Artemis_ATP08_and_ME'scope_VES锤击法模态分析操作指南-牛维2012
- 格式:pdf
- 大小:3.00 MB
- 文档页数:50
锤击法模态测试流程锤击法模态测试可是个挺有趣的事儿呢,我来给你好好讲讲这个流程哈。
一、准备工作。
咱们先得把要用的设备都找齐喽。
像力锤这可是关键的家伙事儿,就像厨师的锅铲一样重要。
它有不同的锤头,咱得根据测试对象的特点来挑。
然后还有加速度传感器,这就像是测试对象的小耳朵,能把那些振动的信息都收集起来。
再就是数据采集仪啦,它负责把传感器听到的那些信息都记录下来呢。
除了设备,测试对象也得准备好呀。
要把测试对象放在一个相对稳定的地方,不能让它在测试的时候晃来晃去的,不然测出来的数据可就乱套了。
比如说要是测个小零件,就得把它稳稳地固定在一个夹具上。
要是测个大家伙,像大型机械结构啥的,那也得保证它周围没有太多干扰的东西。
二、传感器的安装。
传感器安装可是个细致活。
咱们得找个合适的地方把加速度传感器贴上去或者固定好。
这个地方呢,最好是能比较准确地反映测试对象的振动情况。
比如说如果是个梁结构,那可能在梁的中间或者两端安装传感器就比较合适。
安装的时候要小心哦,不能把传感器弄坏了。
要是不小心把传感器搞坏了,就像战士上战场没带枪一样,整个测试就没法好好进行啦。
而且要保证传感器和测试对象接触良好,这样它才能准确地感受到振动呢。
三、力锤的敲击。
力锤敲击这一步很有讲究呢。
咱们拿力锤敲测试对象的时候,不能乱敲一气。
要选择合适的敲击点,一般来说呢,要均匀地在测试对象的不同位置敲。
敲的时候力度也得控制好,不能太轻,太轻了传感器可能都感觉不到振动的变化;也不能太重,太重了可能会对测试对象造成损伤,就像你打一个小宠物,下手太重可不行。
而且每次敲击的方向也要尽量保持一致,这样测出来的数据才更有可比性。
四、数据采集。
当我们用力锤敲的时候,数据采集仪就开始工作啦。
它会把传感器传过来的振动信号和力锤敲击的力信号都记录下来。
这个过程就像是一个小秘书在认真地做会议记录一样,不能出一点差错。
要保证采集到的数据是完整的,没有丢失或者错误的部分。
在采集数据的时候呢,可能还需要设置一些参数,像采样频率这些,要根据测试对象的特性和测试的要求来设置好,不然采集到的数据可能就不准确啦。
一种快速方便的试验模态分析方法——锤击法摘要:本文主要介绍了一种快速方便的试验模态分析方法——锤击法。
该方法通过对结构体系进行钝化处理,利用实验锤击对结构进行激励,利用加速度传感器记录结构动力响应,通过对响应波形进行分析,可以得到结构的自然频率、阻尼比和模态形式等特征参数。
该方法简单易行,不需要复杂的仪器和设备,适用于大多数简单工程结构的模态分析。
文章还对该方法的优缺点进行了讨论,并提出了进一步优化的建议。
关键词:试验模态分析;锤击法;自然频率;阻尼比;模态形式Abstract:This paper mainly introduces a fast and convenient experimental modal analysis method-hammering method. This method passivates the structural system, uses experimental hammering to stimulate the structure, and uses an acceleration sensor to record the dynamic response of the structure. By analyzing the response waveform, characteristic parameters such as the natural frequency, damping ratio, and mode shape of the structure can be obtained. This method is simple and easy to implement, does not require complex instruments and equipment, and is suitable for modal analysis of most simple engineering structures. The article also discusses the advantages and disadvantages of this method and proposes suggestions for further optimization.Keywords: experimental modal analysis; hammering method; natural frequency; damping ratio; mode shape一、概述试验模态分析是工程结构振动分析的重要方法之一,其目的是获取结构的自然频率、阻尼比和模态形式等特征参数,为结构设计、优化、调试及故障诊断提供依据。
某风扇振动破坏的有限元模态分析及试验验证李华山;吴晗;周强;冯健美;彭学院【摘要】Aiming at the problem of an unexpected fracture occurred on the blade of a fan used for the motor cooling of a natural gas reciprocating compressor unit for an offshore, a finite element model was established to analyze the natural frequencies and modal shape, and a test was carried out to validate the simulated results. It was indicated that the analytical results agreed well with the experimental modal data. The first order natural frequency of the fan was close