异步电动机坐标变换结构图等效直流电机模型交流电动机四
- 格式:ppt
- 大小:2.24 MB
- 文档页数:4
目录1 异步电动机矢量控制原理 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换(3/2变换) (4)2.3 旋转变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 MATLAB系统仿真系统设计 (8)4.3 PI调节器设计 (9)5 仿真结果 (10)5.1 电机定子侧的电流仿真结果 (10)5.2 电机输出转矩仿真结果 (11)心得体会 (13)参考文献 (14)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。
所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。
其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流i A 、i B 、i C ,通过3/2变换可以等效成两相静止正交坐标系上的交流i sα和i sβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流i sm 和i st 。
图1-1 异步电动机矢量变换及等效直流电动机模型在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。
m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。
6.5 异步电动机的动态数学模型和坐标变换本节提要异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程一、异步电动机动态数学模型的性质2. 交流电机数学模型的性质1异步电机变压变频调速时需要进行电压或电流和频率的协调控制,有电压电流和频率两种独立的输入变量;在输出变量中,除转速外,磁通也得算一个独立的输出变量;因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩;多变量、强耦合的模型结构由于这些原因,异步电机是一个多变量多输入多输出系统,而电压电流、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用图来定性地表示;图6-43 异步电机的多变量、强耦合模型结构模型的非线性2在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项;这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的;模型的高阶性3三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统;总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统;二、三相异步电动机的多变量非线性数学模型假设条件:1忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;2忽略磁路饱和,各绕组的自感和互感都是恒定的;3忽略铁心损耗;4不考虑频率变化和温度变化对绕组电阻的影响;1. 电压方程三相定子绕组的电压平衡方程为:电压方程续与此相应,三相转子绕组折算到定子侧后的电压方程为:电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt或写成6-67b2. 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:或写成6-68b电感矩阵式中,L 是6×6电感矩阵,其中对角线元素 LAA, LBB, LCC,Laa,Lbb,Lcc 是各有关绕组的自感,其余各项则是绕组间的互感;实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的;电感的种类和计算定子漏感 Lls ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感 Lk ——转子各相漏磁通所对应的电感;定子互感 Lms——与定子一相绕组交链的最大互感磁通;转子互感 Lmr——与转子一相绕组交链的最大互感磁通;由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为:转子各相自感为:互感表达式两相绕组之间只有互感;互感又分为两类:1 定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;2 定子任一相与转子任一相之间的位置是变化的,互感是角位移的函数第一类固定位置绕组的互感三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为,于是,第二类变化位置绕组的互感定、转子绕组间的互感,由于相互间位置的变化见图6-44,可分别表示为:当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感 Lms ;磁链方程将式6-69~式6-75都代入式6-68a,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式式中值得注意的是,和两个分块矩阵互为转置,且均与转子位置有关,它们的元素都是变参数,这是系统非线性的一个根源;为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题;电压方程的展开形式如果把磁链方程6-68b代入电压方程6-67b中,即得展开后的电压方程:式中,项属于电磁感应电动势中的脉变电动势或称变压器电动势,项属于电磁感应电动势中与转速成正比的旋转电动势;3. 