第十一章 透射显微术电子像衬度原理
- 格式:pdf
- 大小:6.41 MB
- 文档页数:75
电子显微图像衬度的原理
电子显微图像的衬度(pronounced Chang-du)是指影像中各个部分的对比程度。
影像中的对比度影响了我们对物体细节的观察和分析。
电子显微镜图像的衬度是通过调整电子束的衬度来实现的。
电子束是在显微镜中形成影像的关键部分。
电子束在其传播过程中会受到物质的散射和吸收。
由于样品的特性不同,电子束在物质中的传播路径和散射不同,这些差异会影响电子束的“亮度”。
衬度控制器的作用是调整电子束的出入角度,以便通过样品的散射和吸收获得所需亮度的电子束照明样品表面。
具有高衬度的样品区域看起来会比较亮,而具有低衬度的区域看起来就比较暗,从而形成明暗对比度。
因此,电子显微图像的衬度和样品对电子束的散射和吸收有关。
衬度的调整是通过控制电子束的出入角度来实现的,不同区域的亮度差异可以形成图像中的明暗对比度。
透射电子显微镜的工作原理
透射电子显微镜是一种利用电子束来观察样品内部结构的仪器。
它的工作原理基于电子的波粒二象性和探测电子与样品的相互作用。
1. 电子源:透射电子显微镜的关键部件是电子源,通常使用热阴极电子枪作为电子源。
热阴极通过加热产生的电子被电场加速形成电子束。
2. 电子加速:电子束通过一系列电场透镜和加速电场,以加速电子的速度。
通常,加速电压可达到数十至数百千伏,使电子的动能足够高,以达到穿透样品的要求。
3. 样品制备:为了观察样品的内部结构,需要将样品制备成非晶质薄片,通常使用切片机或离心切片法将样品切割成纳米至微米厚度的薄片。
然后,将薄片置于透射电子显微镜的样品台上。
4. 电子束透射:加速的电子束通过样品时,会与样品内的原子发生相互作用。
其中,部分电子会被散射,部分会被吸收。
透射电子会穿过样品并保持其原有的信息。
5. 透射电子检测:透射电子进入具有电磁透镜功能的物镜透镜,物镜透镜根据透射电子的波动性将其聚焦。
透射电子经过物镜透镜后进入投影平面,通过透射电子探测器的探测,最终形成透射电子显微图像。
6. 图像处理与观察:通过对透射电子显微图像进行图像增强,噪声滤波等处理,可以进一步恢复样品的细节信息。
最后,通过观察透射电子显微图像,可以获得关于样品内部结构和原子排列的信息。
总之,透射电子显微镜利用电子的波粒二象性以及电子与样品的相互作用,通过探测透射电子形成样品内部结构的显微图像。
这种显微镜技术在材料科学、纳米科学等领域有着重要的应用价值。
透射电子显微镜原理透射电子显微镜(Transmission Electron Microscope, 简称TEM)是一种利用电子束传递样品来获得细微结构的高分辨率显微镜。
它的原理是通过在真空中加速电子,将电子束通过光学透镜系统聚焦到样品上,并通过样品的透射情况来形成图像。
TEM的关键组件包括电子源、电子透镜系统、样品台、探测器和成像系统。
电子源产生的电子束经过一系列透镜系统(包括准直透镜、磁场透镜、投影透镜等),被聚焦到样品上。
样品位于一个特殊的样品台上,可以微调样品的位置和角度。
透射电子束通过样品后,部分电子被散射、散射和吸收。
散射电子和透射电子被探测器捕捉,并转化为电信号。
TEM的成像原理基于透射电子束与样品交互作用的差异。
样品内不同的区域对电子束有不同的散射、吸收和透射能力,导致不同的强度对比。
探测器会测量透射电子的能量和强度变化,并将其转换为光学图像。
最终,通过调节透射电子束的聚焦和探测参数,可以得到具有高分辨率的样品图像。
TEM具有极高的分辨率和能够观察样品内部结构的能力。
与光学显微镜相比,TEM利用电子束的波长远小于光的波长,可以克服光学显微镜的衍射极限。
因此,TEM可以观察更小的结构和更高的放大倍数。
此外,TEM还可以通过选定区域电子衍射(Selected Area Electron Diffraction, SAED)技术来研究晶体的晶格结构和材料的晶体学性质。
综上所述,透射电子显微镜通过控制电子束的聚焦和探测参数,利用透射电子与样品相互作用的差异,获得高分辨率的样品图像。
它是研究材料科学和纳米技术的重要工具。
透射电子显微镜衬度与样品特性关系肖国敏 20085029 生医1班0 透射电镜成像原理透射电镜的成象原理是由照明部分提供的有一定孔径角和强度的电子束平行地投影到处于物镜物平面处的样品上,通过样品和物镜的电子束在物镜后焦面上形成衍射振幅极大值,即第一幅衍射谱。
这些衍射束在物镜的象平面上相互干涉形成第一幅反映试样为微区特征的电子图象。
