两个总体参数的检验
- 格式:ppt
- 大小:88.78 MB
- 文档页数:3
两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。
§7.3 双正态总体参数的假设检验设样本1,,1n X X 取自正态总体211(,)N μσ,样本2,,1n Y Y 取自总体222(,)N μσ,两样本相互独立,它们的样本均值分别为∑==1111n i iX n X ,∑==2121n j jYn Y ,样本方差分别为∑=--=112121)(11n i i X X n S ,∑=--=212222)(11n j j Y Y n S 。
一、 关于两个正态总体方差比的假设检验以双侧检验:2221122210::σσσσ≠↔=H H 为例 选用检验统计量2221S S F =,它在原假设0H 成立的条件下服从F 分布)1,1(21--n n F ;记2221s s f O =表示检验统计量F 的样本观测值,则检验的P 值为⎪⎩⎪⎨⎧<=≥≥=≥=1),/1/1(21),(222212221O O O O f f F P f f F P P 如果如果σσσσ这种检验方法通常称为“F 检验”。
例7.3.1 甲乙两台车床分别加工某种轴,轴的直径分别服从正态分布),(211σμN ,),(2σμN ,从各自加工的轴中分别抽取若干根,测得其直径如下表所示:试问在显著性水平05.0=α下,两台车床加工的精度是否有显著差异?解:(1)依题意,考虑假设检验问题2221122210::σσσσ≠↔=H H (2)用F 检验,检验统计量为)6,7(~02221F S S F H =或)7,6(~/102122F S S F H =;(3)由样本观测值可得2164.021=s ,2729.022=s ,检验统计量的值为793.0/2221==s s f O 。
故检验的P 值为76.038.02)793.0/1/1(22221=⨯==≥=σσF P P 。
(4) 因为05.0>P ,所以不拒绝原假设0H ,即没有充分理由认为两种机床所加工轴的精度有显著差异。