透射电子显微镜实验讲义
- 格式:doc
- 大小:2.30 MB
- 文档页数:17
透射电子显微镜及其应用透射电子显微镜及其应用读书报告姓名:孙家宝学号:DG1022076电子科学与工程学院2020年5月7日目录第一章透射电子显微镜 (1)1.1 透射电子显微镜的结构 (1)1.1.1.电子光学部分 (2)1.1.2.真空系统 (4)1.1.3.供电控制系统 (4)1.2 透射电子显微镜主要的性能参数 (4)1.2.1 分辨率 (4)1.2.2 放大倍数 (5)1.2.3 加速电压 (6)1.3 透射电镜的成像原理 (6)1.3.1 透射电镜的成像方式 (6)1.3.2 衬度理论 (7)1.4 透射电镜的电子衍射花样 (7)1.4.1 电子衍射花样 (7)1.4.2电子衍射与X射线衍射相比的优点 (8)1.4.3电子衍射与X射线衍射相比的不足之处 (8)1.4.4选区电子衍射 (8)1.4.5常见的几种衍射图谱 (10)1.4.6单晶电子衍射花样的标定 (10)第二章透射电子显微镜分析样品制备 (12)2.1 透射电镜复型技术(间接样品) (12)2.1.1塑料——碳二级复型 (12)2.1.1萃取复型(半直接样品) (13)2.2 金属薄膜样品的制备 (13)1.2 电子显微镜中的电光学问题 (15)1.2.1 电子射线(束)的特性 (16)第一章透射电子显微镜1.1透射电子显微镜的结构透射电子显微镜(TEM)是观察和分析材料的形貌、组织和结构的有效工具。
TEM用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。
图1.1(a)(b)是两种典型的透射电镜的实物照片。
透射电子显微镜的光路原理图如图1.2所示。
透射电镜一般是由电子光学部分、真空系统和供电系统三大部分组成。
(a) Philips CM12透射电镜(b) JEM-2010透射电镜图1.1 透射电子显微镜图1.2透射电子显微镜的光路原图1.3透射电镜电子光学部分示意图1.1.1.电子光学部分整个电子光学部分完全置于镜筒之内,自上而下顺序排列着电子枪、聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏、照相机构等装置。
实验四透射电镜(TEM)一、目的要求(1)了解透射电子显微镜的基本构造、原理与方法;(2)了解透射电子显微镜图谱的基本特征;(3)了解透射电子显微镜中的各种实验技术;(4)掌握透射电子显微镜样品的制样方法;(5)掌握对样品的电子衍射图样进行物相分析。
二、实验原理1.透射电子显微镜的结构与成像原理透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。
透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
成像方式与光学显微镜相似,只是以电子透镜代替玻璃透镜,放大后的电子像在荧光屏上显示出来。
2.电子衍射物相分析的原理电子衍射的基本原理和X射线衍射原理是一致的,都遵循布拉格方程:2d sinθ=λ,只有在d、θ、λ同时满足方程式时,面网才会产生电子衍射。
由于一种结晶物质的晶体成分、结构类型和点阵常数是一定的,因而当一定波长的电子束和结晶物质样品相互作用时,会产生唯一、与其对应的衍射花样,不可能有两种或多种晶体物质具有完全相同的多晶体衍射花样,也不可能有两种或多种晶体衍射花样对应同一结晶物质。
而两种或两种以上多晶体物质混合物的衍射花样即为组成该物质的单相衍射花样的几何叠加,因此,可以依据所获得的多晶体衍射花样确定晶体物质的种类。
三.实验内容与步骤1. 实验仪器本实验使用的德国Zeiss Libra 200FE透射电镜2. 制样方法(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚度100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可。
(2)薄膜样品制备薄膜样品分为一下几个步骤:A、将样品切成薄片(厚度100—200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割。
