正交试验设计
- 格式:doc
- 大小:59.50 KB
- 文档页数:9
正交试验设计1. 什么是正交试验设计?正交试验设计(Orthogonal Experimental Design)是一种实验设计方法,旨在通过少量试验点,充分收集实验数据,从而减少实验变量的数量,提高实验效率。
正交试验设计适用于产品工艺改进、优化设计、参数选择以及产品性能分析等场景。
正交试验设计的核心思想是通过合理的设计选择,通过改变实验因素的组合,以及试验点数的把握,实现大量试验数据的获取。
在正交试验设计中,通过选择一组适当的实验因素、水平和试验点数,保证实验结果具有可靠性和有效性。
2. 正交试验设计的原理正交试验设计的原理是通过合理选取试验因素的水平,使得因素之间的影响相互独立,避免因素之间的干扰,以确保实验结果的可靠性和有效性。
正交试验设计使用正交表作为设计工具,正交表是由一组正交矩阵构成的,每个矩阵的行数代表试验因素的水平数,列数代表试验点数。
正交表的特点是每一列中任意两个数字之间都正交,即两个数字的乘积等于零。
这种正交性保证了试验因素之间的独立性,减小了因素之间的相互影响,提高了试验效率。
正交试验设计的步骤如下:1.确定试验目标和要素:明确需要优化的目标和相关的要素。
2.选择正交表和水平数:根据要素和水平数选择合适的正交表。
3.确定试验因素和水平:根据试验目标和要素,确定需要进行试验的因素和每个因素的水平。
4.填写正交表:根据选择的正交表和确定的试验因素水平,将试验因素填写到正交表中。
5.进行试验和收集数据:按照正交表中的设计进行试验,记录实验数据。
6.数据分析和优化:通过对实验数据的分析,得出结论并优化设计。
3. 正交试验设计的优势正交试验设计具有以下几个优势:•提高实验效率:通过合理选择试验因素和水平数,正交试验设计可以通过少量的试验点获取大量的实验数据,提高了实验效率。
•确保实验结果可靠性:正交试验设计通过合理的设计选择,避免了因素之间的干扰,保证了实验结果的可靠性。
•降低实验成本:正交试验设计可以在保证实验效果的前提下,减少试验点的数量,降低实验成本。
第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。
正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。
本章将详细介绍正交试验设计法的原理、应用和优势。
7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。
正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。
这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。
7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。
正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。
例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。
在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。
在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。
总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。
7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。
2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。
3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。
4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。
正交试验设计
正交试验设计(Orthogonal experimental design)是一种常用于科学实验设计的方法。
它是统计学中一种重要的试验设计方法,通过选择合适的正交表将试验因素进行组合,以达到最大程度地减少误差和提高效率的目的。
正交实验设计最常见的类型是正交数组设计(Orthogonal array design),通过正交表将试验因素的各个水平进行组合,以实
现均匀分布和互不干扰的目的。
这种设计方法可以帮助确定影响结果的主要因素,找出最优的处理条件,并提高试验的可信度和重复性。
正交试验设计的特点之一是可以通过相对较少的实验次数得出准确的结果。
它通过最小化不相关的因素,使试验结果更易于解释和分析,并避免重复实验浪费资源和时间。
正交试验设计还可以通过分析试验结果和误差分布,确定主要影响因素的重要性和交互作用的效应。
通过建立数学模型和进行回归分析,可以进一步优化试验结果,并提高产品的质量和效率。
正交试验设计广泛应用于工程、制造、化学、医药等领域。
它可以帮助确定最佳工艺参数、产品配方、药物剂量等,并优化生产过程、提高产品质量和效率。
它还可以用于新产品开发、工艺改进、质量控制等方面。
正交试验设计的成功关键一是正确选择试验因素和水平,确保
能够覆盖全部可能的条件。
另外,正确解读试验结果、分析影响因素的相对重要性和相互作用也是至关重要的。
