TD-LTE网络频率规划
- 格式:pptx
- 大小:1.69 MB
- 文档页数:7
移动通信系统频点划分一、GSM900(上下行差45MHz)说明:GSM频率在890M~915M(上行),935M~960M(下行),频点为0~124,其中95为临界频点。
分配给移动公司的890M~909M,分配给联通公司的为909M~915M。
其中对应移动的频点为0~94,联通的频点为96~124。
E-GSM说明:GSM频率在880M~890M(上行),925M~935M(下行),频点为975~1024,其中1024为临界频点。
分配给移动公司的885M~890M,未分配给联通公司。
其中对应移动的频点为1000~1023。
二、GSM1800(上下行差95MHz)说明:GSM频率在1710M~1785M(上行),1805M~1880M(下行),频点为512~886。
分配给移动公司的1710M~1720M、1725M~1735M共20M、100个频点(其中1730-1735MHz/1825-1830MHz是07年信息产业部新批),而XX、XX、特殊分配了1720M~1725M(据集团公司技术部2006年2月通信资源管理信息)。
XX移动全网可使用的频点X围为512~562、586~636共100个频点,分配给联通公司的为1745M~1755M。
(其中一些地市1735M-1745M已经被联通占用)1、频道间隔相邻两频点间隔为为200kHz,每个频点采用时分多址(TDMA)方式,分为8个时隙,既8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。
2、频道配置绝对频点号和频道标称中心频率的关系为:➢GSM900MHz频段:f1(n)=890.2MHz+(n-1)×0.2MHz(移动台发,基站收)fh(n)=f1(n)+45MHz(基站发,移动台收);n∈[1,124]➢GSMl800MHz频段为:f1(n)=1710.2MHz+(n-512)×0.2MHz(移动台发,基站收)fh(n)=f1(n)+95MHz(基站发,移动台收);n∈[512,885]其中:f1(n)为上行信道频率、fh(n)为下行信道频率,n为绝对频点号(ARF)。
解析TD—LTE无线网络规划设计与优化方法摘要:随着科技水平的不断发展,LD—LTE网络己经成为人们生活中密不司分的一部分,因此相关部门必须加强重视。
鉴于此,本文就TD—LTE无线网络规划设计与优化方法进行分析。
关键词:TD—LTE无线网络;规划设计;优化方法1、TD—LTE无线网络概述随着人们对于移动通信要求的不断提升,TD—LTE技术的设计水平也有一定程度的提升。
目前设计的TD—LTE所具有的宽带配置较为灵活,其支持的带宽有1.4MHZ,3MHZ,10MHZ,20MHZ等多种类型,在20MHZ带宽的条件下,TD—LTE的最大速率能够达到100Mbit/S,上行速率也能够达到50Mbit/s;控制面延迟时间能够控制在100ms内,用户面的延时时间甚至能够控制在5ms之内,这对于用户体验满意度的保证有着重要意义。
此外,TD—LET无线网络能够为用户提供100kbit/S的接入服务,但是提供此项服务的前提是用户的速度要大于350km/h。
此外,TD—LET网络的构建也能够使得CS域被取消,并让CS域的业务能够在PS 域内实现,这在一定程度日吏得系统建构被简化,对于建网成本的进一步降低有着一定的积极意义。
现阶段,TD—LTE产业链己经具备了端到端产品的能力,但是其在网络设备以及终端芯片等内容上还存在不足,因此,相关部门必须加强优化与开发。
2、TD—LTE无线网络规划设计2.1PCI规划对LTE物理小区进行PCI的标示能够为终端对不同小区无线信号的区分提供依据与便利,因此在对PCI进行规划的过程中要确保每一个小区的覆盖区域的PCI 的唯一性,并且相近区域所采用的标识PCI类型不能相同,这对于PCI作用的发挥有着极大的意义。
在进行PCI规划的过程中要遵循简单、清晰以及容易扩展等目标,并在进行PCI规划的过程中,同一个PCI组所含有的PCI必须来自同一站点,相邻站点的PCI应该划分到不同PCI组别内,这对于终端对无线信号的识别精确性的保证极为重要。
