Artemis_ATP08_and_ME'scope_VES锤击法模态分析操作指南-牛维2012
- 格式:pdf
- 大小:3.00 MB
- 文档页数:50
锤击法模态测试流程锤击法模态测试可是个挺有趣的事儿呢,我来给你好好讲讲这个流程哈。
一、准备工作。
咱们先得把要用的设备都找齐喽。
像力锤这可是关键的家伙事儿,就像厨师的锅铲一样重要。
它有不同的锤头,咱得根据测试对象的特点来挑。
然后还有加速度传感器,这就像是测试对象的小耳朵,能把那些振动的信息都收集起来。
再就是数据采集仪啦,它负责把传感器听到的那些信息都记录下来呢。
除了设备,测试对象也得准备好呀。
要把测试对象放在一个相对稳定的地方,不能让它在测试的时候晃来晃去的,不然测出来的数据可就乱套了。
比如说要是测个小零件,就得把它稳稳地固定在一个夹具上。
要是测个大家伙,像大型机械结构啥的,那也得保证它周围没有太多干扰的东西。
二、传感器的安装。
传感器安装可是个细致活。
咱们得找个合适的地方把加速度传感器贴上去或者固定好。
这个地方呢,最好是能比较准确地反映测试对象的振动情况。
比如说如果是个梁结构,那可能在梁的中间或者两端安装传感器就比较合适。
安装的时候要小心哦,不能把传感器弄坏了。
要是不小心把传感器搞坏了,就像战士上战场没带枪一样,整个测试就没法好好进行啦。
而且要保证传感器和测试对象接触良好,这样它才能准确地感受到振动呢。
三、力锤的敲击。
力锤敲击这一步很有讲究呢。
咱们拿力锤敲测试对象的时候,不能乱敲一气。
要选择合适的敲击点,一般来说呢,要均匀地在测试对象的不同位置敲。
敲的时候力度也得控制好,不能太轻,太轻了传感器可能都感觉不到振动的变化;也不能太重,太重了可能会对测试对象造成损伤,就像你打一个小宠物,下手太重可不行。
而且每次敲击的方向也要尽量保持一致,这样测出来的数据才更有可比性。
四、数据采集。
当我们用力锤敲的时候,数据采集仪就开始工作啦。
它会把传感器传过来的振动信号和力锤敲击的力信号都记录下来。
这个过程就像是一个小秘书在认真地做会议记录一样,不能出一点差错。
要保证采集到的数据是完整的,没有丢失或者错误的部分。
在采集数据的时候呢,可能还需要设置一些参数,像采样频率这些,要根据测试对象的特性和测试的要求来设置好,不然采集到的数据可能就不准确啦。
一种快速方便的试验模态分析方法——锤击法摘要:本文主要介绍了一种快速方便的试验模态分析方法——锤击法。
该方法通过对结构体系进行钝化处理,利用实验锤击对结构进行激励,利用加速度传感器记录结构动力响应,通过对响应波形进行分析,可以得到结构的自然频率、阻尼比和模态形式等特征参数。
该方法简单易行,不需要复杂的仪器和设备,适用于大多数简单工程结构的模态分析。
文章还对该方法的优缺点进行了讨论,并提出了进一步优化的建议。
关键词:试验模态分析;锤击法;自然频率;阻尼比;模态形式Abstract:This paper mainly introduces a fast and convenient experimental modal analysis method-hammering method. This method passivates the structural system, uses experimental hammering to stimulate the structure, and uses an acceleration sensor to record the dynamic response of the structure. By analyzing the response waveform, characteristic parameters such as the natural frequency, damping ratio, and mode shape of the structure can be obtained. This method is simple and easy to implement, does not require complex instruments and equipment, and is suitable for modal analysis of most simple engineering structures. The article also discusses the advantages and disadvantages of this method and proposes suggestions for further optimization.Keywords: experimental modal analysis; hammering method; natural frequency; damping ratio; mode shape一、概述试验模态分析是工程结构振动分析的重要方法之一,其目的是获取结构的自然频率、阻尼比和模态形式等特征参数,为结构设计、优化、调试及故障诊断提供依据。
