰三角形的性质和三角形外角性质计算∠A的度数.【解题过程】解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.12.已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t之间关系的函数图象是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.【解题过程】解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ETtanACB=t×=t,则S=S△CEH=×CE×HE=×t×t=t2,图象为开口向上的二次函数;当点A在DG上时,同理可得:S=a2﹣(a﹣t)2=(﹣t2+2at),图象为开口向下的二次函数;点C在EF的中点右侧时,同理可得:S=S△BFH=×BF×HF=×(2a﹣t)×(2a﹣t)=(2a﹣t)2,图象为开口向上的二次函数.故选:A.【总结归纳】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程.13.如图,a∥b,c与a,b都相交,∠1=50°,则∠2=.【知识考点】平行线的性质.【思路分析】根据平行线的性质得出∠3=∠1=50°,再根据邻补角互补求出∠2即可.【解题过程】解:∵a∥b,∠1=50°,∴∠1=∠3=50°,∴∠2=180°﹣∠3=130°,故答案为:130°.【总结归纳】本题考查了平行线的性质和邻补角,能根据平行线的性质求出∠3的度数是解此题的关键.14.如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.【知识考点】正数和负数.【思路分析】直接利用正负数的意义分析得出答案.【解题过程】解:如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:﹣2℃.故答案为:﹣2℃.【总结归纳】此题主要考查了正数和负数,正确理解正负数的意义是解题关键.15.从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.【知识考点】二次函数的性质;概率公式.【思路分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.【解题过程】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c 的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.【总结归纳】本题考查概率公式的计算,根据题意正确列出概率公式是解题的关键.16.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.【知识考点】换元法解一元二次方程.【思路分析】设x2+y2=z,则原方程转化为关于z的一元二次方程.解一元二次方程即可.【解题过程】解:设x2+y2=z,则原方程转化为z2﹣5z﹣6=0,(z﹣6)(z+1)=0,解得z1=6,z2=﹣1,∵x2+y2不小于0,∴x2+y2=6,故答案为6.【总结归纳】本题主要考查了换元法解一元二次方程,把某个式子看作一个整体,用一个字母去代替它,实行等量替换.17.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.【知识考点】勾股定理.【思路分析】根据垂直的定义和勾股定理解答即可.【解题过程】解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.【总结归纳】本题考查的是垂直的定义,勾股定理的应用,正确理解“垂美”四边形的定义、灵活运用勾股定理是解题的关键.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂.【思路分析】(1)先计算乘方、零指数幂、负整数指数幂,再计算乘法,最后计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解题过程】解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握零指数幂和负整数指数幂的规定及分式的混合运算顺序和运算法则.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.【知识考点】用样本估计总体;频数(率)分布直方图;概率公式.【思路分析】(1)用成绩在80~90分(含80分,不含90分)的学生有人数除以抽查人数的百分比可得被调查的总人数,再根据各分数段人数之和等于总人数可得m的值;(2)用成绩为优秀的人数除以被调查的总人数即可得;(3)用总人数乘以样本中数学成绩为优秀的人数所占比例即可得.【解题过程】解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110分的学生人数m=20﹣(2+3+7+3)=5;(2)这名学生成绩为优秀的概率为=;(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×=120(人).【总结归纳】本题主要考查概率公式,解题的关键是根据80~90分的学生人数及其所占百分比求出总人数、概率公式及样本估计总体思想的运用.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)【知识考点】一元一次不等式组的应用.【思路分析】设该班有x名学生,则本次一共种植(3x+86)棵树,根据“如果每人种5棵,则最后一人有树种但不足3棵”,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【解题过程】解:设该班有x名学生,则本次一共种植(3x+86)棵树,依题意,得:,解得:44<x<45,又∵x为正整数,∴x=45,3x+86=221.答:该班有45名学生,本次一共种植221棵树.【总结归纳】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.【知识考点】相似形综合题.【思路分析】(1)先判断出CG=FG,再利用同角的余角相等,判断出∠BAE=∠FEG,进而得出△ABE∽△EGF,即可得出结论;(2)先求出BE=8,进而表示出EG=2+FG,由△BAE∽△GEF,得出=,求出FG,最后用三角形面积公式即可得出结论;(3)同(2)的方法,即可得出S△ECF=﹣(x﹣5)2+,即可得出结论.【解题过程】解:(1)∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF;(2)∵AB=BC=10,CE=2,∴BE=8,∴FG=CG,∴EG=CE+CG=2+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=8,∴S△ECF=CE•FG=×2×8=8;(3)设CE=x,则BE=10﹣x,∴EG=CE+CG=x+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=10﹣x,∴S△ECF=×CE×FG=×x•(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,当x=5时,S△ECF最大=.【总结归纳】此题是相似形综合题,主要考查了正方形的性质,角平分线,相似三角形的判定和性质,三角形的面积公式,判断出△BAE∽△GEF是解本题的关键.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题.【解题过程】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标是(﹣2,10),∵B(0,6),A(3,0),∴,解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴m=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,∴E的坐标为(5,﹣4).(3)由图象可知kx+b≤的解集是:﹣2≤x<0或x≥5.【总结归纳】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围,属于中考常考题型.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【知识考点】角平分线的性质;等腰三角形的判定与性质;等边三角形的判定与性质;圆周角定理;圆内接四边形的性质.【思路分析】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S ,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB △ACD≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.【解题过程】(1)证明:∵四边形ABCD内接于⊙O.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DE=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.【总结归纳】本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).【知识考点】二次函数综合题.【思路分析】(1)利用待定系数法解决问题即可.(2)如图1中连接AD,CD.由题意点D到直线AC的距离取得最大,推出此时△DAC的面积最大.过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),推出DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,利用二次函数的性质求解即可.(3)分两种情形:OB是平行四边形的边或对角线分别求解即可.【解题过程】解:(1)把B(1,0),C(0,﹣3)代入y=x2+bx+c则有,解得∴二次函数的解析式为y=x2+2x﹣3,令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0).(2)如图1中连接AD,CD.∵点D到直线AC的距离取得最大,∴此时△DAC的面积最大设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=•DG•OA=(﹣x2﹣3x)×3=﹣x2﹣=﹣(x+)2+,∴当x=﹣时,S最大=,点D(﹣,﹣),∴点D到直线AC的距离取得最大时,D(﹣,﹣).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).【总结归纳】本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.。
2020年四川省雅安市中考数学试卷一.选择题(共12小题).1.(3分)实数2020的相反数是( )A .2020B .12020C .2020-D .12020- 2.(3分)不等式组21x x -⎧⎨<⎩的解集在数轴上表示正确的是( ) A . B .C .D .3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为( )A .4B .5C .6D .74.(3分)下列式子运算正确的是( )A .2235x x x +=B .()x y x y -+=-C .235x x x =D .44x x x +=5.(3分)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =6.(32|2|0a b a --=,则2a b +的值是( )A .4B .6C .8D .107.(3分)分式2101x x -=+,则x 的值是( ) A .1 B .1- C .1± D .08.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表: 投中次数 5 7 8 9 10 人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是( )A .3.9,7B .6.4,7.5C .7.4,8D .7.4,7.59.(3分)如图,在Rt ACB ∆中,90C ∠=︒,sin 0.5B =,若6AC =,则BC 的长为( )A .8B .12C .63D .12310.(3分)如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 11.(3分)如图,ABC ∆内接于圆,90ACB ∠=︒,过点C 的切线交AB 的延长线于点P ,28P ∠=︒.则(CAB ∠= )A .62︒B .31︒C .28︒D .56︒12.(3分)已知,等边三角形ABC 和正方形DEFG 的边长相等,按如图所示的位置摆放(C 点与E 点重合),点B 、C 、F 共线,ABC ∆沿BF 方向匀速运动,直到B 点与F 点重合.设运动时间为t ,运动过程中两图形重叠部分的面积为S ,则下面能大致反映s 与t 之间关系的函数图象是( )A .B .C .D .二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,//a b ,c 与a ,b 都相交,150∠=︒,则2∠= .14.(3分)如果用3C ︒+表示温度升高3摄氏度,那么温度降低2摄氏度可表示为 .15.(3分)从12-,1-,1,2,5中任取一数作为a ,使抛物线2y ax bx c =++的开口向上的概率为 .16.(3分)若22222()5()60x y x y +-+-=,则22x y += .17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若2AD =,4BC =,则22AB CD += .三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:2020022(1)(1)()3π--+-⨯;(2)先化简2221(1)121x x x x x x --+÷+++,再从1-,0,1中选择合适的x 值代入求值. 19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m ;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)21.(9分)如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,G 是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∆∆∽;(2)若2EC =,求CEF ∆的面积;(3)请直接写出EC 为何值时,CEF ∆的面积最大.22.