通过聚焦(调节物镜激磁电流),使物镜的象平面与中间镜的物平面相一致,中间镜的象平面与投影镜的物平面相一致,投影镜的象平面与荧光屏相一致,这样在荧光屏上就察观到一幅经物镜、中间镜和投影镜放大后有一定衬度和放大倍数的电子图象。
由于试样各微区的厚度、原子序数、晶体结构或晶体取向不同,通过试样和物镜的电子束强度产生差异,因而在荧光屏上显现出由暗亮差别所反映出的试样微区特征的显微电子图象。
电子图象的放大倍数为物镜、中间镜和投影镜的放大倍数之乘积,即M=M。
•Mr•Mp.1 衬度概念衬度是图象上不同区域间明暗程度的差别。
由于图像上不同区域间存在明暗程度的差别即衬度的存在,才使得我们能观察到各种具体的图像。
只有了解像衬度的形成机理,才能对各种具体的图像给予正确解释,这是进行材料电子显微分析的前提。
2 衬度与样品特性的关系2.1 非晶样品的象衬度非晶样品透射电子显微图象衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,即质量厚度衬度(质量厚度定义为试样下表面单位面积以上柱体中的质量),也叫质厚衬度。
质厚衬度适用于对复型膜试样电子图象作出解释。
质量厚度数值较大的,对电子的吸收散射作用强,使电子散射到光栏以外的要多,对应较安的衬度。
质量厚度数值小的,对应较亮的衬度。
2.2 晶体样品的衍射衬度及形成原理对于晶体薄膜样品而言,厚度大致均匀,原子序数也无差别,因此,不可能利用质厚衬度来获得图象反差,这样,晶体薄膜样品成像是利用衍射衬度成像,简称“衍射衬度”由样品各处衍射束强度的差异形成的衬度称为衍射衬度。
透射显微镜的工作原理
透射电子显微镜(Transmission Electron Microscope, TEM)是
一种利用电子束传递来对样品进行观察和分析的仪器。
它在细胞生物学、材料科学等领域发挥着重要作用。
透射电子显微镜的工作原理可以分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜使用一个电子枪产生高速的电子束。
电子束首先通过专门设计的系统进行聚焦和收束,以保证电子束的直径足够小。
2. 束缚电子(束缚脱电子):电子束通过束流进样品。
所谓束缚电子指的是样品原子中的电子在电子束的作用下被激发到较高能级,这样使得它们遵循一定的路径发射出来,形成散射电子和被束囚电子。
这些束缚电子会以不同的角度散射出电子束。
3. 透射电子的形成:束囚电子的路径会受到样品物质的阻碍而改变方向,其中一部分束囚电子将经过样品而形成透射电子。
透射电子在通过样品时会和样品的原子、分子以及晶体结构发生相互作用。
4. 透射电子的收集和分析:透射电子进入显微镜的透射电子探测器,探测器会将透射电子转化为电荷信号,并将信号传递给显示屏或电子学器件。
然后根据散射模式和信号的强度,可以确定样品的结构、形态和成分。
通过透射电子显微镜,我们可以观察到极小的事物,像原子和分子,因为电子的波长比光的波长小得多。
在透射电子显微镜
中,细致的样品制备、高真空环境以及精密的光学系统都是保证获得高分辨率和清晰图像的关键。
透射电子显微镜的原理
透射电子显微镜是一种利用电子束代替可见光进行成像的显微镜。
其原理基于电子的波粒二象性及电子与物质中原子的相互作用。
透射电子显微镜的工作原理可以简要分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜中通常使用热阴极或冷阴极发射电子,通过加速电场使电子获得足够的动能,形成电子束。
2. 电子束的集束:经过加速后,电子束通过一系列的电磁透镜,如准直孔光阑、聚焦透镜等,来进行集束,使电子束尽可能的细致聚焦。
3. 电子束与样品的相互作用:电子束进入样品后,会与样品中的原子发生相互作用。
电子束与样品中的原子核和电子云之间相互散射,发生透射、散射、吸收等过程。
4. 透射电子的形成:部分电子束透过样品,形成透射电子。
透射电子的强度和分布情况受样品的厚度、结构以及样品内部的原子数密度等因素的影响。
5. 透射电子的探测与成像:透射电子通过射出样品的透射电子探测器进行探测,并转换成电信号。
利用这些信号,通过电子透射的强度和分布,可以形成对样品内部结构的显微图像。
透射电子显微镜相较于光学显微镜具有更高的分辨率,因为电子的波长比光的波长要短得多。
透射电子显微镜广泛应用于材料科学、生物学、纳米技术等领域的研究中,可以观察并研究到原子尺度的结构和细节。
透射电子显微镜原理
透射电子显微镜(Transmission Electron Microscope,TEM)
