(06)第6章 假设检验(贾俊平)
- 格式:ppt
- 大小:4.52 MB
- 文档页数:20
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法.推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的.实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量.变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第一章导论1.1 .1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000 个职工家庭的年人均收入。
1.3(1)总体是所有IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1. 什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料” 。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2. 比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3. 调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
第1章统计和统计数据指出下面的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员工对企业某项改革措施的态度(赞成、中立、反对)。
(5)购买商品时的支付方式(现金、信用卡、支票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。
(1)这一研究的总体是什么样本是什么样本量是多少(2)“月收入”是分类变量、顺序变量还是数值变量(3)“消费支付方式”是分类变量、顺序变量还是数值变量详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量详细答案:(1)总体是“所有的网上购物者”。
(2)分类变量。
某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。
(1)这种抽样方式是分层抽样、系统抽样还是整群抽样(2)样本量是多少详细答案:(1)分层抽样。
(2)100。
第3章用统计量描述数据偏度极差26最小值15最大值41从集中度来看,网民平均年龄为24岁,中位数为23岁。
从离散度来看,标准差在为岁,极差达到26岁,说明离散程度较大。
从分布的形状上看,年龄呈现右偏,而且偏斜程度较大。
某银行为缩短顾客到银行办理业务等待的时间,准备采用两种排队方式进行试验。
一种是所有顾客都进入一个等待队列;另一种是顾客在3个业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短,两种排队方式各随机抽取9名顾客,得到第一种排队方式的平均等待时间为分钟,标准差为分钟,第二种排队方式的等待时间(单位:分钟)如下:(1)计算第二种排队时间的平均数和标准差。
贾俊平统计学第六、七章课后习题答案6.1解:设每个瓶子的灌装量为X,X?为样本均值,样本容量为n。
由于总体X服从正态分布,样本均值X?也服从正态分布,且均值相同,标准差为σ√n =1√9=13所以P(|X??μ|≤0.3)=P(|X??μ|13≤0.313)=2Φ(0.9)?1=2?0.8159?1=0.6318 7.1(1)已知σ=500,n=15,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×15500=(8647,9153)(2)已知σ=500,n=35,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×35500=(8734,9066)(3)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=90%,Z2α=1.645x+Z2αns=8900+1.645×35500=(8761,9039)(4)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=99%,Z2α=2.58x +Z2αn s =8900+2.58×35500=(8682,9118)7.2已知n=36,x =3.3167,s=1.6093(1)当置信水平为90%时,Z 2α=1.645x +Z 2αn s =3.3167+1.645×366093.1=3.3167+0.4532=(2.88,3.76)(2)当置信水平为95%时,Z 2α=1.96x +Z 2αn s =3.3167+1.96×366093.1=3.3167+0.544=(2.80,3.84)(3)当置信水平为99%时,Z 2α=2.58Z2αn s =3.3167+2.58×366093.1=3.3167+0.7305=(2.63,4.01)7.3(1)已知总体服从正态分布,但σ未知,n=50为大样本,α=0.05,Z 2α=1.96,根据样本计算可知x =101.32,s=1.63x +Z 2αn s =101.32+1.96×5063.1=101.32+0.45=(100.87,101.77)(2)由所给样本数据可知样本合格率:p=5045=0.9p +Z2αnp p )1(-=0.9+1.9650)9.0-19.0(=0.9+0.08=(0.82,0.98)7.4由样本数据得x =16.13,σ=0.8706,置信水平1-α=99%,Z 2α=2.58x +Zαn σ=16.13+2.58×58706.0=16.13+0.45=(15.68,16.58)7.5、(1)n=44,p=0.51,置信水平为99%由题意,已知n=44,置信水平1-α=99%,因此检验统计量为:,代入数值计算,总体比例π的置信区间为(31.6%,70.4%) (2)n=300,p=0.82,置信水平为95%由题意可得知96.12=αZ检验统计量为:,代入数值计算,总体比例π的置信区间为(77.7%,86.3%) (3)n=1150,p=0.48,置信水平为90%由题意可得知检验统计量为:,代入数值计算,58.22=αZ np p Z P )1(2-±α)704.0,316.0(194.051.044)51.01(51.058.251.0=+=-??p p Z P )1(2-±α)863.0,777.0(043.082.0300)82.01(82.096.182.0=+=-?