(9分)如图,一次函数(y kx b k =+、b 为常数,0)k ≠的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数(m y m x=为常数且0)m ≠的图象在第二象限交于点C ,CD x ⊥轴,垂足为D ,若236OB OA OD ===.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E 的坐标;(3)请观察图象,直接写出不等式m kx b x +的解集.23.(10分)如图,四边形ABCD 内接于圆,60ABC ∠=︒,对角线BD 平分ADC ∠.(1)求证:ABC ∆是等边三角形;(2)过点B 作//BE CD 交DA 的延长线于点E ,若2AD =,3DC =,求BDE ∆的面积.24.(13分)已知二次函数2(0)y x bx c a =++≠的图象与x 轴的交于A 、(1,0)B 两点,与y 轴交于点(0,3)C -,(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).参考答案一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(3分)实数2020的相反数是()A.2020B.12020C.2020-D.12020-解:2020的相反数是:2020-.故选:C.2.(3分)不等式组21xx-⎧⎨<⎩的解集在数轴上表示正确的是()A.B.C.D.解:不等式组21xx-⎧⎨<⎩的解集在数轴上表示正确的是A选项.故选:A.3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.7解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5,故选:B .4.(3分)下列式子运算正确的是( )A .2235x x x +=B .()x y x y -+=-C .235x x x =D .44x x x += 解:A 、235x x x +=,故此选项错误;B 、()x y x y -+=--,故此选项错误;C 、235x x x =,正确;D 、4x x +,无法合并,故此选项错误.故选:C .5.(3分)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =解:由题意可知,A 、C 、D 都是命题,B 不是命题.故选:B .6.(3|2|0b a -=,则2a b +的值是() A .4 B .6 C .8D .10解:|2|0b a -=,20a ∴-=,20b a -=,解得:2a =,4b =,故210a b +=.故选:D .7.(3分)分式2101x x -=+,则x 的值是( )A .1B .1-C .1±D .0 解:分式2101x x -=+,210x ∴-=且10x +≠,解得:1x =.故选:A .8.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表: 投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是( )A .3.9,7B .6.4,7.5C .7.4,8D .7.4,7.5 解:这10人投中次数的平均数为5273839107.410⨯+⨯+⨯++=,中位数为787.52+=,故选:D .9.(3分)如图,在Rt ACB ∆中,90C ∠=︒,sin 0.5B =,若6AC =,则BC 的长为()A .8B .12C .3D .123解:法一、在Rt ACB ∆中,6sin 0.5ACB AB AB ===,12AB ∴=.22BC AB AC ∴=-14436=-63=.故选:C .法二、在Rt ACB ∆中,sin 0.5B =,30B ∴∠=︒.63tan AC B BC BC ===63BC ∴=.故选:C .10.(3分)如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 解:关于x 的一元二次方程2310kx x -+=有两个实数根, ∴△2(3)410k =--⨯⨯且0k ≠, 解得94k 且0k ≠, 故选:C .11.(3分)如图,ABC ∆内接于圆,90ACB ∠=︒,过点C 的切线交AB 的延长线于点P ,28P ∠=︒.则(CAB ∠= )A .62︒B .31︒C .28︒D .56︒解:连接OC ,如图,PC 为切线,OC PC ∴⊥,90PCO ∴∠=︒,90902862POC P ∴∠=︒-∠=︒-︒=︒,OA OC =,A OCA ∴∠=∠, 而POC A OCA ∠=∠+∠,162312A ∴∠=⨯︒=︒. 故选:B .12.(3分)已知,等边三角形ABC 和正方形DEFG 的边长相等,按如图所示的位置摆放(C 点与E 点重合),点B 、C 、F 共线,ABC ∆沿BF 方向匀速运动,直到B 点与F 点重合.设运动时间为t ,运动过程中两图形重叠部分的面积为S ,则下面能大致反映s 与t 之间关系的函数图象是( )A .B .C .D . 解:设等边三角形ABC 和正方形DEFG 的边长都为a , 当点C 在EF 的中点左侧时,设AC 交DE 于点H ,则CE t =,tan 33HE ET ACB t t ===, 则2113322CEH S S CE HE t t ∆==⨯⨯=⨯=,图象为开口向上的二次函数; 当点C 在EF 的中点右侧时,同理可得:222333()(2)222S a a t t at =--=-+,图象为开口向下的二次函数; 故选:A . 二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,//a b ,c 与a ,b 都相交,150∠=︒,则2∠= 130︒ .解://a b ,150∠=︒,1350∴∠=∠=︒, 21803130∴∠=︒-∠=︒,故答案为:130︒.14.(3分)如果用3C ︒+表示温度升高3摄氏度,那么温度降低2摄氏度可表示为 2C ︒- . 解:如果用3C ︒+表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:2C ︒-.故答案为:2C ︒-.15.(3分)从12-,1-,1,2,5中任取一数作为a ,使抛物线2y ax bx c =++的开口向上的概率为 5. 解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线2y ax bx c =++的开口向上的有3种结果,∴使抛物线2y ax bx c =++的开口向上的概率为35, 故答案为:35.16.(3分)若22222()5()60x y x y +-+-=,则22x y += 6 .解:设22x y z +=,则原方程转化为2560z z --=,(6)(1)0z z -+=,解得16z =,21z =-,22x y +不小于0,226x y ∴+=,故答案为6.17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若2AD =,4BC =,则22AB CD += 20 .解:AC BD ⊥,90AOD AOB BOC COD ∴∠=∠=∠=∠=︒,由勾股定理得,222222AB CD AO BO CO DO +=+++,222222AD BC AO DO BO CO +=+++,2222AB CD AD BC ∴+=+,2AD =,4BC =,22222420AB CD ∴+=+=.故答案为:20.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:2020022(1)(1)()3π--+-⨯; (2)先化简2221(1)121x x x x x x --+÷+++,再从1-,0,1中选择合适的x 值代入求值.解:(1)原式9114=+⨯ 914=+ 134=;(2)原式2221(1)(1)()11(1)x x x x x x x -+-=-÷+++ 1111x x x +=+- 11x =-, 1x ≠±,∴取0x =,则原式1=-.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m ;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.解:(1)成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%, ∴被抽查的学生人数为315%20÷=(人),则成绩在100~110分的学生人数20(2373)5m =-+++=;(2)这名学生成绩为优秀的概率为532205+=; (3)估计本次检测中该校初三年级数学成绩为优秀的人数为23001205⨯=(人). 20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)解:设该班有x 名学生,则本次一共种植(386)x +棵树,依题意,得:3865(1)3865(1)3x x x x +>-⎧⎨+<-+⎩, 解得:144452x <<, 又x 为正整数,45x ∴=,386221x +=.答:该班有45名学生,本次一共种植221棵树.21.(9分)如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,G 是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∆∆∽;(2)若2EC =,求CEF ∆的面积;(3)请直接写出EC 为何值时,CEF ∆的面积最大.解:(1)四边形ABCD 是正方形,90DCG ∴∠=︒,CF 平分DCG ∠,1452FCG DCG ∴∠=∠=︒, 90G ∠=︒,45GCF CFG ∴∠=∠=︒,FG CG ∴=,四边形ABCD 是正方形,EF AE ⊥,90B G AEF ∴∠=∠=∠=︒,90BAE AEB ∴∠+∠=︒,90AEB FEG ∠+∠=︒,BAE FEG ∴∠=∠,90B G ∠=∠=︒,BAE GEF ∴∆∆∽;(2)10AB BC ==,2CE =,8BE ∴=,FG CG ∴=,2EG CE CG FG ∴=+=+,由(1)知,BAE GEF ∆∆∽, ∴AB BE EG FG =, ∴1082FG FG=+, 8FG ∴=,1128822ECF S CE FG ∆∴==⨯⨯=;(3)设CE x =,则10BE x =-,EG CE CG x FG ∴=+=+,由(1)知,BAE GEF ∆∆∽,∴AB BE EG FG =, ∴1010x x FG FG -=+, 10FG x ∴=-,22111125(10)(10)(5)22222ECF S CE FG x x x x x ∆∴=⨯⨯=⨯-=--=--+, 当5x =时,252ECF S ∆=最大. 22.(9分)如图,一次函数(y kx b k =+、b 为常数,0)k ≠的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数(m y m x=为常数且0)m ≠的图象在第二象限交于点C ,CD x ⊥轴,垂足为D ,若236OB OA OD ===.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式m kx bx+的解集.解:(1)236OB OA OD===,6OB∴=,3OA=,2OD =,CD OA⊥,//DC OB∴,∴OB AOCD AD=,∴635CD=,10CD∴=,∴点C坐标是(2,10)-,(0,6)B,(3,0)A,∴630bk b=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩,∴一次函数为26y x=-+.反比例函数myx=经过点(2,10)C-,20m∴=-,∴反比例函数解析式为20yx=-.(2)由2620y xyx=-+⎧⎪⎨=-⎪⎩解得210xy=-⎧⎨=⎩或54xy=⎧⎨=-⎩,E∴的坐标为(5,4)-.(3)由图象可知mkx bx+的解集是:20x-<或5x.23.(10分)如图,四边形ABCD 内接于圆,60ABC ∠=︒,对角线BD 平分ADC ∠.(1)求证:ABC ∆是等边三角形;(2)过点B 作//BE CD 交DA 的延长线于点E ,若2AD =,3DC =,求BDE ∆的面积.【解答】(1)证明:四边形ABCD 内接于O . 180ABC ADC ∴∠+∠=︒,60ABC ∠=︒,120ADC ∴∠=︒, DB 平分ADC ∠,60ADB CDB ∴∠=∠=︒,60ACB ADB ∴∠=∠=︒,60BAC CDB ∠=∠=︒, ABC BCA BAC ∴∠=∠=∠,ABC ∴∆是等边三角形(2)过点A 作AM CD ⊥,垂足为点M ,过点B 作BN AC ⊥,垂足为点N . 90AMD ∴∠=︒120ADC ∠=︒,60ADM ∴∠=︒,30DAM ∴∠=︒,112DM AD ∴==,AM === 3CD =,134CM CD DE ∴=+=+=,11322ACD S CD AM ∆∴==⨯=Rt AMC ∆中,90AMD ∠=︒,AC ∴===,ABC ∆是等边三角形,AB BC AC ∴===,BN ∴==, 12ABC S ∆∴== ∴四边形ABCD 的面积==, //BE CD ,180E ADC ∴∠+∠=︒,120ADC ∠=︒,60E ∴∠=︒,E BDC ∴∠=,四边形ABCD 内接于O ,EAB BCD ∴∠=∠,在EAB ∆和DCB ∆中E BDC EAB DCB AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EABDCB AAS ∴∆≅∆,BDE ∴∆的面积=四边形ABCD 的面积=.24.(13分)已知二次函数2(0)y x bx c a =++≠的图象与x 轴的交于A 、(1,0)B 两点,与y 轴交于点(0,3)C -,(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).解:(1)把(1,0)B ,(0,3)C -代入2y x bx c =++则有310c b c =-⎧⎨++=⎩, 解得23b c =⎧⎨=-⎩∴二次函数的解析式为223y x x =+-,令0y =,得到2230x x +-=,解得3x =-或1, (3,0)A ∴-.(2)如图1中连接AD ,CD .点D 到直线AC 的距离取得最大,∴此时DAC ∆的面积最大设直线AC 解析式为:y kx b =+,(3,0)A -,(0,3)C -,∴330b k b =-⎧⎨-+=⎩, 解得,13k b =-⎧⎨=-⎩, ∴直线AC 的解析式为3y x =--,过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为2(,23)x x x +-, 则(,3)G x x --,点D 在第三象限,2223(23)3233DG x x x x x x x x ∴=---+-=----+=--, 22211393327(3)3()2222228ACD S DG OA x x x x ∆∴==--⨯=--=-++, ∴当32x =-时,278S =最大,点3(2D -,15)4-, ∴点D 到直线AC 的距离取得最大时,3(2D -,15)4-.(3)如图2中,当OB 是平行四边形的边时,1OB MN ==,//OB MN ,可得(2,3)N --或(0,3)N '-,当OB 为对角线时,点N ''的横坐标为32, 32x =时,993244y =+-=, 3(2N ∴'',9)4. 综上所述,满足条件的点N 的坐标为(2,3)--或(0,3)-或3(2,9)4.。