透射电⼦显微镜实验讲义⼀、实验名称透射电⼦显微镜⽤于⽆机纳⽶材料的检测。
⼆、实验⽬的1.认知透射电⼦显微镜的基本原理,了解有关仪器的主要结构;2.学习利⽤此项电⼦显微技术观察、分析物质结构的⽅法,主要包括:常规成像、⾼分辨成像、电⼦衍射和能谱分析等;3.重点帮助学⽣掌握纳⽶材料等的微观形貌和结构测试结果的判读,主要包括:材料的尺⼨、⼤⼩均匀性、分散性、⼏何形状,以及材料的晶体结构和⽣长取向等。
三、实验原理透射电⼦显微技术⾃20世纪30年代诞⽣以来,经过数⼗年的发展,现已成为材料、化学化⼯、物理、⽣物等领域科学研究中物质微观结构观察、测试⼗分重要的⼿段,尤其是近20多年来,纳⽶材料研究的快速发展⼜赋予这⼀电⼦显微技术以极⼤的⽣命⼒,可以这样说,没有透射电⼦显微镜,就⽆法开展纳⽶材料的研究。
透射电⼦显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,⽽透射电⼦显微镜则以⾼速运动的电⼦束为“光源”。
在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电⼦显微镜中,相应的电⼦聚焦功能是电磁透镜,它利⽤了带电粒⼦与磁场间的相互作⽤。
在真空系统中,由电⼦枪发射出的电⼦经加速后,通过磁透镜照射在样品上。
透过样品的电⼦被电⼦透镜放⼤成像。
成像原理是复杂的,可发⽣透射、散射、吸收、⼲涉和衍射等多种效应,使得在相平⾯形成衬度(即明暗对⽐),从⽽显⽰出透射、衍射、⾼分辨等图像。
对于⾮晶样品⽽⾔,形成的是质厚忖度像,当⼊射电⼦透过此类样品时,成像效果与样品的厚度或密度有关,即电⼦碰到的原⼦数量越多,或样品的原⼦序数越⼤,均可使⼊射电⼦与原⼦核产⽣较强的排斥作⽤——电⼦散射,使⾯通过物镜光阑参与成像的电⼦强度降低,忖度像变淡。
另外,对于晶体样品⽽⾔,由于⼊射电⼦波长极短,与物质作⽤满⾜布拉格(Bragg)⽅程,产⽣衍射现象,在衍射衬度模式中,像平⾯上图象的衬度来源于两个⽅⾯,⼀是质量、厚度因素,⼆是衍射因素;在晶体样品超薄的情况下(如10nm左右),可使透射电⼦显微镜具有⾼分辨成像的功能,可⽤于材料结构的精细分析,此时获得的图像为相位衬度,它来⾃样品上不同区域透过去的电⼦(包括散射电⼦)的相位差异。
一、实验名称透射电子显微镜用于无机纳米材料的检测。
二、实验目的1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构;2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成像、高分辨成像、电子衍射和能谱分析等;3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括:材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。
三、实验原理透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。
透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。
在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。
在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。
透过样品的电子被电子透镜放大成像。
成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。
对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。
另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg)方程,产生衍射现象,在衍射衬度模式中,像平面上图象的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,此时获得的图像为相位衬度,它来自样品上不同区域透过去的电子(包括散射电子)的相位差异。