+645.12=αZ np p Z P )1(2-±α总体比例π的置信区间为(45.6%,50.4%)7.6、(1)由题意已知n=200,当置信水平为90%时,,检验统计量为代入数据计算可得:置信区间为(18.10%,27.90%) (2)当置信水平为95%时,96.12=αZ ,检验统计量为代入数据计算可得:置信区间为(17.17%,28.83%)7.7、由题意已知置信水平为99%,即1-α=99%,则,估计误差E=200,=1000504.0,456.0(024.048.01150)48.01(48.0645.148.0=+=-?+645.12=αZ np p Z P )1(2-±α%)90.27%,10.18(%90.4%23200%)231%(23645.1%23=±=-?±np p Z P )1(2-±α%)83.28%,17.17(%83.5%23200%)231%(2396.1%23=+=-?+58.22=αZ σ则,即应该取样本量为1677.8、(1)由题意可知n=50,p=32/50=0.64,α=0.05,96 .12=αZ 总体中赞成该项改革的户数比例的置信区间为,代入数据计算:即置信区间为(51%,77%)(2)如果小区管理者预计赞成的比例能达到80%,即π=0.80,估计误差不超过10%,即E=10%,α=0.05,96.12=αZ ,应抽取的样本量为即应该抽取62户进行调查7.9(1)x?=21,s=2,n=50,α=0.1χ0.12?2(50?1)=66.3387,χ1?0.12?2(50?1)=33.9303∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(50?1)×2266.3387≤σ2≤(50?1)×2233.9303即2.95≤σ2≤5.78.标准差的置信区间为1.72≤σ≤2.4 (2)x?=1.3,s=0.02,n=15,α=0.1167200100058.22222222≈?==E Z n σαnp p Z P )1(2-±α)77.0,51.0(13.064.050)64.01(64.096.164.0=±=-±621.0)80.01(80.096.1)1(22222=-?=-?=E Z n ππαχ0.12?2(15?1)=23.6848,χ1?0.12?2(15?1)=6.5706∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(15?1)×0.02223.6848≤σ2≤(15?1)×0.0226.5706标准差的置信区间为0.015≤σ≤0.029 (3)x?=167,s=31,n=22,α=0.1χ0.12?2(22?1)=32.6706,χ1?0.12?2(22?1)=11.5913∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(22?1)×312≤σ2≤(22?1)×312标准差的置信区间为24.85≤σ≤41.73。
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域.本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念.本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支.3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法.12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称.22. 离散型变量:只能取可数值的变量.23. 连续型变量:可以在一个或多个区间中取任何值的变量.第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能.本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要内容和学习要点如下表所示。
第1章统计和统计数据1.1 指出下面的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员工对企业某项改革措施的态度(赞成、中立、反对)。
(5)购买商品时的支付方式(现金、信用卡、支票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。
(1)这一研究的总体是什么?样本是什么?样本量是多少?(2)“月收入”是分类变量、顺序变量还是数值变量?(3)“消费支付方式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的网上购物者”。
(2)分类变量。
1.4 某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。
(1)这种抽样方式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第3章用统计量描述数据););=426.67;,,第五章1.23.4.5.6.7.5.8 (1)(3.02%,16.98%)。
(2)(1.68%,18.32%)。
5.9 详细答案:(4.06,24.35)。
5.10详细答案: 139。
5.11 详细答案: 57。
5.12 769。
第6章假设检验平看电,绝平,,绝,,绝在,,=100 =50=14.8 =10.4=0.8 =0.6对,,绝。
对设,。