2020年四川省雅安市中考数学试卷一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(3分)实数2020的相反数是()A.2020B.C.﹣2020D.﹣2.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.74.(3分)下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x45.(3分)下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c6.(3分)已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.107.(3分)分式=0,则x的值是()A.1B.﹣1C.±1D.08.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.59.(3分)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则BC的长为()A.8B.12C.6D.1210.(3分)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k11.(3分)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°12.(3分)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C 点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t之间关系的函数图象是()A.B.C.D.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=.14.(3分)如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.16.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x 轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).2020年四川省雅安市中考数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.【解答】解:2020的相反数是:﹣2020.故选:C.2.【解答】解:不等式组的解集在数轴上表示正确的是A选项.故选:A.3.【解答】解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5,故选:B.4.【解答】解:A、2x+3x=5x,故此选项错误;B、﹣(x+y)=﹣x﹣y,故此选项错误;C、x2•x3=x5,正确;D、x4+x,无法合并,故此选项错误.故选:C.5.【解答】解:由题意可知,A、C、D都是命题,B不是命题.故选:B.6.【解答】解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.7.【解答】解:∵分式=0,∴x2﹣1=0且x+1≠0,解得:x=1.故选:A.8.【解答】解:这10人投中次数的平均数为=7.4,中位数为=7.5,故选:D.9.【解答】解:法一、在Rt△ACB中,∵sin B===0.5,∴AB=12.∴BC===6.故选:C.法二、在Rt△ACB中,∵sin B=0.5,∴∠B=30°.∵tan B===,∴BC=6.故选:C.10.【解答】解:∵关于x的一元二次方程kx2﹣3x+1=0有两个实数根,∴△=(﹣3)2﹣4×k×1≥0且k≠0,解得k≤且k≠0,故选:C.11.【解答】解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.12.【解答】解:设等边三角形ABC和正方形DEFG的边长都为a,当点C在EF的中点左侧时,设AC交DE于点H,则CE=t,HE=ET tan ACB=t×=t,则S=S△CEH=×CE×HE=×t×t=t2,图象为开口向上的二次函数;当点C在EF的中点右侧时,同理可得:S=a2﹣(a﹣t)2=(﹣t2+2at),图象为开口向下的二次函数;故选:A.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.【解答】解:∵a∥b,∠1=50°,∴∠1=∠3=50°,∴∠2=180°﹣∠3=130°,故答案为:130°.14.【解答】解:如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:﹣2℃.故答案为:﹣2℃.15.【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c 的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.16.【解答】解:设x2+y2=z,则原方程转化为z2﹣5z﹣6=0,(z﹣6)(z+1)=0,解得z1=6,z2=﹣1,∵x2+y2不小于0,∴x2+y2=6,故答案为6.17.【解答】解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.【解答】解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.19.【解答】解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110分的学生人数m=20﹣(2+3+7+3)=5;(2)这名学生成绩为优秀的概率为=;(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×=120(人).20.【解答】解:设该班有x名学生,则本次一共种植(3x+86)棵树,依题意,得:,解得:44<x<45,又∵x为正整数,∴x=45,3x+86=221.答:该班有45名学生,本次一共种植221棵树.21.【解答】解:(1)∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF;(2)∵AB=BC=10,CE=2,∴BE=8,∴FG=CG,∴EG=CE+CG=2+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=8,∴S△ECF=CE•FG=×2×8=8;(3)设CE=x,则BE=10﹣x,∴EG=CE+CG=x+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=10﹣x,∴S△ECF=×CE×FG=×x•(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,当x=5时,S△ECF最大=.22.【解答】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标是(﹣2,10),∵B(0,6),A(3,0),∴,解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴m=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,∴E的坐标为(5,﹣4).(3)由图象可知kx+b≤的解集是:﹣2≤x<0或x≥5.23.【解答】(1)证明:∵四边形ABCD内接于⊙O.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DE=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.24.【解答】解:(1)把B(1,0),C(0,﹣3)代入y=x2+bx+c 则有,解得∴二次函数的解析式为y=x2+2x﹣3,令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0).(2)如图1中连接AD,CD.∵点D到直线AC的距离取得最大,∴此时△DAC的面积最大设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=•DG•OA=(﹣x2﹣3x)×3=﹣x2﹣=﹣(x+)2+,∴当x=﹣时,S最大=,点D(﹣,﹣),∴点D到直线AC的距离取得最大时,D(﹣,﹣).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为,x=时,y=+3﹣2=,∴N″(,).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(,).。
四川省雅安市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·哈尔滨模拟) -2的绝对值是()A .B .C .D . 12. (2分)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A . 2.5×108B . 2.5×107C . 2.5×106D . 25×1063. (2分)下列四个几何体中,左视图为圆的是()A .B .C .D .4. (2分)若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A . a≥2B . a≤2C . a<2D . a>25. (2分)如图,直线a,b被直线c所截,已知已知a∥b,∠1=40°,则∠2的度数为()A . 40°B . 50°C . 140°D . 160°6. (2分)(2020·澄海模拟) 为了解小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,9,7,26,17,9.这组数据的众数是()A . 17B . 7C . 16D . 157. (2分)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A . 3B . 8C .D .8. (2分)如图,在y轴正半轴上依次截取OA1=A1A2=A2A3=…=An﹣1An(n为正整数),过点A1 , A2 , A3 ,…,An分别作y轴的垂线,与反比例函数y=(x>0)交于P1 , P2 , P3 ,…,Pn ,连接P1P2 , P2P3 , P3P4 ,…,Pn﹣1Pn ,得梯形A1A2P2P1 , A2A3P3P2 , A3A4P4P3 ,…,AnAn+1Pn+1Pn ,设其面积分别为S1 , S2 , S3 ,…,Sn ,则Sn=()A .B .C .D .二、填空题 (共8题;共10分)9. (1分)分解因式:﹣a2c+b2c=.________.10. (1分)在△ABC中,若|sinA﹣ |+(cosB﹣)2=0,则∠C的度数是________.11. (3分)某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为________ ,柑橘完好的概率估计值为________ ;(2)估计这批柑橘完好的质量为________ 千克.12. (1分) (2020八下·镇江月考) 如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠DAE=25°,则∠F的度数为________。
2020年四川省雅安市中考数学试卷和答案解析一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(3分)实数2020的相反数是()A.2020B.C.﹣2020D.﹣解析:直接利用相反数的定义得出答案.参考答案:解:2020的相反数是:﹣2020.故选:C.点拨:此题主要考查了相反数,正确把握相反数的定义是解题的关键.2.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.解析:根据不等式的解集即可在数轴上表示出来.参考答案:解:不等式组的解集在数轴上表示正确的是A选项.故选:A.点拨:本题考查了在数轴上表示不等式的解集,解决本题的关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.7解析:在“俯视打地基”的前提下,结合左视图知俯视图最上面一行三个小正方体的上方(第2层)至少还有1个正方体,据此可得答案.参考答案:解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5,故选:B.点拨:本题主要考查由三视图判断几何体,解题的关键是掌握口诀“俯视打地基,主视疯狂盖,左视拆违章”.4.(3分)下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x4解析:直接利用合并同类项法则以及同底数幂的乘法运算法则分别化简得出答案.参考答案:解:A、2x+3x=5x,故此选项错误;B、﹣(x+y)=﹣x﹣y,故此选项错误;C、x2•x3=x5,正确;D、x4+x,无法合并,故此选项错误.故选:C.点拨:此题主要考查了同底数幂的乘法以及整式的加减,正确掌握相关运算法则是解题关键.5.(3分)下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c解析:判断一件事情的语句,叫做命题.根据定义判断即可.参考答案:解:由题意可知,A、C、D都是命题,B不是命题.故选:B.点拨:本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.6.(3分)已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.10解析:直接利用绝对值和二次根式的性质分别化简得出答案.参考答案:解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.点拨:此题主要考查了非负数的性质,正确得出a,b的值是解题关键.7.(3分)分式=0,则x的值是()A.1B.﹣1C.±1D.0解析:直接利用分式为零则分子为零,分母不为零进而得出答案.参考答案:解:∵分式=0,∴x2﹣1=0且x+1≠0,解得:x=1.故选:A.点拨:此题主要考查了分式的值为零的条件,正确把握分式为零的条件是解题关键.8.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.5解析:直接根据加权平均数和中位数的定义求解即可得.参考答案:解:这10人投中次数的平均数为=7.4,中位数为=7.5,故选:D.