总之,正交试验设计是一种有效的实验设计方法,可以在较短的时间内得出准确的结果,并提供优化产品和工艺的参考依据。
它具有广泛的应用前景,并在工程和科学研究中发挥着重要的作用。
正交试验设计及其应用正交试验设计是一种高效合理的研究手段,广泛应用于自然科学、社会经济等领域。
本文将介绍正交试验设计的基本概念、类型及其应用,旨在帮助读者更好地了解这一重要的研究方法。
1、什么是正交试验设计正交试验设计是一种试验设计方法,它通过运用正交表来安排多因素多水平的试验,以实现对各因素效应的快速、准确地检测。
正交试验设计具有均衡分散、整齐可比、易于操作等优点,因此被广泛应用于各种科学研究中。
在正交试验设计中,试验的因素和水平通常是已知的,试验者需要选择合适的正交表来安排试验。
通过正交试验设计,可以有效地减少试验次数,同时保证试验结果的准确性和可靠性。
2、正交试验设计的类型正交试验设计可以根据不同的标准进行分类。
其中,最常见的分类方式是根据试验的完整性和验证方式不同来进行区分。
完全正交试验设计是一种完整的正交试验设计,它对所有可能的组合都进行了试验。
这种设计方法适用于试验因素和水平都不太多,且对所有组合都进行试验可行的情况。
部分正交试验设计则是对完全正交试验设计的一种简化。
它通过选取部分代表性组合进行试验,以达到在减少试验次数的同时,仍能有效地获取各因素效应的目的。
部分正交试验设计通常适用于因素和水平较多,不可能对所有组合都进行试验的情况。
交叉验证是另一种常见的正交试验设计类型。
它主要用于对新模型或新方法的性能进行评估。
在交叉验证中,将数据集分成若干份,每次使用不同的数据份来训练和验证模型或方法,以获取更准确的性能指标。
3、正交试验设计的应用正交试验设计的应用范围非常广泛,以下列举几个主要领域:自然科学领域:在自然科学领域,正交试验设计常被用于研究物理、化学、生物等实验科学。
例如,在化学反应中,通过正交试验设计可以快速找到最佳的反应条件;在生物学研究中,正交试验设计可以用于筛选最优的实验条件或寻找某些生物因素之间的相互作用。
社会经济领域:在社会经济领域,正交试验设计也发挥着重要作用。
例如,政府和企业可以利用正交试验设计进行政策制定和决策分析;在金融领域,正交试验设计可以用于风险评估和投资组合优化;在市场营销中,正交试验设计可以帮助企业了解客户需求,优化产品设计和营销策略。
正交试验设计法简介一、概述正交试验设计法,又称为正交实验设计、正交表设计或正交测试设计,是一种高效、系统的试验设计方法。
该方法源于数学中的正交性概念,通过正交表来安排多因素试验,使得每个因素的每个水平都能在其他因素的所有水平中均衡出现,从而能够有效地分析多个因素对试验结果的影响。
正交试验设计法最初由日本统计学家田口玄一博士于20世纪50年代提出,并在工程领域得到了广泛应用。
正交试验设计法的主要优点包括试验次数少、数据分析简便、试验效果高等。
通过正交表的设计,可以大大减少试验次数,提高试验效率同时,正交表的规范化和系统性使得试验数据的分析变得简单明了,便于找出影响试验结果的主要因素和最优组合。
正交试验设计法广泛应用于工业、农业、医学、军事等领域。
在工业生产中,正交试验设计法可用于优化产品设计、改进生产工艺、提高产品质量等在农业研究中,可用于优化作物种植方案、提高作物产量等在医学研究中,可用于药物筛选、临床治疗方案优化等。
正交试验设计法还可用于系统可靠性分析、多目标决策等领域。
正交试验设计法是一种高效、实用的试验设计方法,对于多因素、多水平的试验问题具有重要的应用价值。
通过正交表的设计和分析,可以系统地研究多个因素对试验结果的影响,找出最优方案,提高试验效率和效果。
1. 正交试验设计法的定义正交试验设计法是一种研究多因素多水平的科学实验设计方法。
它基于Galois理论,从大量的实验点中挑选出适量的、有代表性的点进行试验,这些点具有“均匀分散,齐整可比”的特点。
这种方法的主要工具是正交表,通过合理安排实验,可以在最少的试验次数下达到与大量全面试验等效的结果。
正交试验设计法具有高效率、快速和经济的特点,被广泛应用于各个领域,如生物学、软件测试等。
2. 正交试验设计法的起源与发展正交试验设计法的起源可以追溯到古希腊时期。
当时,为了满足国王检阅臣民时的要求,即每个方队中每行有一个民族代表,每列也要有一个民族的代表,数学家们设计了一种方阵,被称为拉丁方。
正交实验设计当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。
因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表正交表是一整套规则的设计表格,用。
L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(34),(表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。
根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… S j组成,这些数码均各出现N/S次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现次。
正交表具有以下两项性质:(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
正交试验设计1正交试验的引入在实际的生产实践当中,由于需要考虑的因素(对结果产生影响的变量)通常比较多,同时,每个因素的水平个数(每个变量的可取值个数)也不止一两个。