1 TD-LTE室分规划原则1.1 LTE站点规划原则LTE站点规划原则:主要依据现网高话务、高流量、高倒流进行选点规划。
建网初期TLE室内网络主要考虑在市城区进行建设,后期逐步扩展至县城区与市辖镇,市辖村、县辖镇、县辖村暂不考虑进行建设。
目前LTE室分三阶段在郊县富阳临安已规划站点建设。
LTE站点替换原则:替换原则要求建设目标一致,投资规模偏差相当。
如:改造站点去替新建站点,容易造成投资偏差,原则上不建议替换。
由于2012年投资费用紧张,领导反复强调,能省则省,同步改造建设站点项目投资归属尽可能优先靠拢LTE及TD。
1.2 频段选择1.2.1 中国移动频率使用原则:F频段 A频段 E频段D频段1880 1920 2010 2025 2320 2370 2570 2620A频段:2010MHZ~2025MHZ,共计15MHZ,供TD-SCDMA使用。
F频段:1880MHZ~1920MHZ,共计40MHZ,1880MHZ~1900MHZ供TD-LTE室外使用;E频段:2320~2370的50MHZ,供TD-LTE室分使用。
D频段:2570~2620MHZ,共计50MHZ, 供TD-LTE室外使用。
备注:LTE室分站点及地铁站点使用E频段,单天馈站点使用RRU类型为RRU3151e,双天馈站点使用RRU3152e;隧道站点使用F频段;使用RRU类型为RRU3152-fa;1.2.2 同频或异频组网方式TD-LTE室内与室外采用异频组网方式,E频段作为中国移动TD-LTE规模商用网室内分布系统的使用频段,可以使用2320-2370MHz共50MHz频率资源,室内小区可以根据场景特点采用同频或异频组网。
室内覆盖同一水平层面如需设置多个小区时,相邻小区间建议采用异频组网。
在建筑物内可以利用自然阻隔合理进行频率规划。
对楼层间隔离较好,可以采用带宽20M同频组网方式;对同层天然隔离较差的区域,建议采用异频组网方式,同层小区间频率交错复用。
T D-L T E高铁专网频率设置指导建议(征求意见稿)中国移动通信集团公司网络部1前言由于高铁商务旅行较多、中高端客户集中,高铁通信逐步成为运营商品牌竞争的新领域,提升TD-LTE高铁专网质量有助于提高用户感知度及品牌影响力。
经过近年的建设与优化,我公司TD-LTE高铁专网已确立一定的领先优势,但目前各省高铁专网与附近公网频率配置方案各异,且部分方案存在明显不合理性,并不利于公专网干扰控制,在一定程度上影响网络覆盖和质量。
总部网络部综合考虑目前TD-LTE高铁专网建设、公专网频率使用、业务量等因素,制订本指导原则,用于规范我公司TD-LTE 高铁专网的频率使用,提高各省专网频率配置的一致性,减小公专网互干扰影响,保障高铁专网质量。
2TD-LTE高铁专网频率设置原则目前我公司TD-LTE网络频率主要包括F频段(1885-1915MHz)、D频段(2575-2635MHz)以及E频段(2320-2370MHz),其中E频段仅限于室内使用,可用于室外的F频段F1、F2频点以及D频段D1、D2、D3频点的详细配置见附表。
在进行TD-LTE高铁专网频点设置时应重点考虑公专网的干扰控制问题,杜绝高铁专网与附近公网使用相同频点的现象,并尽量避免高铁专网与附近公网存在频率重叠。
高铁专网小区-频点1频点2附近公网小区图1 高铁专网小区与附近公网小区示意(一) 高铁专网使用F 频段方案F 频段(1885-1915MHz)传播特性、穿透特性、多普勒频移特性优于D 频段(2575-2635MHz),目前我公司TD-LTE 高铁专网仍以F 频段为主。
高铁专网使用F 频段配置有以下几种: 配置方案1:在高铁专网附近公网业务量较小的场景下(如农村场景),建议选择高铁专网F 频段20M 、公网F 频段10M 的配置方案。
在该方案中,高铁专网频率设置为F1,高铁专网附近公网频率设置为F2,高铁专网与附近公网频率错开,达到控制干扰的目的。