点拨:本题主要考查中位数,解题的关键是掌握中位数和加权平均数的定义.9.(3分)如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为()A.8B.12C.6D.12解析:根据锐角三角函数的边角间关系,先求出AB,再利用勾股定理求出BC.参考答案:解:法一、在Rt△ACB中,∵sinB===0.5,∴AB=12.∴BC===6.故选:C.法二、在Rt△ACB中,∵sinB=0.5,∴∠B=30°.∵tanB===,∴BC=6.故选:C.点拨:本题考查了解直角三角形.掌握直角三角形的边角间关系是解决本题的关键.10.(3分)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k解析:根据关于x的一元二次方程kx2﹣3x+1=0有两个实数根,知△=(﹣3)2﹣4×k×1≥0且k≠0,解之可得.参考答案:解:∵关于x的一元二次方程kx2﹣3x+1=0有两个实数根,∴△=(﹣3)2﹣4×k×1≥0且k≠0,解得k≤且k≠0,故选:C.点拨:本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.11.(3分)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°解析:连接OC,如图,根据切线的性质得到∠PCO=90°,则利用互余计算出∠POC=62°,然后根据等腰三角形的性质和三角形外角性质计算∠A的度数.参考答案:解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.12.(3分)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s 与t之间关系的函数图象是()A.B.C.D.解析:分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.参考答案:解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ETtanACB=t×=t,则S=S △CEH=×CE×HE=×t×t=t2,图象为开口向上的二次函数;当点A在DG上时,同理可得:S=a2﹣(a﹣t)2=(﹣t2+2at),图象为开口向下的二次函数;点C在EF的中点右侧时,同理可得:S=S △BFH=×BF×HF=×(2a﹣t)×(2a﹣t)=(2a﹣t)2,图象为开口向上的二次函数.故选:A.点拨:本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=130°.解析:根据平行线的性质得出∠3=∠1=50°,再根据邻补角互补求出∠2即可.参考答案:解:∵a∥b,∠1=50°,∴∠1=∠3=50°,∴∠2=180°﹣∠3=130°,故答案为:130°.点拨:本题考查了平行线的性质和邻补角,能根据平行线的性质求出∠3的度数是解此题的关键.14.(3分)如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为﹣2℃.解析:直接利用正负数的意义分析得出答案.参考答案:解:如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:﹣2℃.故答案为:﹣2℃.点拨:此题主要考查了正数和负数,正确理解正负数的意义是解题关键.15.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.解析:使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.参考答案:解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.点拨:本题考查概率公式的计算,根据题意正确列出概率公式是解题的关键.16.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=6.解析:设x2+y2=z,则原方程转化为关于z的一元二次方程.解一元二次方程即可.参考答案:解:设x2+y2=z,则原方程转化为z2﹣5z﹣6=0,(z﹣6)(z+1)=0,解得z1=6,z2=﹣1,∵x2+y2不小于0,∴x2+y2=6,故答案为6.点拨:本题主要考查了换元法解一元二次方程,把某个式子看作一个整体,用一个字母去代替它,实行等量替换.17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=20.解析:根据垂直的定义和勾股定理解答即可.参考答案:解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.点拨:本题考查的是垂直的定义,勾股定理的应用,正确理解“垂美”四边形的定义、灵活运用勾股定理是解题的关键.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.解析:(1)先计算乘方、零指数幂、负整数指数幂,再计算乘法,最后计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.参考答案:解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.点拨:本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握零指数幂和负整数指数幂的规定及分式的混合运算顺序和运算法则.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.解析:(1)用成绩在80~90分(含80分,不含90分)的学生有人数除以抽查人数的百分比可得被调查的总人数,再根据各分数段人数之和等于总人数可得m的值;(2)用成绩为优秀的人数除以被调查的总人数即可得;(3)用总人数乘以样本中数学成绩为优秀的人数所占比例即可得.参考答案:解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110分的学生人数m=20﹣(2+3+7+3)=5;(2)这名学生成绩为优秀的概率为=;(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×=120(人).点拨:本题主要考查概率公式,解题的关键是根据80~90分的学生人数及其所占百分比求出总人数、概率公式及样本估计总体思想的运用.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)解析:设该班有x名学生,则本次一共种植(3x+86)棵树,根据“如果每人种5棵,则最后一人有树种但不足3棵”,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x为正整数即可得出结论.参考答案:解:设该班有x名学生,则本次一共种植(3x+86)棵树,依题意,得:,解得:44<x<45,又∵x为正整数,∴x=45,3x+86=221.答:该班有45名学生,本次一共种植221棵树.点拨:本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.解析:(1)先判断出CG=FG,再利用同角的余角相等,判断出∠BAE=∠FEG,进而得出△ABE∽△EGF,即可得出结论;(2)先求出BE=8,进而表示出EG=2+FG,由△BAE∽△GEF,得出=,求出FG,最后用三角形面积公式即可得出结论;(3)同(2)的方法,即可得出S△ECF=﹣(x﹣5)2+,即可得出结论.参考答案:解:(1)∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF;(2)∵AB=BC=10,CE=2,∴BE=8,∴FG=CG,∴EG=CE+CG=2+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=8,∴S△ECF=CE•FG=×2×8=8;(3)设CE=x,则BE=10﹣x,∴EG=CE+CG=x+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=10﹣x,∴S△ECF=×CE×FG=×x•(10﹣x)=﹣(x2﹣10x)=﹣(x ﹣5)2+,当x=5时,S△ECF最大=.点拨:此题是相似形综合题,主要考查了正方形的性质,角平分线,相似三角形的判定和性质,三角形的面积公式,判断出△BAE∽△GEF是解本题的关键.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.解析:(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题.参考答案:解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标是(﹣2,10),∵B(0,6),A(3,0),∴,解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴m=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,∴E的坐标为(5,﹣4).(3)由图象可知kx+b≤的解集是:﹣2≤x<0或x≥5.点拨:本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围,属于中考常考题型.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC =3,求△BDE的面积.解析:(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S△ACD,分别求出△ABC,△ACD 的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.参考答案:(1)证明:∵四边形ABCD内接于⊙O.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DE=1+3=4,∴S △ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.点拨:本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC 的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).解析:(1)利用待定系数法解决问题即可.(2)如图1中连接AD,CD.由题意点D到直线AC的距离取得最大,推出此时△DAC的面积最大.过点D作x轴的垂线交AC 于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),推出DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,利用二次函数的性质求解即可.(3)分两种情形:OB是平行四边形的边或对角线分别求解即可.参考答案:解:(1)把B(1,0),C(0,﹣3)代入y=x2+bx+c则有,解得∴二次函数的解析式为y=x2+2x﹣3,令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0).(2)如图1中连接AD,CD.∵点D到直线AC的距离取得最大,∴此时△DAC的面积最大设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x ﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=•DG•OA=(﹣x2﹣3x)×3=﹣x2﹣=﹣(x+)2+,∴当x=﹣时,S最大=,点D(﹣,﹣),∴点D到直线AC的距离取得最大时,D(﹣,﹣).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB ∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).点拨:本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.。
四川省雅安市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,BD=4,则⊙O 的直径等于( )A .5B .C .D .72.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 3.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 4.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对5.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,53)C .(0,2)D .(0,103) 6.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 7.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-8.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是 ( )A .点AB .点BC .点CD .点D9.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .12510.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°11.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=12.下列方程中,没有实数根的是( )A .2x 2x 30--=B .2x 2x 30-+=C .2x 2x 10-+=D .2x 2x 10--=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:x 3y ﹣2x 2y+xy=______.14.如图,点A 、B 、C 是⊙O 上的三点,且△AOB 是正三角形,则∠ACB 的度数是 。