某风扇振动破坏的有限元模态分析及试验验证李华山;吴晗;周强;冯健美;彭学院【摘要】Aiming at the problem of an unexpected fracture occurred on the blade of a fan used for the motor cooling of a natural gas reciprocating compressor unit for an offshore, a finite element model was established to analyze the natural frequencies and modal shape, and a test was carried out to validate the simulated results. It was indicated that the analytical results agreed well with the experimental modal data. The first order natural frequency of the fan was close to 3 times excitation frequency. The third natural fre-quency was close to 6 times excitation frequency and the corresponding mode shape was combinations of bending and torsional vi-bration, which consequently contributed to low-frequency resonance and pre-mature failure of the fan. The results of harmonic re-sponse analysis showed that the regions of stress concentration were exactly consistent with the fractures on the fan.%针对某海洋平台天然气往复压缩机组中高压电机外风扇破裂问题,对风扇进行有限元振动模态分析,计算其固有频率和振型,同时通过试验模态测试验证了计算结果.模态结果表明,试验模态测试与有限元计算结果吻合良好;风扇1阶固有频率与转速3倍频接近,3阶固有频率与6倍频接近,容易引起低阶共振,且表现为弯曲和扭转的复合振动模态,是导致风扇破裂的主要原因.谐响应结果表明,风扇应力集中区域与风扇出现裂纹位置一致.【期刊名称】《压缩机技术》【年(卷),期】2016(000)006【总页数】5页(P34-37,41)【关键词】风扇;振动模态;有限元;模态试验【作者】李华山;吴晗;周强;冯健美;彭学院【作者单位】海洋石油工程股份有限公司特种设备公司,天津 300452;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049【正文语种】中文【中图分类】TH457;O242.21振动模态分析作为研究结构动力特性的一种方法,在工程振动、故障诊断问题的分析和解决过程中,发挥着重要的作用[1]。
锤击法是单操作员实验模态测试的基本方法。
EDM-Modal 的锤击法提供流程化的操作界面,方便用户完成所有设置和实验。
锤击法模态实验的设计,旨在帮助用户快速定义采集参数,将更多的时间可以花在分析上。
触发设置界面让用户定义触发方式,触发预览界面显示当前激励和响应的测点名称,触发后采集的激励和响应波形,以及平均的次数;其窗口的尺寸大小可手动调整。
手动触发是默认的触发类型,在些类型下当激励达到设置触发值,则激励和响应波形会被显示,用户可以接受/拒绝当前帧。
当选择接受则进行下一帧测试,直到达到平均次数,完成当前测点的测试。
驱动点选择是锤击法特有的一个功能子模块,用于方便用户选择哪个测点适合用作固定的激励点或参考点。
用户设置几个要测试的驱动点,通过试敲击得到他们的FRF数据,然后判断出最适合的驱动点。
EDM简化了此重要的预实验的数据管理。
当开始实际的测量后,采集状态表格会显示所有的DOFs状态(状态包括:未测量,已测量和正在测量),方便用户即时了解所有测点的状态。
当测点完成后点“Next Point”或“Previous Point”移动软件上的当前测点。
“RovingSetup”,可集中设置游击方式,每个通道对应的测点和方向。
锤击法实验过程一个常见的问题是会出现“double hit”。
我们提供了自动检测“double hit”的过程,让用户自动或手动拒绝有双击的敲击。