T D-L T E重要参数规范(试行版)目录1规划参数设置 (3)2频点设置 (4)2.1宏站 (4)2.2室分 (4)3时隙设置 (4)3.1宏站 (4)3.2室分 (4)4无线参数规划 (5)4.1PCI规划 (5)4.2RS序列规划 (5)4.3PRACH序列规划 (6)4.3.1宏小区 (6)4.3.2室分小区 (6)4.3.3ZC根序列逻辑索引号分配 (6)4.4TA规划 (6)4.5容量规划 (7)5无线参数优化 (7)5.1天线传输模式 (7)5.2重选/切换策略 (7)5.2.1重选 (8)5.2.2同频切换 (8)5.2.3异频切换 (8)5.3功控 (8)5.4其他 (8)5.5功能开启 (9)5.6无线定时器 (9)6标识参数分配 (9)6.1参数子集 (9)6.2地市分类 (10)6.3标识号使用原则 (10)6.3.1地市边界 (10)6.3.2地市内部 (11)7附录:修订历史 .......................................................................................... 错误!未定义书签。
1规划参数设置1)工作频段:2620 MHz2)系统带宽:20M3)基站RF单元:5W - 8Tx RRH4)CRS单RE功率:12.2dB5)Cyclic Prefix:Normal6)天线增益:基站广播信道:16.5dBi终端:0dBi7)终端发射功率:23dBm8)噪声因子:基站:3dB终端:7dB9)发射天线馈线、接头和合路器损耗[dB]基站: 0.5dB。
终端: 0dB。
10)天线配置下行:8Tx-2Rx上行:1Tx-8Rx11)天线赋形增益:5dB12)上下行时隙配置:●D频段:2:2 1 - DSUUD-DSUUD●F频段:1:3 2 - DSUDD-DSUDD13)特殊时隙配置:●D频段:Subframe Format 7 10:2:2●F频段:Subframe Format 5 3:9:214)子帧配置PDCCH Symbols 数:315)PUCCH配置PRBs数:816)CFI固定为217)PRACH前导格式:室外格式0,室分格式418)小区边缘用户速率●D频段:上行不低于384kbps,下行1Mbps●F频段:上行不低于256kbps,下行1Mbps19)BLER:10% (第一次传输)20)信道模型:Enhanced Pedestrian A 5 Hz21)传播模型: Cost 231 two slope(2.6G频段)22)人体损耗:0dB23)热噪声密度取为-174 dBm/Hz。
TD―LTE电力专网230MHz与1.8GHz的研究摘要:本文介绍了TD-LTE电力专网在230MHz和1.8GHz两个频段的覆盖能力和网络承载能力的研究。
TD-LTE 是一种成熟的4G通信技术,在国内外已经实现了大规模商用。
随着智能电网对通信要求的不断提高,组建TD-LTE电力专网也成为当下热门的研究课题。
本文首先介绍了电力专网的特点,然后对比研究了230MHz和1.8GHz两个频段的TD-LTE网络覆盖能力和业务承载能力。
最后使用UNET仿真规划软件对广州市电力专网进行仿真规划,结合仿真结果对比了两种频段电力专网的优劣。
关键词:TD-LTE;电力专网;230MHz;1.8GHz中图分类号:TP929文献标识码:ADOI:10.3969/j.issn.1003-6970.2015.12.020本文著录格式:蔡根,张健明,杨大成.TD-LTE电力专网230MHz与1.8GHz的研究[J].软件,2015,36(12):83-880 引言目前国内TD-LTE电力无线专网丰要采用230MHz和1.8GHz两个频段进行组网,其中1.8GHzTD-LTE运行在1786-1805MHz频段内,占用的带宽为5MHz,符合国际3GPP组织的4G标准。
LTE230是中国普天针对中国特有的频谱划分研制的私有技术协议,使用了223.025-235.OOOMHz频段,该系统运行在国家无线电管理局原先分给电力行业数传电台使用的在230MHz频段40个离散频点,每个频段占用带宽25KHz。
这两种电力专网技术都是在中国特有的频谱分配背景下诞牛的,在国内缺少针对这两种技术的对比研究,国外基本上没有这方面的研究。
本文丰要对比分析两种组网方案的覆盖能力和业务承载能力,并利用UNET仿真软件进行仿真说明。