四川省雅安市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.函数y=12x +中,x 的取值范围是( ) A .x≠0B .x >﹣2C .x <﹣2D .x≠﹣22.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.如图,已知第一象限内的点A 在反比例函数y=上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为( )A .﹣2B .4C .﹣4D .24.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°5.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解 B .当k 1=时,方程有一个实数解 C .当k 1=-时,方程有两个相等的实数解 D .当k 0≠时,方程总有两个不相等的实数解6.如图,△ABC 的面积为12,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C 处,P 为直线AD 上的一点,则线段BP 的长可能是( )A.3 B.5 C.6 D.107.若a与﹣3互为倒数,则a=()A.3 B.﹣3 C.D.-8.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数9.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°10.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案11.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A.5.46×108B.5.46×109C.5.46×1010D.5.46×101112.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB 于点C,BP=6,∠P=30°,则CD的长度是()A 3B.3C3D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.14.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.16.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1. 17.已知,正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm (结果保留π).18.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.20.(6分)解不等式组20{5121123xx x ->+-+≥①②,并把解集在数轴上表示出来.21.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球), 第一次变化:从左边小桶中拿出两个小球放入中间小桶中; 第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍. (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍; (2)若每个小桶中原有a 个小球,则第二次变化后中间小桶中有_____个小球(用a 表示); (3)求第三次变化后中间小桶中有多少个小球?22.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23.(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)24.(10分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?25.(10分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.26.(12分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若3AD=1,求DB的长.27.(12分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D.点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.2.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.4.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°, ∴∠D=75°. 故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C ,再由CD=CE 得出∠D=∠CED ,由三角形内角和定理求出∠D . 5.C 【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解. 当k 0≠时,方程为一元二次方程,的情况由根的判别式确定: ∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C . 6.D 【解析】 【分析】过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,根据折叠得出∠C′AB=∠CAB ,根据角平分线性质得出BN=BM ,根据三角形的面积求出BN ,即可得出点B 到AD 的最短距离是8,得出选项即可. 【详解】解:如图:过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,∵将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C′处, ∴∠C′AB=∠CAB , ∴BN=BM ,∵△ABC 的面积等于12,边AC=3, ∴12×AC×BN=12, ∴BN=8, ∴BM=8,即点B 到AD 的最短距离是8, ∴BP 的长不小于8,即只有选项D符合,故选D.【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.7.D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=,故选C.考点:倒数.8.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.9.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将546亿用科学记数法表示为:5.46×1010,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.12.C【解析】【分析】连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=23,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30° ∵OA=OB ,∴∠OAB=∠OBA=30°,∵OD ⊥AB ,∴∠OCB=90°,∴∠OBC=30°,则OC=12∴故选:C .【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.28【解析】设这种电子产品的标价为x 元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.14.3.1或4.32或4.2【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt △ABC 中,∠ACB=90°,AB=3,BC=4,∴,S △ABC =12AB•BC=1. 沿过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,有三种情况: ①当AB=AP=3时,如图1所示,S 等腰△ABP =AP AC •S △ABC =35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.15.1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.16.2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理17.2π【解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°, 所得到的三条弧的长度之和=3×120180r π=2πcm ; 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm .18.①②③【解析】【分析】①根据三角形的中位线定理可得出AD=FE 、AF=FC 、DF=EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确;②根据三角形中位线定理可得出EF ∥AB 、EF=AD ,进而可证出四边形ADEF 为平行四边形,由AB=AC 结合D 、F 分别为AB 、AC 的中点可得出AD=AF ,进而可得出四边形ADEF 为菱形,结论②正确; ③根据三角形中位线定理可得出DF ∥BC 、DF=12BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出14ADF ABC S S =V V ,结论③正确.此题得解. 【详解】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点,∴DE 、DF 、EF 为△ABC 的中位线,∴AD=12AB=FE ,AF=12AC=FC ,DF=12BC=EC . 在△ADF 和△FEC 中,AD FE AF FC DF EC ⎧⎪⎨⎪⎩===,∴△ADF ≌△FEC (SSS ),结论①正确;②∵E 、F 分别为BC 、AC 的中点,∴EF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=AD , ∴四边形ADEF 为平行四边形.∵AB=AC ,D 、F 分别为AB 、AC 的中点,∴AD=AF ,∴四边形ADEF 为菱形,结论②正确;③∵D 、F 分别为AB 、AC 的中点,∴DF 为△ABC 的中位线,∴DF ∥BC ,DF=12BC , ∴△ADF ∽△ABC ,∴214ADF ABC S DF S BC ==V V (),结论③正确. 故答案为①②③.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1-3【解析】【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=112311322-+--=-. 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.20.﹣1≤x <1.【解析】【分析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x <1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x <1.不等式组的解集在数轴上表示如下:21.(1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】【分析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.22.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)81cm;(2)8.6cm;【解析】【分析】(1)作EM⊥BC于点M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于点H,先根据E′C='E Hsin ECB∠求得E′C的长度,再根据EE′=CE′﹣CE可得答案.【详解】(1)如图1,过点E作EM⊥BC于点M.由题意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,则单车车座E到地面的高度为51.3+30≈81cm;(2)如图2所示,过点E′作E′H⊥BC于点H.由题意知E′H=70×0.85=59.5,则E′C='E Hsin ECB∠=59.571sin︒≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.24.(1)20;15%;35%;(2)见解析;(3)126°.【解析】【分析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【详解】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小25.(1)详见解析;(2)3sin OPC∠=;(3)915m≤≤【解析】【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到33 OCOP=由三角函数的定义即可得到结论;(3)连接BC ,根据勾股定理得到BC=2?2AB AC -=12,当M 与A 重合时,得到d+f=12,当M 与B重合时,得到d+f=9,于是得到结论.【详解】(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,∴∠COP=∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径,∴∠OBP=90°,在△POC 与△POB 中,OC OB COP BOP OP OP ⎧⎪∠∠⎨⎪⎩===,∴△COP ≌△BOP , ∴∠OCP=∠OBP=90°,∴PC 是⊙O 的切线;(2)过O 作OD ⊥AC 于D ,∴∠ODC=∠OCP=90°,CD=12AC , ∵∠DCO=∠COP ,∴△ODC ∽△PCO ,∴CD OC OC PO=, ∴CD•OP=OC 2,∵OP=32AC , ∴AC=23OP ,∴CD=13OP , ∴13OP•OP=OC 2∴OC OP =∴sin ∠CPO=3OC OP =; (3)连接BC ,∵AB 是⊙O 的直径,∴AC ⊥BC ,∵AC=9,AB=1,∴,当CM ⊥AB 时,d=AM ,f=BM ,∴d+f=AM+BM=1,当M 与B 重合时,d=9,f=0,∴d+f=9,∴d+f 的取值范围是:9≤d+f≤1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.26.BD= 2.【解析】【详解】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长.试题解析:∵∠ACD=∠ABC ,又∵∠A=∠A ,∴△ABC ∽△ACD , ∴AD AC AC AB=,∵AD=1,AB=,∴AB=3,∴BD= AB﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.27.(1)y=110x1.z=﹣110x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax1(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=110,故y与x之间的关系式为y=110x1.图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则1002030k bb+=⎧⎨=⎩,解得:1k10b30⎧⎪⎨⎪⎩==,故z与x之间的关系式为z=﹣110x+30(0≤x≤100);(1)W=zx﹣y=﹣110x1+30x﹣110x1=﹣x1+30x=﹣15(x1﹣150x)=﹣15(x﹣75)1+1115,∵﹣15<0,∴当x=75时,W有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y=360,得110x1=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣15(x﹣75)1+1115的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.。