锤击法实验采集的结果会自动添加到模态分析的数据选择模块,这样模态数据采集和分析可无缝对接。
★EDM Modal 锤击法模态实验主要特征如下:①直观的流程化操作过程。
②几何模型贯穿整个测试过程。
③响应和激励两种游击方式。
④自动或手动移动测点。
⑤自动或手动触发模式。
⑥可变尺寸的触发观览窗口。
⑦双击锤击识别,开/关,自动/手动拒绝。
⑧驱动点设置。
⑨测试状态声音和图形反馈H1,H2,H3和Hv方式计算FRF 测点测试状态显示表格。
★EDM Modal模态支持的功能如下:①几何模型的创建/编辑/导入/导出/动画。
图1 锤击法硬件示意图对于压缩机部件结构锤击得到一个脉冲激励力信号,基金项目:大连大学科研平台校内基金项目。
通讯作者:王珍。
图2 固有频率模块界面固有频率模块硬件需要一个力锤、加速度传感器及数据采集卡组成。
软件功能模块利用LabVIEW编程实现,模块实现如图2所示,为压缩机管道的固有频率测试,从图中可以得到,压缩机配管系统的固有频率为74.1Hz,并且其2倍频148.2Hz、3倍频232.9Hz成分也很明显。
在此模块中,注意锤击信号长度要根据响应信号衰减长度截取,并且由于锤击和响应之间信号之间具有时间差,要根据互相关算法在响应信号中延迟截取开始点。
在频率响应函数中选用Hamming窗,RMS averaging平均模式,Exponential加权模式。
固有频率程序框图如图3所示。
3 声振相干分析原理及程序模块设计相干性是一种统计数据,可用于验证两个信号或数据之间的关系。
它在模块用于估算振动信号和响应信号之间的功率传输状况,可以使用它来估计压缩机振动与噪声之间的因果关系。
针对某个频率,其相位差恒定,幅值变化表现一致,说明这两信号中这个频率点的相干性较高。
用公式来表达两列信号x,y 的相干性计算,如下:2()()()()xy xy xx yy G f G f G f G f =(2)其中,G xy (f )为两列信号的互功率谱密度,G xx (f ) 和G yy (f )则是它们各自的自功率谱密度。
从公式中可以发现,相干性的取值范围是[0-1]。
1为完全相干,0为完全不相干。
声振相干硬件系统需要加速度传感器、传声器及数据采集卡。
模块设计界面如图4所示,图中是压缩机管图4 声振相干模块界面振动噪声相干分析模块运用了相干分析函数,把噪声信号与振动信号进行相干算法进行周期运算,运算次,每次运算的数据为5k,通过每次的迭代使得振动与噪声的相干系数更加明显。
在相干分析函数参数中平均模式为Vector averaging,加权模式为Exponential,选用高斯窗,窗参数为0.2,FRF H3。
实验报告锤击法测量梁构建的模态姓名:***学号:***指导老师:***院系:***目录1. 实验目的 (1)2. 实验装置 (1)2.1 试件及传感器的布置 (1)2.2 采集系统设置 (2)3. 实验数据处理 (2)3.1 1号传感器与力锤的时域分析 (2)3.2 1号传感器与力锤的频域分析 (3)4. 1号传感器与力锤的频响函数估计 (5)4.1 H1估计 (5)4.2 H2估计 (6)4.3 H1、H2与频响函数之间的比较 (7)5. 估算模态参数 (8)5.1 固有频率、阻尼比的估算 (8)5.2 ANSYS建模进行模态分析 (8)5.3 振型图 (10)5.3.1 一阶振型 (10)5.3.2 二阶振型 (11)5.3.3 三阶振型 (11)1. 实验目的本实验采用LMS模态测试系统对某结构件固有频率进行测量,将实验数据进行处理。
(1)数据频谱分析,获取锤击信号及响应的幅频特性、相频特性、实频和虚频;(2)采用不同的频响函数估计方法对结构频响曲线进行估计,画出幅频、相频、实频、虚频和奈奎斯特图,并进行比较;(3)采用单自由度方法估计结构的频率、阻尼及振型。
2. 实验装置2.1 试件及传感器的布置图2.1.1 试件与传感器的布置图2.2 采集系统设置本次实验采用了锤击法,即用力捶敲击梁结构,采集梁结构振动的相关数据。
实验使用了5个加速度传感器,设置的采样频率:12800Hz,分别率:2HZ;锤击次数为8次,传感器和锤击点的方向设置为X正方向。
3. 实验数据处理3.1 1号传感器与力锤的时域分析图3.1.1 1号传感器与力锤时域图图3.1.2 第七次锤击振动信号时域图如图3.1.1所示,在分析数据后,发现锤击信号比较大,所以对其缩小十倍。
如图3.1.2所示是截取的第七锤的锤击信号。
3.2 1号传感器与力锤的频域分析图3.1.3 1号传感器与力锤频域分析后的幅频、相频图图3.1.4 1号传感器与力锤频域分析后的实频、虚频图图3.1.5 Nyquist图如图3.1.3所示,可以看出此次锤击实验激起了试件的五阶固有频率:一阶是400HZ ,二阶是1080HZ,三阶是2067HZ,四阶是3350HZ,五阶是4818HZ。