图1光学显微镜与透射电子显微镜成像原理的比较透射电子显微镜的结构包括主机和辅助系统两大部分,主体部分(图2)包含电子源、照明系统、成像系统和观察记录系统等;辅助系统包含真空系统(机械泵、离子泵等),电路系统(变压器、调整控制),水冷系统等。
以下主要介绍主体部分。
透射电子显微镜中产生电子的装置叫电子枪,电子枪的研发与应用大致经历了三个阶段:钨灯丝、六硼化镧单晶和场发射电子枪,它们所产生电子束的质量越来越好,其亮度分别比普通钨灯丝亮几十倍和上万倍,而且单色性好,尤为适合于高级透射电子显微镜。
电子枪分为热阴极型和场发射型两类,热阴极电子枪的材料主要有钨丝和六硼化镧(LaB6),而场发射电子枪又可以分为热场发射、冷场发射两个分支。
电子枪的功能是产生高速电子,以热阴级电子枪为例(图3),它由处于负高压(或称加速电压)的阴极、栅极(电位比灯丝还要负几百到几千伏,数值可调)和处于0电位的阳极组成,加热灯丝发射电子束,并在阳极加电压使电子加速,经加速而具有高能量的电子从阳极板的孔中射出,电子束能量与加速电压有关,栅极则起到控制电子束形状的作用。
另外,如果在某些金属的表面施加强电场,金属表面可向外逸出电子,依照此原理可制成场发射电子枪,它没有栅极,但由阴极和两个阳极构成,第一个阳极主要使电子发射,第二个阳极使电子加速和会聚。
根据加速电压的数值,由电子枪发射出来的电子,在阳极加速电压(生物样品多采用80~100kV,金属、陶瓷等多采用120kV、200kV、300kV,超高压电镜则高达1000~3000kV)的作用下,经过聚光镜(2~3个电磁透镜)汇聚为电子束照射到样品上。
据此可以理解,由于电子的穿透能力很弱(比X射线弱得多),进行透射电子显微镜检测的样品必须很薄,其厚度与样品成分、加速电压等有关,一般范围在100nm左右(甚至更低)。
此外,整个主机系统必须保持在理想的真空状态,真空系统通常由机械泵、油扩散泵、离子泵、真空测量仪表及真空管道组成,它的作用是抽出镜筒内气体,使镜筒真空度至少要在10~5托及以下,目前最好的真空度可以达到10-10托左右。
如果真空度不理想的话,可产生多种副作用,如电子与空气中气体分子之间的碰撞可引起散射而影响衬度,还会使电子栅极与阳极间高压电离导致极间放电,从而影响电子枪的寿命,残余的气体还会腐蚀灯丝,污染样品。
图2 透射电子显微镜基本构造(1电子枪;2加速管;3阳极室隔离阀;4第一聚光镜;5第二聚光镜;6聚光后处理装置;7聚光镜光阑;8测角台;9样品杆;10物镜;11选区光阑;12中间镜;13投影镜;14投影镜;15光学显微镜;16小荧光屏;17大荧光屏)图3 热阴级电子枪的基本构造图4 热阴级电子枪的灯丝(换成自拍的)图5 照明系统光路图电子枪发射出的电子束有一定的发散角,经后续调节后,可得到发散角很小的平行电子束。
可通过调节会聚镜的电流改变电子束的电流密度(亦称束流)。
在透射电子显微镜的观测过程中,需要亮度高、相干性好的照明电子束。
因此,电子枪发射出来的电子束还要用两个电磁透镜进一步会聚,以提供束斑尺寸不同、近似平行的照明束。
图5为照明系统光路图,一般都采用双聚光系统。
该系统的功能是为下一级成像系统提供一个亮度大、尺寸小的照明光斑,其中聚光镜用于汇聚电子枪射出的电子束,以求最小的损失照明样品,调节照明强度、孔径半角和束斑大小。
在图5中,第一聚光镜常采用短焦距强励磁透镜,它的作用是将从电子枪得到的光斑尽量缩小;第二聚光镜为长焦距弱透镜,它的功能是将第一聚光镜得到的光源会聚到试样上,该透镜通常可对光源起到放大作用。
图6 成像系统光路图(a)衍射模式(b)放大模式成像系统包括样品室、物镜、中间镜、反差光阑、衍射光阑、投射镜以及其他电子光学部件。
它的主要功能是,由于穿过样品的电子携带了样品本身的结构信息,将穿过试样的电子束在透镜后成像或成衍射花样,并经过物镜、中间镜和投影镜接力放大,最终以图像或衍射像的形式显示于荧光屏上。
样品室有一套机关设置,以保证样品经常更换时不破坏主机的真空。
实验操作时,样品可在X 轴、Y轴二维方向移动,以便找到所要观察的位置。
图6为成像系统示意图,物镜是主机中最关键的部分,这是因为透射电子显微镜分辨本领的高低主要取决于物镜。