2020年四川省雅安市中考数学试卷一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(3分)实数2020的相反数是()A.2020B.C.﹣2020D.﹣2.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.74.(3分)下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x45.(3分)下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c6.(3分)已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.107.(3分)分式=0,则x的值是()A.1B.﹣1C.±1D.08.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.59.(3分)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则BC的长为()A.8B.12C.6D.1210.(3分)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k11.(3分)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°12.(3分)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C 点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t之间关系的函数图象是()A.B.C.D.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=.14.(3分)如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.16.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x 轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).2020年四川省雅安市中考数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(3分)实数2020的相反数是()A.2020B.C.﹣2020D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的解集即可在数轴上表示出来.【解答】解:不等式组的解集在数轴上表示正确的是A选项.故选:A.3.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.7【分析】在“俯视打地基”的前提下,结合左视图知俯视图最上面一行三个小正方体的上方(第2层)至少还有1个正方体,据此可得答案.【解答】解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5,故选:B.4.(3分)下列式子运算正确的是()A.2x+3x=5x2B.﹣(x+y)=x﹣y C.x2•x3=x5D.x4+x=x4【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、2x+3x=5x,故此选项错误;B、﹣(x+y)=﹣x﹣y,故此选项错误;C、x2•x3=x5,正确;D、x4+x,无法合并,故此选项错误.故选:C.5.(3分)下列四个选项中不是命题的是()A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果a=b,a=c,那么b=c【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【解答】解:由题意可知,A、C、D都是命题,B不是命题.故选:B.6.(3分)已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.10【分析】直接利用绝对值和二次根式的性质分别化简得出答案.【解答】解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.7.(3分)分式=0,则x的值是()A.1B.﹣1C.±1D.0【分析】直接利用分式为零则分子为零,分母不为零进而得出答案.【解答】解:∵分式=0,∴x2﹣1=0且x+1≠0,解得:x=1.故选:A.8.(3分)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.5【分析】直接根据加权平均数和中位数的定义求解即可得.【解答】解:这10人投中次数的平均数为=7.4,中位数为=7.5,故选:D.9.(3分)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则BC的长为()A.8B.12C.6D.12【分析】根据锐角三角函数的边角间关系,先求出AB,再利用勾股定理求出BC.【解答】解:法一、在Rt△ACB中,∵sin B===0.5,∴AB=12.∴BC===6.故选:C.法二、在Rt△ACB中,∵sin B=0.5,∴∠B=30°.∵tan B===,∴BC=6.故选:C.10.(3分)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k【分析】根据关于x的一元二次方程kx2﹣3x+1=0有两个实数根,知△=(﹣3)2﹣4×k×1≥0且k≠0,解之可得.【解答】解:∵关于x的一元二次方程kx2﹣3x+1=0有两个实数根,∴△=(﹣3)2﹣4×k×1≥0且k≠0,解得k≤且k≠0,故选:C.11.(3分)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°【分析】连接OC,如图,根据切线的性质得到∠PCO=90°,则利用互余计算出∠POC =62°,然后根据等腰三角形的性质和三角形外角性质计算∠A的度数.【解答】解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.12.(3分)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C 点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t之间关系的函数图象是()A.B.C.D.【分析】分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.【解答】解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ET tan ACB=t×=t,则S=S△CEH=×CE×HE=×t×t=t2,图象为开口向上的二次函数;当点A在DG上时,同理可得:S=a2﹣(a﹣t)2=(﹣t2+2at),图象为开口向下的二次函数;点C在EF的中点右侧时,同理可得:S=S△BFH=×BF×HF=×(2a﹣t)×(2a﹣t)=(2a﹣t)2,图象为开口向上的二次函数.故选:A.二.填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(3分)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=130°.【分析】根据平行线的性质得出∠3=∠1=50°,再根据邻补角互补求出∠2即可.【解答】解:∵a∥b,∠1=50°,∴∠1=∠3=50°,∴∠2=180°﹣∠3=130°,故答案为:130°.14.(3分)如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为﹣2℃.【分析】直接利用正负数的意义分析得出答案.【解答】解:如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:﹣2℃.故答案为:﹣2℃.15.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.【分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c 的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.16.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=6.【分析】设x2+y2=z,则原方程转化为关于z的一元二次方程.解一元二次方程即可.【解答】解:设x2+y2=z,则原方程转化为z2﹣5z﹣6=0,(z﹣6)(z+1)=0,解得z1=6,z2=﹣1,∵x2+y2不小于0,∴x2+y2=6,故答案为6.17.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=20.【分析】根据垂直的定义和勾股定理解答即可.【解答】解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.三、解答题(本大题共7个小题,共69分)解答要求写出必要的文字说明、演算步骤或推理过程.18.(12分)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.【分析】(1)先计算乘方、零指数幂、负整数指数幂,再计算乘法,最后计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.19.(8分)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.【分析】(1)用成绩在80~90分(含80分,不含90分)的学生有人数除以抽查人数的百分比可得被调查的总人数,再根据各分数段人数之和等于总人数可得m的值;(2)用成绩为优秀的人数除以被调查的总人数即可得;(3)用总人数乘以样本中数学成绩为优秀的人数所占比例即可得.【解答】解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110分的学生人数m=20﹣(2+3+7+3)=5;(2)这名学生成绩为优秀的概率为=;(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×=120(人).20.(8分)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)【分析】设该班有x名学生,则本次一共种植(3x+86)棵树,根据“如果每人种5棵,则最后一人有树种但不足3棵”,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【解答】解:设该班有x名学生,则本次一共种植(3x+86)棵树,依题意,得:,解得:44<x<45,又∵x为正整数,∴x=45,3x+86=221.答:该班有45名学生,本次一共种植221棵树.21.(9分)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.【分析】(1)先判断出CG=FG,再利用同角的余角相等,判断出∠BAE=∠FEG,进而得出△ABE∽△EGF,即可得出结论;(2)先求出BE=8,进而表示出EG=2+FG,由△BAE∽△GEF,得出=,求出FG,最后用三角形面积公式即可得出结论;(3)同(2)的方法,即可得出S△ECF=﹣(x﹣5)2+,即可得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF;(2)∵AB=BC=10,CE=2,∴BE=8,∴FG=CG,∴EG=CE+CG=2+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=8,∴S△ECF=CE•FG=×2×8=8;(3)设CE=x,则BE=10﹣x,∴EG=CE+CG=x+FG,由(1)知,△BAE∽△GEF,∴=,∴,∴FG=10﹣x,∴S△ECF=×CE×FG=×x•(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,当x=5时,S△ECF最大=.22.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x 轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.【分析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题.【解答】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标是(﹣2,10),∵B(0,6),A(3,0),∴,解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴m=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,∴E的坐标为(5,﹣4).(3)由图象可知kx+b≤的解集是:﹣2≤x<0或x≥5.23.(10分)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【分析】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD =S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.【解答】(1)证明:∵四边形ABCD内接于⊙O.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DE=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.24.(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).【分析】(1)利用待定系数法解决问题即可.(2)如图1中连接AD,CD.由题意点D到直线AC的距离取得最大,推出此时△DAC 的面积最大.过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),推出DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,利用二次函数的性质求解即可.(3)分两种情形:OB是平行四边形的边或对角线分别求解即可.【解答】解:(1)把B(1,0),C(0,﹣3)代入y=x2+bx+c则有,解得∴二次函数的解析式为y=x2+2x﹣3,令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0).(2)如图1中连接AD,CD.∵点D到直线AC的距离取得最大,∴此时△DAC的面积最大设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=•DG•OA=(﹣x2﹣3x)×3=﹣x2﹣=﹣(x+)2+,∴当x=﹣时,S最大=,点D(﹣,﹣),∴点D到直线AC的距离取得最大时,D(﹣,﹣).(3如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).。