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:而电磁转矩等于机械角位移变化时磁共能的变化率电流约束为常值,且机械角位移,于是转矩方程的矩阵形式将式6-81代入式6-82,并考虑到电感的分块矩阵关系式6-77~6-79,得:又由于代入式6-83得:该方程适用变压变频器供电含有电流谐波三相异步电动机转矩方程的三相坐标系形式以式6-79代入式6-84并展开后,舍去负号,意即电磁转矩的正方向为使 q 减小的方向,则4. 电力拖动系统运动方程在一般情况下,电力拖动系统的运动方程式是TL ——负载阻转矩;J ——机组的转动惯量;D ——与转速成正比的阻转矩阻尼系数;K ——扭转弹性转矩系数;运动方程的简化形式对于恒转矩负载,D = 0 , K = 0 ,则5. 三相异步电机的数学模型将式6-76,式6-80,式6-85和式6-87综合起来,再加上,便构成在恒转矩负载下三相异步电机的多变量非线性数学模型,用结构图表示出来如下图所示:异步电机的多变量非线性动态结构图三、坐标变换和变换矩阵上节中虽已推导出异步电机的动态数学模型,但是,要分析和求解这组非线性方程显然是十分困难的;在实际应用中必须设法予以简化,简化的基本方法是坐标变换;1. 交流电机的物理模型直流电机物理模型简单励磁绕组d轴上,电枢绕组在q轴上,如果能将交流电机的物理模型见下图等效地变换成类似直流电机的模式,分析和控制就可以大大简化;坐标变换正是按照这条思路进行的; 在这里,不同电机模型彼此等效的原则是:在不同坐标下所产生的磁动势完全一致;1交流电机绕组的等效物理模型2等效的两相交流电机绕组3旋转的直流绕组与等效直流电机模型再看图c中的两个匝数相等且互相垂直的绕组 M 和 T,其中分别通以直流电流和,产生合成磁动势 F ,其位置相对于绕组来说是固定的;如果让包含两个绕组在内的整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势;把这个旋转磁动势的大小和转速也控制成与图 a 和图 b 中的磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了;当观察者也站到铁心上和绕组一起旋转时,在他看来,M 和 T 是两个通以直流而相互垂直的静止绕组;如果控制磁通的位置在 M 轴上,就和直流电机物理模型没有本质上的区别了;这时,绕组M相当于励磁绕组,T 相当于伪静止的电枢绕组;等效的概念由此可见,以产生同样的旋转磁动势为准则,图a的三相交流绕组、图b的两相交流绕组和图c中整体旋转的直流绕组彼此等效;或者说,在三相坐标系下的,在两相坐标系下的和在旋转两相坐标系下的直流是等效的,它们能产生相同的旋转磁动势;现在的问题是,如何求出与和之间准确的等效关系,这就是坐标变换的任务;2. 三相--两相变换3/2变换现在先考虑上述的第一种坐标变换——在三相静止绕组A、B、C和两相静止绕组之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换;三相和两相坐标系与绕组磁动势的空间矢量 :设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在轴上的投影都应相等,写成矩阵形式,得:考虑变换前后总功率不变,在此前提下,可以证明匝数比应为:为求两项到三项的变换阵将三项到两项的变换阵增广成可逆的方阵,物理意义在两项系统上人为加入零轴磁动势并定义满足功率不变的条件可以求得如下关系:这表明保持坐标变换前后的功率不变,又要维持磁链相同,变换前后两项绕组每相匝数应为原三项绕组匝数的倍于此同时利用上述关系得三项/两项变换方阵:如要从两相坐标系变换到三相坐标系2/3变换可求反变换:N3 /N2 值代入式6-89,得:3. 两相—两相旋转变换2s/2r变换从上图等效的交流电机绕组和直流电机绕组物理模型的图 b 和图 c 中从两相静止坐标系到两相旋转坐标系 M、T 变换称作两相—两相旋转变换,简称 2s/2r 变换,其中 s 表示静止,r 表示旋转;把两个坐标系画在一起,即得下图;两相静止和旋转坐标系与磁动势电流空间矢量2s/2r变换公式两相旋转—两相静止坐标系的变换矩阵写成矩阵形式,得:式中是两相旋转坐标系变换到两相静止坐标系的变换阵;对式6-96两边都左乘以变换阵的逆矩阵,即得:两相静止—两相旋转坐标系的变换矩阵则两相静止坐标系变换到两相旋转坐标系的变换阵是:电压和磁链的旋转变换阵也与电流磁动势旋转变换阵相同;四、三相异步电动机在两相坐标系上的数学模型前已指出,异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型;第6.6.2节的异步电机数学模型是建立在三相静止的ABC坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多;1.异步电机在两相任意旋转坐标系dq坐标系上的数学模型两相坐标系可以是静止的,也可以是旋转的,其中以任意转速旋转的坐标系为最一般的情况,有了这种情况下的数学模型,要求出某一具体两相坐标系上的模型就比较容易了;变换关系设两相坐标轴与三相坐标轴的夹角为, 而为坐标系相对于定子的角转速,为坐标系相对于转子的角转速;变换过程具体的变换运算比较复杂,根据式6-98另0轴为假想轴d轴和A轴夹角为θ 可得:写成矩阵形式:合并以上两个方程式得三相静止ABC坐标系到两项旋转dq0坐标系的变换式1磁链方程利用变换将定子的三项磁链和转子的三项磁链变换到dqo坐标系中去,定子磁链的变换阵是其中d轴与A轴的夹角为,转子磁链的变换阵是是旋转三相坐标系变换到不同转速的旋转两相坐标系;其中 d 轴与α 轴的夹角为 ;则磁链的变换式为:把定子和转子的磁链表达成电感阵和电流向量乘积,在用和的反变换阵把电流变换到dq0坐标上:磁链的零轴分量为它们各自独立对dq轴磁链没有影响,可以不考虑则可以简化;控制有关;代入参数计算,并去掉零轴分量则dq坐标系磁链方程为或写成式中—— dq坐标系定子与转子同轴等效绕组间的互感;—— dq坐标系定子等效两相绕组的自感;——dq坐标系转子等效两相绕组的自感;异步电机在两相旋转坐标系dq上的物理模型图6-50 