1 电力专网简介电力专网是用于电力监控系统、电力通信及数据网络的专有通信网络。
电力专网的要求丰要包括:通信网络稳定、通信权限分级、集群调度功能。
TD-LTE无线网络技术的论文TD-LTE即分时长期演进(Time Division Long Term),是由阿尔卡特一朗讯、中国移动、华为技术等业者共同开发的第四代移动通信技术与标准,是时分双工技术TDD(Time Division Duplexing)版本的LTE技术。
以下是店铺为大家整理到的TD-LTE无线网络技术的论文,欢迎大家前来阅读。
TD-LTE无线网络技术的论文一:1、引言高速铁路由于具有速度快、正点率高、舒适方便等优点,近年来在规模及运行速度上的发展都十分迅猛。
然而与高铁建设高速发展不相适应的是在网络及信息化方面的滞后。
因此在关注安全运营的同时,如何为乘客提供全方位的信息化服务,是目前需要解决的一个问题。
而TD-LTE技术作为新一代移动通信宽带技术,具有很多特性和优点,可以改善高铁网络服务质量及信息化服务。
为高铁运营企业信息化服务提供新的途径,构建强大的服务网络,为乘客的出行提供丰富多彩的网络及信息服务。
2、国内高铁网络及信息服务现状2.1 网络服务目前,高铁移动通信主要采用GSM-R系统。
随着铁路不断提速以及线路延伸、扩建,GSM-R无线覆盖也将面临很多问题。
尤其是在铁路并线区段、线路交叉区段、大型车站区段、隧道桥梁等弱场区域,以及线路编组场等汇集区域,无线网络覆盖问题日益严重。
受制于有限的4M频率资源,传统的基站无法为这些区域提供可靠网络覆盖。
国内高铁普遍存在3G网络信号差、WIFI网络未开通服务或难以连接等问题,影响商务出行。
已投入运营的CRH380A/CRH380B型动车组已在一等座车厢配置了WIFI设备。
但是车载WIFI网络只有设设备没有内容,所以系统工作不起来。
CRH380A/CRH380B型列车虽然在车内装载了WIFI设备,但其车地之间通信的问题并未解决。
2.2 信息服务我国高铁现有车厢PIS系统所能提供的信息仅有系统通过车载LED 显示屏所显示的车速、车内外温度、到站情况及视频播放、多媒体广告等。
2018年第2期81科教论坛1.TD-LTE无线网络概述TD-LTE无线网络是在TD一CSDMA长期发展演进下出现的产物,TD-LTE无线网络采用oFDMA空中接口技术提升了通信系统的数据传输速度和频谱利用率,并进一步拓展了 TD-LTE无线网络的语音、视频、在线游戏等功能。
TD-LTE无线网络系统运行操作主要是利用e-NodeB结构,并在一系列技术的支持下不断完善基站功能,应用各个IP实现各个基站节点信息的有效传输。
TD-LTE无线网络在逻辑层面上通过X2接口互相连接形成Mesh型的网络结构,从而提升整个系统的移动网络运行。
在这样系统的运行下,用户在使用的时候能够根据自己的需要进行信息的无缝切换操作。
另外,基站e-NodeB和接入网关之间通过S1接口能够实现有效连接,在一个基站作用下实现和多个网关的连接。
2.TD-LTE无线网络优化方案2.1 PCI规划。
PCI是用来区分终端不同小区的无线信号,是LTE的物理小区标识。
在实际操作中,临近小区之前的PCI必须保持一致,同时PCI的覆盖范围也需要具有唯一性的特点。
为此,在进行PCI规划的时候要遵循简单、清晰、容易拓展的特点,同时在进行PCI规划的时候要求同一个PCI小组所包含的PCI来自同一个站点,将临近点的PCI划分到不同的PCI组内,从而确保各类无线信号识别的清晰、准确。
另外,在进行PCI规划的时候还需要考虑室内无线网线的覆盖问题,结合实际情况尽可能选择分开规划的方法。
2.2网络规划。
TD-LTE的无线网络规划和拓展结构的时候和传统2G或者3G网络系统规划操作存在一定的相似性,因此结合实际情况能够选择的网络类型都是蜂窝型,由此决定了2G或者3G网络规划流程的相似性,但是在实际操作中因为采取了不同的网络架构、调度算法,使得TD-LTE无线网络规划无法按照传统的网络规划模式。
另外,TD-LTE无线网络的TDD和FDD模式存在不同的差别,在进行网络规划的时候没有严格按照传统网络规划模式进行操作。