锤击法在模态分析技术中的研究摘要:本文重点介绍了试验模态分析的基本理论和试验建模的基本方法。
并通过一个具体的实例说明了锤击法在结构试验模态分析中的具体应用及其特点。
主题词:力锤,试验建模,模态分析1.引言振动测试与分析的是研究结构振动的一种重要的实验方法。
模态分析是振动测试与分析的一种,它主要是通过某种激励方法,使试验对象产生一定的振动响应,继而通过测振仪器直接测量出激励与系统振动的响应特性或直接测量被测对象运转时的振动特性;然后通过一定的信号处理方法,如统计分析、谱分析、相关分析、频响函数分析等,进而确定被测对象的模态参数,如固有频率、阻尼比、振型等。
模态参数为结构物的固有参数,通过它就可能预言结构在某个频段内,在内部或外部各种振源作用下的实际振动响应,从而为结构的动态设计及故障诊断提供重要依据。
结构动力学研究中实验模态分析是一个重要的方面,而实验模态分析技术的基本过程为频率响应函数的测量和参数识别。
必须同时测出使结构产生振动的激励信号和结构的响应信号,才能得到频率响应函数。
激励的方法通常采用激振器和用锤头敲击。
锤击法相对来说设备简单,使用操作方便,特别适用于现场实验,因而应用范围越来越广泛。
1.锤击法的介绍2.1锤击法的基本原理对结构输入一个脉冲的力信号,激起结构微幅振动,同时测出力信号和响应(f),响应信号的自功信号(位移、速度、加速度)。
求出力信号的直功率谱Svv率谱Sxx (f),和力与响应信号的互功率谱Sv x(f)。
即可得出频率响应函数H(f)和相关函数rFx(f)。
(1)(2)单位理想脉冲,冲击持续时间为无穷小,用数学中的狄拉克函数表示为(3)它的傅里叶变换为(4)在锤击过程中由于材料的弹性,冲击持续时间不可能为无穷小,而是有限时间 ,因为脉冲力也不可能为无限大。
假定冲击过程中相互撞击的材料力为理想弹性体,其数学表达式可近似写作(5)它的傅里叶变换为(6)自功率谱函数(7)总能量W(8)2.2锤击法的注意事项2.2.1传感器的选择和安装由于传感器应用十分广泛,类型多种多样,在各行各业都有应用。
锤击法在细长体两点激振试验中的研究及应用程鹏斌;李大鹏;赵晨【摘要】The test conditions of the head and tail of a slender varies widely in vibration test. The first three order modal results can be referenced when selecting the excitation and control location before the dual-exciter vibration test. Exciting specific location of test pieces, and measuring the transfer function of the response from exciting, the basic modal information of the structure can be calculated by computer. Hammering on the structure is a instantaneous wideband excitation. The fixture and control position is confirmed by referencing the position of modal shape peak and node lines from modal results, and meet the requirements of the control in dual-exciter vibration test.%细长体进行振动试验时前后输入的试验条件差异较大,进行两点激振试验前激励点和控制点选取需要参考试验件前三阶的模态信息。
对结构进行激励,测量响应的传递函数,通过计算机解算可以得出结构的基本模态信息。
锤击法模态测试操作简要第一部分现场仪器注意事项 (1)第二部分信号采集参数设置 (1)第三部分传递函数分析 (2)第四部分模态分析文件参数设置 (3)第五部分模态分析结构建模 (4)第六部分模态分析定阶 (5)第七部分模态分析拟合过程 (5)第八部分模态分析校验及动画 (7)第九部分自动报告及辅助功能 (8)第一部分现场仪器注意事项模态测试过程中,通过力锤敲击被测物体,侦查各通道仪器信号连接是否正常。
如异常,通常处理办法,排除法。
第二部分信号采集参数设置1、试验名、试验号、存盘路径及测点号设置测点号命名规则:响应点用数字来命名,激励点用字母加数字来命名,应避免重名。
重名会导致频响函数错误,做频响函数分析时,输入测点和输出测点关系不要搞错。
如在多点激励一点响应,或一点激励多点响应(只有一个响应传感器时),第一号点激励为“F1”,响应为“1”;则第n 号测点激励为“Fn”,响应为“n”,频响函数为“n”对“Fn”。