它的功能是将来自样品不同部位、传播方向相同和相位相同的弹性散射电子束会聚于其后焦面上,构成含有试样结构信息的散射花样或衍射花样;将来自试样同一点的不同方向的弹性散射束会聚于其像平面上,构成与试样组织相对应的显微像。
实际上,物镜的任务就是形成第一幅电子像或衍射像,完成物到像的转换并加以放大,要求像差尽可能小而又要有较高的放大倍数(100~200倍)。
顺便提及,目前新一代透射电子显微镜的特点是主要大幅度改善了球差矫正参数,但此类设备使用还不普及,在常见的透射电子显微镜中,物镜光阑可以挡掉大角度散射的非弹性电子,使色差和球差减少,在提高衬度的同时还可以得到样品的更多信息,在选择后焦面上的晶体样品衍射束成像后,可获得明、暗场像。
另外,作为弱激磁长焦距可变率透镜,中间镜可放大1~20倍,它的作用是控制透射电镜总的放大倍数,把上方物镜形成的一次中间像或衍射像投射到投影镜的物平面上,而投影镜则是一种短焦距强磁透镜,它可把经过中间镜形成的二次中间像或衍射像投影到荧光屏上,最终形成放大的电子像或衍射像。
在观察、记录系统中,为方便前期观察,高性能透射电子显微镜除了荧光屏外,还配有用于聚焦的小荧光屏和放大5~10倍的光学放大镜。
荧光屏的分辨率为50~70μm,因此在观察细微结构时要有足够高的放大率,以使荧光屏能分辨并为人眼所能见。
例如,如需要观察0.5nm的颗粒就需要10万倍的电子光学放大,再加10倍的光学放大即可。
本部分最后还将谈一谈利用透射电子显微镜在科学研究中所能解决的主要问题。
(a)(b)图7纳米材料透射电子显微镜观察结果示例图7中两张图片为纳米材料透射电子显微镜的检测结果,从中可以看出,它们是平面投影图像,不同于富有立体感的扫描电子显微镜图像。
其中,图7(a)中的纳米粒子为球形(严格地说为准球形),颗粒尺寸大小较为均一,分散性很好;图7(b)中的纳米材料为棒形,颗粒尺寸大小较为均一,分散性较好。
纳米粒子的粒径分布统计是纳米材料研究中常遇到的问题,尽管现在已有多种分析测试纳米材料粒径分布的方法,如小角X射线散射等,但可信度最高的当属依托透射电子显微镜技术的统计方法。
(a)(b)图8材料的高分辨透射电子显微镜观察结果示例(a)晶体结构(b)自组装结构图8为材料的高分辨透射电子显微镜观察结果,其中图8(a)是晶体材料的高分辨图像,从中可清楚地看见晶格条纹,并可得到晶面间距d值。
至于晶面归属的判断,出处理方法是,先利用高分辨透射电子显微镜图像中的条纹线距离和多晶面时的相关取向,估算出该条纹线对应的晶面,然后再用相同样品的XRD 检测结果进行矫正,对于大多数晶体物质而言,都有XRD检测出的标准数据,如d值等,可信度高。
图8(b)也给出了有序的条纹结构,但此时层间距和层的厚度均明显大于图8(a)中的结果,故图8(b)显示的已不是晶体结构,而是所谓的自组装结构,它是纳米材料研究中的热点问题。
再来了解电子衍射问题,在透射电子显微镜中,来自聚光镜的电子束打到样品上,与样品发生相互作用,当样品薄到一定程度时,电子就可以透过样品。
可将透过去的电子分成两类,一类是继续按照原来方向运动的电子,能量几乎没有改变,称之为直进电子;另一类是运动方向偏离原来方向的电子,称之为散射电子。
就散射电子而言,如果电子的能量有比较大的改变,我们称之为非弹性散射电子;有的电子能量几乎没有改变,可称之为弹性散射电子。
所有这些电子通过物镜后在物镜的后焦面上会形成一种特殊的图像,称之为夫琅禾费衍射花样。
图?对常见电子衍射花样进行了归纳:如果被电子束照射的样品区域是一块单晶,则花样的特点是中中央亮斑加周围其它离散分布、强弱不等的衍射斑,斑点呈规律性分布;如果被电子束照射的样品区域包括许多单晶,则衍射花样的特点是中央亮斑加周围半径不等的一圈圈同心圆亮环;如果被电子束照射的样品区域是非晶,则衍射花样的特点是中央亮斑加从中央到外围越来越暗的弥散光晕。
至于为什么会形成这些花样的原因,可从样品对入射电子的散射来解释:对于晶体样品,由于原子、离子、分子等基本质点排列的周期性,不同质点同一方向上的散射波之间存在固定的相位差,在一些方向上相位差为2π的整数倍,根据波的叠加理论,在这些方向上的散射波会发生加强干涉,称之为衍射。