2024年四川省雅安市中考数学一诊试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−2024的绝对值是( )A. 2024B. −2024C. 12024D. −120242.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. 0.358×105B. 35.8×103C. 3.58×105D. 3.58×1043.在直角坐标系中,点A(2,−8)、B关于y轴对称,则点B的坐标是( )A. (−2,−8)B. (2,8)C. (−2,8)D. (8,2)4.下列计算正确的是( )A. a5+a3=a8B. 2a2+3a2=5a4C. (ab)2=a2b2D. a6÷a2=a35.若分式x2−1x−1的值为0,则x的值为( )A. 0B. 1C. −1D. ±16.如图,在四边形ABCD中,∠ABC=90°,点E、F分别是AC、AD的中点,且BE=EF,若AB=8,BC=4,则CD的长为( )A. 45B. 43C. 25D. 87.某立方体的主视图如图所示,它的左视图不可能的是( )A.B.C.D.8.下列说法中,正确的是( )A. 对载人航天器零部件的检查适合采用抽样调查B. 某种彩票中奖的概率是1,则购买10张这种彩票一定会中奖10C. 为了了解一批洗衣粉的质量情况,从仓库中随机抽取100袋洗衣粉进行检验,这个问题中的样本是100D. 甲.乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=3.2,s2乙=1,则乙的射击成绩较稳定9.已知直角三角形的两条边长分别是方程x2−9x+20=0的两个根,则此三角形的第三边是( )A. 4或5B. 3C. 41D. 3或4110.杭州第19届亚运会会徽名为“潮涌”,会徽主体图形由扇面、钱塘江、钱江潮头、赛道、互联网符号及象征亚奥理事会的太阳图形六个元素组成,下方是主办城市名称与举办年份的印鉴,两者共同构成了完整的杭州亚运会会徽.小王同学在制作亚运会手抄报时,绘制了如图的扇面示意图,扇面弧所对的圆心角为120°,大扇形半径为10cm,小扇形半径为3cm,则此扇面中阴影部分的面积是( )A. 913πcm2 B. 863πcm2 C. 703πcm2 D. 653πcm211.如图,四边形ABCD内接于⊙O.若四边形ABCO是菱形,则∠D的度数为( )A. 45°B. 60°C. 90°D. 120°12.如图,是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的其中一个交点在点(2,0)和(3,0)之间,对称轴是直线x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);其中正确的是( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题:本题共5小题,每小题3分,共15分。
2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图所示,ABC ∆绕着点A 旋转能够与ADE ∆完全重合,则下列结论不一定成立的是( )A .AE AC =B .EAC BAD ∠=∠ C .//BC AD D .若连接BD ,则ABD ∆为等腰三角形2.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5323.数据1950000用科学记数法表示为()A.1.9×105B.1.95×106C.1.95×107D.0.195×1084.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣25.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.6.如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B的度数为()A.35°B.40o C.45o D.50o7.A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-;B.4848944x x+=+-;C.48x +4=9;D.9696944x x+=+-;8.下列立体图形中,主视图是矩形的是()A.B.C.D.9.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交10.一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱二、填空题(共4题,每题4分,共16分)11.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若AB DE=_____.12.在平面直角坐标系中,△ABC的一个顶点是A(2,3),若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为23,则A′的坐标为_____.13.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.14.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m ﹣2(m>0)与x轴交于A、B两点,若该抛物线在A、B之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m的取值范围是_____.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利15,求购进的甲、乙图书各多少本?17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.18.如图,已知▱ABCD中,∠ABC=60°,AB=4,BC=m,E为BC边上的动点,连结AE,作点B关于直线AE的对称点F.(1)若m=6,①当点F恰好落在∠BCD的平分线上时,求BE的长;②当E、C重合时,求点F到直线BC的距离;(2)当点F到直线BC的距离d满足条件:2≤d,求m的取值范围.19.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O;(用圆规、直尺作图,不写作法,但要保留作图痕迹)(2)判断直线BC与⊙O的位置关系,并说明理由.20.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.。
2020年四川省雅安中学中考数学一诊试卷一.选择题(共12小题)1.的绝对值是()A.B.C.﹣2020D.20202.2019年成都市的国民生产总值为1034亿元,1034亿元用科学记数法表示正确的是()A.1034×108元B.1.034×1011元C.1.0×1011元D.1.034×1012元3.下列各式计算正确的是()A.2+=2B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a64.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,在△ABC中,分别以顶点A、B为圆心,大于AB为半径作弧,两弧在直线AB 两侧分别交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好经过点C.下列结论中,错误的是()A.AB是⊙O的直径B.∠ACB=90°C.△ABC是⊙O内接三角形D.O是△ABC的内心6.函数:中自变量x的取值范围是()A.x≥﹣1B.x≠3C.x≥﹣1且x≠3D.x<﹣17.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩454647484950人数124251这此测试成绩的中位数和众数分别为()A.47,49B.47.5,49C.48,49D.48,508.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法中错误的是()A.打电话时,小刚和妈妈的距离为1250米B.打完电话后,经过23分钟小刚到达学校C.小刚和妈妈相遇后,妈妈回家的速度为150米/分D.小刚家与学校的距离为2550米9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则图中阴影部分的面积为()A.B.2C.πD.111.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第6个图形有()个小圆.A.34B.40C.46D.6012.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论的个数是()A.①②④B.①③④C.②③④D.①②③④二.填空题(共5小题)13.已知方程组,则x+y=.14.因式分解:y3﹣4x2y=.15.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y =(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=.16.如图,在△ABC中,∠ACB=90°,以点C为圆心,CB为半径的⊙C与边AB交于点D.若点D为AB的中点,AB=6,则⊙C的半径长为.17.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三.解答题(共7小题)18.(1)计算(﹣2)3++|1﹣|0﹣4sin60°(2)化简代数式,再从﹣2≤a≤2中选一个恰当的整数作为a的值,代入求值.19.某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该校随机抽查了名学生?请将图1补充完整;(2)在图2中,“视情况而定”部分所占的圆心角是度;(3)在这次调查中,甲、乙、丙、丁四名学生都选择“马上救助”,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.20.某商场销售A,B两款书包,已知A,B两款书包的进货价格分别为每个30元,50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个.(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y =﹣x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?21.如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.22.如图所示,直线AB与双曲线y=交于A,B两点,直线AB与x、y坐标轴分别交于C,D两点,连接OA,若OA=2,tan∠AOC=,B(﹣3,m)(1)分别求一次函数与反比例函数式.(2)连接OB,在x轴上求点P的坐标,△AOP的面积等于△AOB的面积.23.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.24.如图,直线y=﹣x+3与x轴、y轴分别相交x轴于点B、交y轴于点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.的绝对值是()A.B.C.﹣2020D.2020【分析】根据绝对值的定义直接进行计算.【解答】解:根据负数的绝对值等于它的相反数,可得.故选:A.2.2019年成都市的国民生产总值为1034亿元,1034亿元用科学记数法表示正确的是()A.1034×108元B.1.034×1011元C.1.0×1011元D.1.034×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1034亿用科学记数法表示为:1.034×1011.故选:B.3.下列各式计算正确的是()A.2+=2B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a6【分析】A:根据实数的运算方法判断即可;B:负整数指数幂的运算方法:a﹣p=(a≠0,p为正整数),据此判断即可;C:根据同底数幂的乘法法则计算即可;D:根据同底数幂的除法法则计算即可.【解答】解:∵2+≠2,∴选项A错误;∵2x﹣2=,∴选项B错误;∵3a2•2a3=6a5,∴选项C错误;∵a8÷a2=a6,∴选项D正确.故选:D.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.5.如图,在△ABC中,分别以顶点A、B为圆心,大于AB为半径作弧,两弧在直线AB 两侧分别交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好经过点C.下列结论中,错误的是()A.AB是⊙O的直径B.∠ACB=90°C.△ABC是⊙O内接三角形D.O是△ABC的内心【分析】利用作法可判断点O为AB的中点,则可判断AB为⊙O的直径,根据圆周角定理得到∠ACB=90°,根据三角形内接圆的定义得到△ABC为⊙O的内接三角形,然后对选项进行判断.【解答】解:由作法得MN垂直平分AB,则OA=OB,则AB为⊙O的直径,∵⊙O恰好经过点C,∴∠ACB=90°,△ABC为⊙O的内接三角形,点O为△ABC的外心.故选:D.6.函数:中自变量x的取值范围是()A.x≥﹣1B.x≠3C.x≥﹣1且x≠3D.x<﹣1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x﹣3≠0,解得:x≥﹣1且x≠3.故选:C.7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩454647484950人数124251这此测试成绩的中位数和众数分别为()A.47,49B.47.5,49C.48,49D.48,50【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.