对单点激励多个响应传感器,如8个,第一次测量激励为“F1”,响应为“1”、“2”、“3”、“4”、“5”、“6”、“7”、“8”;第二次测量激励为“F2”,响应为“9”、“10”……“16”。
对前8 个频响函数,输入应选“F1”,9 到16 号频响函数,输入应选“F2”。
2、采样频率设置在满足采样定理基本要求基础上,可以根据经验初步估计采样频率,通过力锤试敲法、并采集一段数据,分析观察频谱特征,根据信号频谱结构特征进行合理设置采用频率。
3、标定值设置标定值:在使用DASP测试软件振动测试时,被测物体振动过程中的每个单位工程量值对应采集仪测得的电压值,即工程测试过程中的单位一。
计算方法:标定值CA=传感器灵敏度A﹡调理器增益K。
基于模态分析技术的空调配管停机应力超标分析邱文辉; 张浩; 赵强; 张睿诚; 游斌【期刊名称】《《家电科技》》【年(卷),期】2019(000)006【总页数】5页(P64-68)【关键词】空调配管设计; 配管停机应力; 模态分析; 有限元仿真【作者】邱文辉; 张浩; 赵强; 张睿诚; 游斌【作者单位】广东美的制冷设备有限公司广东顺德528311【正文语种】中文1 引言空调配管是连接压缩机与冷凝器等的重要部件,是冷媒的运输通道,其可靠性问题是配管结构设计中的关键问题之一。
空调运行时如果配管振动应力过大,容易引起管路断裂,造成冷媒泄露。
为了解决配管振动应力过大的问题,常常通过合理的配管设计,使得管路的固有频率远离空调压缩机的运行频率,减小管路振动的振幅,从而降低运行时配管振动应力。
另一方面,除了运行应力外,对于定频空调,在频繁达温停机的情况下,如果空调停机时振动应力过大,也容易引起管路断裂[1]。
因此,研究空调停机时配管振动应力过大的原因,降低停机时配管的振动应力,对于提高定频空调配管的可靠性具有重要意义。
本文针对某型号定频冷暖空调室外机回气管停机应力过大的问题,通过实验及有限元仿真[2]两种手段,对压缩机-橡胶底脚-配管系统进行模态分析,得到其固有频率及相应的模态振型,并利用实验结果验证有限元仿真的准确性。
结合仿真结果及应力测试,分析停机应力过大的原因,并对配管系统进行结构优化,减少管路配重,提高配管的低阶固有频率,使得配管停机应力减小。
改进后的配管系统有效地避免了停机应力过大的问题,提高了产品的品质。
2 模态分析基本原理2.1 实验模态分析基本原理实验模态分析是通过实验测试获取结构系统的固有频率、阻尼及模态振型等模态参数的实验分析方法。
对于具有N个自由度的结构系统,假设其N×N维质量矩阵、阻尼矩阵和刚度矩阵分别为[M]、[C]和[K],则该结构的动力学方程可以表示为:其中{a}、{v}、{x}和{f}分别为N维加速度向量、速度向量、位移向量和载荷向量,且{a}和{v}分别为{x}对时间t的二次导数和一次导数。
实验十用锤击法测量简支梁的模态参数一、实验目的1、了解测力法实验模态分析原理。
2、掌握用锤击法测试结构模态参数的方法。
二、实验系统框图图1-2-19 测试系统框图三、实验原理目前,结构的特性参数测量主要有三种方法:经典模态分析、运行模态分析(OMA)和运行变形振型分析(ODS)。
1、经典模态分析也称实验模态分析,它是通过给结构施加一个激振力,激起结构振动,测量结构响应及激振力之间的频率响应函数,来寻求结构的模态参数。
因此,实验模态分析方法也称测力法模态分析。
在测量频率响应函数时,可采用力锤和激振器两种激励方式。
力锤激励方式简单易行,特适合现场测试,一般支持快速的多参考技术和小的各向同性结构。
由于力锤移动方便,在这种激励方式下,一般采用的是多点激励,单点响应方式,即测量的是频率响应函数矩阵中的一行。
激振器激励时,由于激振器安装比较困难,多采用单点激励、多点响应的方法,即测量的是频率响应函数矩阵中的一列。
这种激励方式可使用多种激励信号,且激振能量较大,适合于大型或复杂结构。
2、运行模态分析与经典模态分析相比,不需要输入力,只通过测量响应来决定结构的模态参数,以此,这种分析方法也称为不测力法模态分析。
其优点在于无需激励设备,测试时不干扰结构的正常工作,且测试的响应代表了结构的真实工作环境,测试成本低,方便和快速。
测量能够被一次完成(快速,数据一致性好)或多次完成(受限于传感器的数量),若一次测量(一个数据组)时,不需要参考传感器。
而多次测量(多个数据组)时,对所有的数据组,需要一个或多个固定的加速度传感器作为参考。
3、运行变形振型分析中,测量并显示结构在稳态、准稳态或瞬态运行状态过程中的振动模式。
引起振动的因素包括发动机转速、压力、温度、流动和环境力等。
ODS分析包括时域ODS、频谱域ODS(FFT或者Order)、非稳态升/降速ODS。
根据结构的阻尼特性及模态参数特征,模态分析可分为实模态分析和复模态分析。