to 3 times excitation frequency. The third natural fre-quency was close to 6 times excitation frequency and the corresponding mode shape was combinations of bending and torsional vi-bration, which consequently contributed to low-frequency resonance and pre-mature failure of the fan. The results of harmonic re-sponse analysis showed that the regions of stress concentration were exactly consistent with the fractures on the fan.%针对某海洋平台天然气往复压缩机组中高压电机外风扇破裂问题,对风扇进行有限元振动模态分析,计算其固有频率和振型,同时通过试验模态测试验证了计算结果.模态结果表明,试验模态测试与有限元计算结果吻合良好;风扇1阶固有频率与转速3倍频接近,3阶固有频率与6倍频接近,容易引起低阶共振,且表现为弯曲和扭转的复合振动模态,是导致风扇破裂的主要原因.谐响应结果表明,风扇应力集中区域与风扇出现裂纹位置一致.【期刊名称】《压缩机技术》【年(卷),期】2016(000)006【总页数】5页(P34-37,41)【关键词】风扇;振动模态;有限元;模态试验【作者】李华山;吴晗;周强;冯健美;彭学院【作者单位】海洋石油工程股份有限公司特种设备公司,天津 300452;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049;西安交通大学能源与动力工程学院,陕西西安 710049【正文语种】中文【中图分类】TH457;O242.21振动模态分析作为研究结构动力特性的一种方法,在工程振动、故障诊断问题的分析和解决过程中,发挥着重要的作用[1]。
锤击法是单操作员实验模态测试的基本方法。
EDM-Modal 的锤击法提供流程化的操作界面,方便用户完成所有设置和实验。
锤击法模态实验的设计,旨在帮助用户快速定义采集参数,将更多的时间可以花在分析上。
触发设置界面让用户定义触发方式,触发预览界面显示当前激励和响应的测点名称,触发后采集的激励和响应波形,以及平均的次数;其窗口的尺寸大小可手动调整。
手动触发是默认的触发类型,在些类型下当激励达到设置触发值,则激励和响应波形会被显示,用户可以接受/拒绝当前帧。
当选择接受则进行下一帧测试,直到达到平均次数,完成当前测点的测试。
驱动点选择是锤击法特有的一个功能子模块,用于方便用户选择哪个测点适合用作固定的激励点或参考点。
用户设置几个要测试的驱动点,通过试敲击得到他们的FRF数据,然后判断出最适合的驱动点。
EDM简化了此重要的预实验的数据管理。
当开始实际的测量后,采集状态表格会显示所有的DOFs状态(状态包括:未测量,已测量和正在测量),方便用户即时了解所有测点的状态。
当测点完成后点“Next Point”或“Previous Point”移动软件上的当前测点。
“RovingSetup”,可集中设置游击方式,每个通道对应的测点和方向。
锤击法实验过程一个常见的问题是会出现“double hit”。
我们提供了自动检测“double hit”的过程,让用户自动或手动拒绝有双击的敲击。
锤击法实验采集的结果会自动添加到模态分析的数据选择模块,这样模态数据采集和分析可无缝对接。
★EDM Modal 锤击法模态实验主要特征如下:①直观的流程化操作过程。
②几何模型贯穿整个测试过程。
③响应和激励两种游击方式。
④自动或手动移动测点。
⑤自动或手动触发模式。
⑥可变尺寸的触发观览窗口。
⑦双击锤击识别,开/关,自动/手动拒绝。
⑧驱动点设置。
⑨测试状态声音和图形反馈H1,H2,H3和Hv方式计算FRF 测点测试状态显示表格。
★EDM Modal模态支持的功能如下:①几何模型的创建/编辑/导入/导出/动画。
图1 锤击法硬件示意图对于压缩机部件结构锤击得到一个脉冲激励力信号,基金项目:大连大学科研平台校内基金项目。
通讯作者:王珍。
图2 固有频率模块界面固有频率模块硬件需要一个力锤、加速度传感器及数据采集卡组成。
软件功能模块利用LabVIEW编程实现,模块实现如图2所示,为压缩机管道的固有频率测试,从图中可以得到,压缩机配管系统的固有频率为74.1Hz,并且其2倍频148.2Hz、3倍频232.9Hz成分也很明显。
在此模块中,注意锤击信号长度要根据响应信号衰减长度截取,并且由于锤击和响应之间信号之间具有时间差,要根据互相关算法在响应信号中延迟截取开始点。
在频率响应函数中选用Hamming窗,RMS averaging平均模式,Exponential加权模式。
固有频率程序框图如图3所示。
3 声振相干分析原理及程序模块设计相干性是一种统计数据,可用于验证两个信号或数据之间的关系。
它在模块用于估算振动信号和响应信号之间的功率传输状况,可以使用它来估计压缩机振动与噪声之间的因果关系。
针对某个频率,其相位差恒定,幅值变化表现一致,说明这两信号中这个频率点的相干性较高。
用公式来表达两列信号x,y 的相干性计算,如下:2()()()()xy xy xx yy G f G f G f G f =(2)其中,G xy (f )为两列信号的互功率谱密度,G xx (f ) 和G yy (f )则是它们各自的自功率谱密度。
从公式中可以发现,相干性的取值范围是[0-1]。
1为完全相干,0为完全不相干。
声振相干硬件系统需要加速度传感器、传声器及数据采集卡。
模块设计界面如图4所示,图中是压缩机管图4 声振相干模块界面振动噪声相干分析模块运用了相干分析函数,把噪声信号与振动信号进行相干算法进行周期运算,运算次,每次运算的数据为5k,通过每次的迭代使得振动与噪声的相干系数更加明显。
在相干分析函数参数中平均模式为Vector averaging,加权模式为Exponential,选用高斯窗,窗参数为0.2,FRF H3。