【解答】解:49出现的次数最多,出现了5次,所以众数为49,第8个数是48,所以中位数为48,故选:C.8.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法中错误的是()A.打电话时,小刚和妈妈的距离为1250米B.打完电话后,经过23分钟小刚到达学校C.小刚和妈妈相遇后,妈妈回家的速度为150米/分D.小刚家与学校的距离为2550米【分析】A、根据函数图象可以直接得到打电话时,小刚和妈妈的距离;B、根据函数图象可以得到打完电话后,经过多少分钟小刚到达学校;C、根据题意和函数图象中的数据可以求得小刚和妈妈相遇后,妈妈回家的速度;D、根据题意和图象中的数据可以求得小刚家与学校的距离.【解答】解:A、由图象可得,打电话时,小刚和妈妈的距离为:1250米,故A正确;B、由图象可得,打完电话后,经过23分钟小刚到达学校,故B正确;C、由题意可得,小刚和妈妈相遇后,妈妈回家的速度为:(1250﹣5×100)÷15=50米/分,故C错误,D、由题意可得,小刚家与学校的距离为:(1250﹣5×100)+(23﹣5)×100=(1250﹣500)+18×100=750+1800=2550(米),故D正确,故选:C.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤3【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则图中阴影部分的面积为()A.B.2C.πD.1【分析】连接OD,先由直径AB=2,CA切⊙O于A得出OB=OA=2,∠BAC=90°,由∠C=45°得出△ABC是等腰直角三角形,根据圆周角定理得出∠AOD=90°,根据S=S△ABC﹣S△OBD﹣S扇形AOD+(S扇形BOD﹣S△OBD)进而可得出结论.阴影【解答】解:连接OD,∵直径AB=2,CA切⊙O于A,∴OB=OA=2,∠BAC=90°,∵∠C=45°,∴△ABC是等腰直角三角形,∴∠B=45°,∴∠AOD=90°,∴S阴影=S△ABC﹣S△OBD﹣S扇形AOD+(S扇形BOD﹣S△OBD)=S△ABC﹣2S△OBD﹣S扇形AOD+S扇形BOD=S△ABC﹣2S△OBD=×2×2﹣2××1×1﹣=2﹣1=1.故选:D.11.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第6个图形有()个小圆.A.34B.40C.46D.60【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4,据此可得.【解答】解:由题意可知第1个图形有小圆4+1×2=6个;第2个图形有小圆4+2×3=10个;第3个图形有小圆4+3×4=16个;第4个图形有小圆4+4×5=24个;…∴第6个图形有小圆4+6×7=46个,故选:C.12.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论的个数是()A.①②④B.①③④C.②③④D.①②③④【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出y2﹣y1的值;根据两函数的解析式求出A、B、C的坐标,计算出AB与AC的长,即可得到AB+AC 的值.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本结论正确;②把A(1,3)代入y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本结论正确;③∵y1=(x+2)2﹣3,y2=(x﹣3)2+1,∴当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,∴y2﹣y1=﹣(﹣)=≠6,故本结论错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3),∴AB=6,AC=4,∴AB+AC=10,故结论正确.故选:A.二.填空题(共5小题)13.已知方程组,则x+y=2.【分析】两方程相加,变形即可求出x+y的值.【解答】解:两方程相加得:4(x+y)=8,则x+y=2.故答案为:2.14.因式分解:y3﹣4x2y=y(y+2x)(y﹣2x).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).15.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y =(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=﹣3.【分析】设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.【解答】解:设点A(x,),则B(,),∴AB=x﹣,则(x﹣)=5,k=﹣3.故答案为:﹣3.16.如图,在△ABC中,∠ACB=90°,以点C为圆心,CB为半径的⊙C与边AB交于点D.若点D为AB的中点,AB=6,则⊙C的半径长为3.【分析】连接CD,根据直角三角形斜边上中线性质得出CD=AB,代入求出即可.【解答】解:如图,连接CD,∵在△ACB中,∠ACB=90°,D为AB的中点,∴CD=AB=6=3,∴⊙C的半径为3,故答案为:3.17.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是①③④(填上所有正确答案的符号).【分析】根据向量垂直的定义进行解答.【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.三.解答题(共7小题)18.(1)计算(﹣2)3++|1﹣|0﹣4sin60°(2)化简代数式,再从﹣2≤a≤2中选一个恰当的整数作为a的值,代入求值.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣8+9+1﹣4×=2﹣2;(2)原式=•=,由﹣2≤a≤2,得到整数a=﹣2,﹣1,0,1,2,当a=﹣2,2,1时,分式没有意义,舍去;当a=0时,原式=2;当a=﹣1时,原式=.19.某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该校随机抽查了200名学生?请将图1补充完整;(2)在图2中,“视情况而定”部分所占的圆心角是72度;(3)在这次调查中,甲、乙、丙、丁四名学生都选择“马上救助”,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.【分析】(1)由D共24人,占12%,即可求得答案;继而求得C类人数,补全条形统计图;(2)首先求得“视情况而定”的百分比,然后乘以360°,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两人恰好是甲和乙的情况,再利用概率公式即可求得答案.【解答】解:(1)该校随机抽查了:24÷12%=200(名);C累:200﹣16﹣120﹣24=40(名);如图:故答案为:200;(2)40÷200×360°=72°;故答案为:72;(3)画树形图得:∵共有12种等可能的结果,抽取的两人恰好是甲和乙的有2种情况,∴P(抽取的两人恰好是甲和乙)==.20.某商场销售A,B两款书包,已知A,B两款书包的进货价格分别为每个30元,50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个.(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y =﹣x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?【分析】(1)设购进A款书包x个,则B款为100﹣x个,由题意得:30x+50(100﹣x)=3600,即可求解;(2)由题意得:w=y(x﹣50)=﹣(x﹣50)(x﹣90),即可求解.【解答】解:(1)设购进A款书包x个,则B款为100﹣x个,由题意得:30x+50(100﹣x)=3600,解得:x=70,即:A,B两款书包分别购进70和30个;(2)由题意得:w=y(x﹣50)=﹣(x﹣50)(x﹣90),∵﹣1<0,故w有最大值,函数的对称轴为:x=70,而60≤x≤90,故:当x=70时,w有最大值为400,即:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.21.如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.【分析】(1)先证明四边形ADCE是平行四边形,再由直角三角形斜边上的中线性质,得出CD=AB=AD,即可得出四边形ADCE为菱形;(2)依据∠ABC=60°,DB=DC,可得△BCD是等边三角形,依据∠BAE=60°,∠ABE=30°,可得△ABE是直角三角形,最后根据CE=1=AE,即可得到BE的长.【解答】解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,∴四边形ADCE为菱形;(2)∵∠BAC=30°,四边形ADCE为菱形,∴∠BAE=60°=∠DCE,又∵∠ACB=90°,∴∠DBC=60°,而DB=DC,∴△BCD是等边三角形,∴∠DCB=60°,∴∠BCE=120°,又∵BC=CD=CE,∴∠CBE=30°,∴∠ABE=30°,∴△ABE中,∠AEB=90°,又∵AE=CE=1,∴AB=2,∴BE==.22.如图所示,直线AB与双曲线y=交于A,B两点,直线AB与x、y坐标轴分别交于C,D两点,连接OA,若OA=2,tan∠AOC=,B(﹣3,m)(1)分别求一次函数与反比例函数式.(2)连接OB,在x轴上求点P的坐标,△AOP的面积等于△AOB的面积.【分析】(1)过A作AE⊥OC与E,根据已知条件和勾股定理得到A(﹣6,4),由直线AB与双曲线y=交于A,B两点,得到k=﹣6×4=﹣3m,解方程和方程组即可得到结论;(2)设P(n,0),根据△AOP的面积等于△AOB的面积,列方程即可得到结论.【解答】解:(1)过A作AE⊥OC与E,∵tan∠AOC=,∴设AE=2x,OE=3x,∴AO==x=2,∴x=2,∴AE=4,OE=6,∴A(﹣6,4),∴线AB与双曲线y=交于A,B两点,∴k=﹣6×4=﹣3m,∴k=﹣24,m=8,∴反比例函数式为y=﹣,B(﹣3,8),设一次函数的解析式为y=kx+b,∴,解得:,∴一次函数的解析式为y=x+12;(2)设P(n,0),∵△AOP的面积等于△AOB的面积,∴|n|×4=(4+8)×3,∴n=±9,∴P(9,0)或(﹣9,0).23.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,继而证明△P AO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论.(2)先证明△OAD∽△OP A,利用相似三角形的性质得出OA与OD、OP的关系,然后将EF=20A代入关系式即可.(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,继而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入数据即可得出PE的长.【解答】解:(1)连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∴OA⊥P A,∴直线P A为⊙O的切线.(2)EF2=4OD•OP.证明:∵∠P AO=∠PDA=90°∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴=,即OA2=OD•OP,又∵EF=2OA,∴EF2=4OD•OP.(3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3(三角形中位线定理),设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O直径,∴∠ABC=90°,又∵AC=2OA=10,BC=6,∴cos∠ACB==.∵OA2=OD•OP,∴3(PE+5)=25,∴PE=.24.如图,直线y=﹣x+3与x轴、y轴分别相交x轴于点B、交y轴于点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据二次函数的对称性,已知对称轴的解析式以及B点的坐标,即可求出A的坐标(2)已知了抛物线过A、B、C三点,而且三点的坐标都已得出,可用待定系数法来求函数的解析式.(3)本题要先根据抛物线的解析式求出顶点P的坐标,然后求出BP的长,进而分情况进行讨论:①当∠PQB=∠CAB,即BQ:AB=PB:BC时,根据A、B的坐标可求出AB的长,根据B、C的坐标可求出BC的长,已经求出了PB的长度,那么可根据比例关系式得出BQ 的长,即可得出Q的坐标.②当∠QPB=∠CAB,即BQ:BC=BP:AB,可参照①的方法求出Q的坐标.③当∠QBP=∠CAB,根据P点和A点的坐标即可得出∠CAO与∠QBP是不相等的,因此∠CAB与∠QBP也不会相等,因此此种情况是不成立的.综上所述即可得出符合条件的Q的坐标.【解答】解:(1)∵直线y=﹣x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0).又∵抛物线过x轴上的A,B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0).(2)∵y=﹣x+3过点C,易知C(0,3),∴c=3.又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),∴解,得∴y=x2﹣4x+3.(3)连接PB,由y=x2﹣4x+3=(x﹣2)2﹣1,得P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=.由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=3.假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似.①当,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即,∴BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0).②当,∠QBP=∠ABC=45°时,△QBP∽△ABC.即,∴QB=.∵OB=3,∴OQ=OB﹣QB=3﹣,∴Q2的坐标是(,0).∵∠PBQ=180°﹣45°=135°,∠BAC<135°,∴∠PBQ≠∠BAC.∴点Q不可能在B点右侧的x轴上综上所述,在x轴上存在两点Q1(0,0),Q2(,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.。