异步电动机在两相旋转坐标系dq上的物理模型 2电压方程利用上式A得定子电压变换的关系为先讨论A相的关系同理在ABC坐标系下A相的电压方程,代入得为dq0旋转坐标系对于定子的角速度由于为任意值因此下式三式成立同理转子电压方程为式中为dq0旋转坐标系相对于转子的角速度同理利用B相和C相的电压方程求出的结果与上面一致; 2电压方程上面的方程整理有定子和转子的电压方程令旋转电动势向量则式6-106a变成这就是异步电机非线性动态电压方程式;与第6.6.2节中ABC坐标系方程不同的是:此处电感矩阵 L 变成 4 4 常参数线性矩阵,而整个电压方程也降低为4维方程;3转矩和运动方程dq坐标系上的转矩方程为运动方程与坐标变换无关,仍为其中——电机转子角速度;阶数下降,但非线性、强耦合、多变量性质未变;异步电机在dq坐标系上的动态等效电路2. 异步电机在坐标系上的数学模型在静止坐标系上的数学模型是任意旋转坐标系数学模型当坐标转速等于零时的特例;当时,,即转子角转速的负值,并将下角标改成,则式6-105的电压矩阵方程变成而式6-103a的磁链方程改为利用两相旋转变换阵,可得代入式6-107并整理后,即得到坐标上的电磁转矩式6-108~式6-110再加上运动方程式便成为坐标系上的异步电机数学模型;这种在两相静止坐标系上的数学模型又称作Kron的异步电机方程式或双轴原型电机Two Axis Primitive Machine基本方程式;3. 异步电机在两相同步旋转坐标系上的数学模型另一种很有用的坐标系是两相同步旋转坐标系,其坐标轴仍用d,q表示,只是坐标轴的旋转速度等于定子频率的同步角转速;而转子的转速为,因此 dq 轴相对于转子的角转速,即转差;代入式6-105,即得同步旋转坐标系上的电压方程在二相同步旋转坐标系上的电压方程磁链方程、转矩方程和运动方程均不变;两相同步旋转坐标系的突出特点是,当三相ABC坐标系中的电压和电流是交流正弦波时,变换到dq坐标系上就成为直流;4、按转子磁场定向下的数学模型在dq坐标系放在同步旋转磁场下使d轴与转子磁场的方向重合此时转子的d轴的磁通分量为0,既有下式;带入式6-111三四行出现零元素,减少了耦合,简化了模型上式中解得,带入dq坐标系中的转矩方程有如下结果,这个关系和直流电机的转矩方程非常接近了,如果是鼠笼电机结果会更加简单;五、三相异步电动机在两相坐标系上的状态方程作为异步电机控制系统研究和分析基础的数学模型,过去经常使用矩阵方程,近来越来越多地采用状态方程的形式,因此有必要再介绍一下状态方程;为了简单起见,这里只讨论两相同步旋转dq 坐标系上的状态方程,如果需要其它类型的两相坐标,只须稍加变换,就可以得到;第6.6.4节的分析结果告诉我们,在两相坐标系上的电压源型变频器—异步电机具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,须选取5个状态变量,而可选的变量共有9个,即转速、4个电流变量和4个磁链变量;状态变量的选择转子电流是不可测的,不宜用作状态变量,因此只能选定子电流和转子磁链;定子电流和定子磁链;也就是说,可以有下列两组状态方程;1.状态方程由前节式6-103b表示dq坐标系上的磁链方程式6-104为任意旋转坐标系上的电压方程对于同步旋转坐标系,,又考虑到笼型转子内部是短路的,则,于是,电压方程可写成由式6-103b中第3,4两式可解出代入式6-107的转矩公式,得状态方程标准形式将式6-103b代入式6-112,消去,同时将6-113代入运动方程式6-87,经整理后即得状态方程如下:——电机漏磁系数,——转子电磁时间常数;状态变量与输入变量在6-114~6-118的状态方程中,状态变量为输入变量为式中,状态变量为输入变量为。
电力拖动自动控制系统考纲及试题直流调速系统一判断题5串级调速系统的容量随着调速范围的增大而下降。
(Ⅹ)6交流调压调速系统属于转差功率回馈型交流调速系统。
(Ⅹ)7普通串级调速系统是一类高功率因数低效率的仅具有限调速范围的转子变频调速系统。
(√)9交流调压调速系统属于转差功率不变型交流调速系统。
(Ⅹ)13转差频率矢量控制系统没有转子磁链闭环。
(Ⅹ)计算转子磁链的电压模型更适合于中、高速范围,而电流模型能适应低速。
9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)与开环系统相比,单闭环调速系统的稳态速降减小了。
(Ⅹ)16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
二选择题2绕线式异步电动机双馈调速,如原处于低同步电动运行,在转子侧加入与转子反电动势相位相同的反电动势,而负载为恒转矩负载,则(B)A0S1,输出功率低于输入功率BS0,输出功率高于输入功率C0S1,输出功率高于输入功率DS0,输出功率低于输入功率4绕线式异步电动机双馈调速,如原处于低同步电动运行,在转子侧加入与转子反电动势相位相同的反电动势,而负载为恒转矩负载,则(C)Ann1,输出功率低于输入功率Bnn1,输出功率高于输入功率Cnn1,输出功率高于输入功率Dnn1,输出功率低于输入功率5与矢量控制相比,直接转矩控制(D)A调速范围宽B控制性能受转子参数影响大C计算复杂D控制结构简单7异步电动机VVVF调速系统中低频电压补偿的目的是A补偿定子电阻压降B补偿定子电阻和漏抗压降C补偿转子电阻压降D补偿转子电阻和漏抗压降8异步电动机VVVF调速系统的机械特性最好的是(D)A恒压频比控制B恒定子磁通控制C恒气隙磁通控制D恒转子磁通控制9电流跟踪PWM控制时,当环宽选得较大时,A开关频率高,B电流波形失真小C电流谐波分量高D电流跟踪精度高4系统的静态速降△ned一定时,静差率S越小,则()。
电力拖动自动控制系统运动控制系统-四版-复习题-考试题目直流调速系统判断:1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
<)2采用光电式旋转编码器的数字测速方法中,M 法适用于测高速,T法适用于测低速。