是利用电子束取代光束进行观察和研究物质微观结构的高分辨率显微镜。
透射电子显微镜的原理基于电子的波粒二象性。
电子具有很短的波长,远小于可见光的波长,因此可以获得更高的分辨率。
透射电子显微镜利用聚焦和成像系统将电子束聚焦到样品上,并通过样品传输的电子束进行观察。
首先,电子枪产生高能电子束,经过一系列的透镜系统,使电子束变得较为平行和聚焦。
然后,电子束直接照射在样品上。
样品是非晶态薄片或超薄金属晶片,电子束在样品中透射、发生散射或被吸收。
透射的电子被投射到一个投影和透镜系统中。
透射电子显微镜中的投影和透镜系统主要包括两个关键元素:物镜和目镜。
物镜具有较高的放大倍数,将透射的电子束转换为放大的显微图像。
目镜则进一步放大物镜所得到的显微图像,使其可以被人眼观察。
通过调整投影和透镜系统的电位差,可以控制电子束的聚焦、放大和成像效果。
同时,样品本身的性质也会影响到电子束的透射和散射行为,进而影响到显微图像的质量。
透射电子显微镜可以提供非常高的分辨率,在纳米尺度下观察和研究物质的微观结构。
它广泛应用于材料科学、生物学、纳
米技术等领域,在研究和开发新材料、探索生物分子结构以及研究纳米尺度现象方面发挥着重要作用。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载透射电子显微镜的结构、原理和衍衬成像观察地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容透射电子显微镜的结构、原理和衍衬成像观察实验报告实验目的1、了解透射电子显微电镜的基本结构;2、熟悉透射电子显微镜的成像原理;3、了解基本操作步骤。
二、实验内容1、了解透射电子显微镜的结构;2、了解电子显微镜面板上各个按钮的位置与作用;3、无试样时检测像散,如存在则进行消像散处理;4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像;5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。
三、实验设备和器材JEM-2100F型TEM透射电子显微镜四、实验原理(一)、透射电镜的基本结构透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。
(1)照明系统照明系统主要由电子枪和聚光镜组成。
电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。
图1 热发射电子枪图2 场发射电子枪聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。
电镜一般都采用双聚光镜系统。
图3 双聚光镜的原理图(2)成像系统成像系统由物镜、中间镜和投影镜组成。
物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。
物镜的质量好坏直接影响到整过系统的成像质量。
物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。
§4-2. 透射电子显微镜的成像原理是什么,为什么必须小孔径成像?
透射电镜,通常采用热阴极电子枪来获得电子束作为照明源。
热阴极发射的电子,在阳极加速电压的作用下,高速地穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。
这种具有一定能量的电子束与样品发生作用,产生反映样品微区的厚度、平均原子序数、晶体结构或位向差别的多种信息。
透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。
图4.3显微镜光路图
为了确保透射电镜的分辨本领,物镜的孔径半角必须很小,即采用小孔径角成像。
一般是在物镜的背焦平面上放一称为物镜光阑的小孔径的光阑来达到这个目的。
由于物镜放大倍数较大,其物平面接近焦点,若物镜光阑的直径为D ,则物镜孔径半角α可用下式来表示:
f
D 2=σ (4.24) 小孔径角成像意味着只允许样品散射角小于α的散射电子通过物镜光阑成像,所有大于α的都被物镜光阑挡掉,不参与成像(图4.18)。
在这里,我们利用散射截面这一概念,且定义其为散射角大于α的散射区。
显然,若使αn =αe =α,则表示,凡落入散射截面以
内的入射电子不参与成像,而只有落在散射截面以外的才参与成像。
图4.18 小孔径角成像。