<)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
<)4直流电动机变压调速和降磁调速都可做到无级调速。
<)5静差率和机械特性硬度是一回事。
< )6带电流截止负反馈的转速闭环系统不是单闭环系统。
< )7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk 的大小并非仅取决于速度定 Ug*的大小。
<)8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。
< )9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
<)10可逆脉宽调速系统中电动机的转动方向<正或反)由驱动脉冲的宽窄决定。
<)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。
<)与开环系统相比,单闭环调速系统的稳态速降减小了。
< )12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段<)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。
<)14 电压闭环相当于电流变化率闭环。
<)15 闭环系统可以改造控制对象。
<)16闭环系统电动机转速与负载电流<或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。
<)18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。
<)19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。
<)20对电网电压波动来说,电压环比电流环更快。
<)二选择题1直流双闭环调速系统中出现电源电压波动和负载转矩波动时,< )。
目录摘要I1绪论11.1交流调速技术概况11。
2异步电动机矢量控制原理22矢量控制理论42.1矢量控制42.2异步电机的动态数学模型52.3坐标变换73矢量控制系统硬件设计93。
1矢量控制结构框图93.2矢量控制系统的电流闭环控制方式思想9 3。
3各个子系统模块103.4矢量控制的异步电动机调速系统模块124 SIMULINK仿真134.1MATLAB/S IMULINK概述134。
2仿真参数134。
3仿真结果145总结16参考文献17摘要异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。
本设计把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。
综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果.本文研究了矢量控制系统中磁链调节器的设计方法。
并用MATLAB最终得到了仿真结果。
关键词:坐标变换;矢量控制;MATLAB/simulink1绪论1.1交流调速技术概况工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。
过去由于直流调速系统调速方法简单、转矩易于控制,比较容易得到良好的动态特性,因此高性能的传动系统都采用直流电机,直流调速系统在变速传动领域中占统治地位。
但是直流电机的机械接触式换向器结构复杂、制造成本高、运行中容易产生火花、需要经常的维护检修,使得直流传动系统的运营成本很高,特别是由于换向问题的存在,直流电机无法做成高速大容量的机组,如目前3000转/分左右的高速直流电机最大容量只有400千瓦左右,低速的也只能做到几千千瓦,远远不能适应现代生产向高速大容量化发展的要求.交流电机高效调速方法的典型是变频调速,它既适用于异步电机,也适用于同步电机.交流电机采用变频调速不但能实现无极调速,而且根据负载的特性不同,通过适当调节电压和频率之间的关系,可使电机始终运行在高效区,并保证良好的动态特性。
基于交流电动机动态模型的直接矢量控制系统的仿真与设计姓名:班级:电气三班学号:专业:电气工程及其自动化1.引言异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。
需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。
经过人们的多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是矢量控制系统。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。
本文研究了交流电动机动态模型的直接矢量控制系统的设计方法。
并用MATLAB 最终得到出仿真结果。
2. 矢量控制系统结构异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。
由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统(VectorControlSystem),简称VC 系统。
VC 系统的原理结构如图1所示。
图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m i 和电枢电流的给定信号*t i ,经过反旋转变换1-VR 一得到*αi 和*βi ,再经过2/3变换得到*A i 、*B i 和*C i 。
把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。
图1 矢量控制系统原理结构图在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图1中虚线框内的部分可以删去,剩下的就是直流调速系统了。
可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。