如果对每个因素的每个水平交互搭配全部进行试验,例如:对于5因素4水平的实验,全部次数为:45 =1024,需要用相当长的时间进行统计分析计算,同时耗费了大量的人力物力。
而如果采用正交试验设计,试验的次数将大大减少,同时对统计结果的分析也变得简单。
正交试验设计是利用正交表科学的安排与分析多因素试验的方法,是最常用的试验设计之一。
2正交表的分类及优势正交表分为:等水平正交表和混合水平正交表。
等水平代表各因素所取的水平数相同,混合水平表示各因素的水平数不一定相同。
正交表的优点:(1)能够在所有方案中均匀的选出具有代表性的方案;(2)通过对少数试验的分析,可以推得较优的方案,并且较优方案往往不包含在少数进行试验了的方案中。
(3)通过对结果分析,可以得到更多有用的信息。
包括各因素的重要性等。
3正交试验设计的步骤总的来说包括两部分:一是试验设计,二是数据处理。
归纳为:(1)明确试验目的,确定评价指标;(2)挑选因素,确定水平;(3)选正交表,进行表头设计:一般要求为因素数w正交表列数(4)明确试验方案,进行试验得到结果;(5)对结果进行统计分析:采用直观分析法或方差分析法,得到因素的主词以及优方案等信息;(6)进行验证试验,做进一步的分析。
4有交互作用的正交试验设计在许多试验中,不仅要考虑各个因素对试验指标起作用,还有考虑因素间的交互作用对试验解结果的影响。
在这种正交试验的设计当中,要把交互作用也作为因素考虑进去。
可以查对应的正交表来进行表头设计。
5举例下面通过举例来说明如何设计正交表以及对用不同的方法对试验结果进行分析。
例1 (三水平三因素正交表设计以及直观分析法)以下试验考虑的两个指标全部是越大越好,试验因素和水平如下表,试推出两项指标都高的试验方案。
正交试验设计法[17]正交试验设计是利用“正交表”选择试验的条件,并利用正交表的特点进行数据分析,找出最好的或满意的试验条件,适用于多因素的设计问题。
正交试验法的理论基础是正交拉丁方理论与群论。
在工作中可用的多因素寻优工作方法,一类是从优选区某一点开始试验,一步一步到达较优点,这类实验方法叫序贯试验法,如因素轮换法、爬山法等;另一类是,在优选区内一次布置一批试验点,通过对这批试验结果的分析,逐步缩小优选范围从而达到较优点,如正交试验法等。
科研中普遍采用正交试验法,因其具有如下优点:①实用上按表格安排试验,使用方便;②布点均衡、试验次数较少;③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。
特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。
这点在探索性工作中很重要,其他试验方法难于作到;④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。
且每个试验水平都重复相同次数,可以消除部分试验误差的干扰;⑤因其具有正交性,易于分析出各因素的主效应。
名词解释:1 试验因素:影响考核指标取值的量称为试验因素(因子),一般记为:A,B,C等。
有定量的因素,可控因素,定性的因素,不可控因素等。
2 因素的位级(水平):指试验因素所处的状态。
4 考核指标:根据试验目的而选定的用来衡量试验效果的量值(指标)。
5 完全因素位级组合:指参与实验的全部因素与全部位级相互之间的全部组合次数,即全部的实验次数。
6 部分因素位级组合:⑴单因素转换法⑵正交试验法7 正交表的符号:正交表是运用组合数学理论在正交拉丁名的基础上构造的一种规格化的表格。
符号:Ln(ji) 其中:L--正交表的符号n--正交表的行数(试验次数,试验方案数)j--正交表中的数码(因素的位级数)i--正交表的列数(试验因素的个数)N=ji--全部试验次数(完全因素位级组合数)总之,利用正交试验法的设计方案,结合代数方法对数据进行分析,可达到使试验收敛速度加快、试验的效率非常高的效果。
可利用试验结果获取更多信息,准确掌握效应的趋势规律,而且优选点可超越所选水平范围和精度,从而可大大减少试验次数。
这种联用技术,对于可获得定量结果或结果容易定量化,以及试验代价高时,很有效。
正交实验设计当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。
因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表正交表是一整套规则的设计表格,用。
L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。
根据正交表的数据结构看出,正交表是一个n行c 列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现次。
正交表具有以下两项性质:(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。
例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。
每种对数出现次数相等。
在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。
通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
2. 交互作用表每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。
表14就是L8(27)表的交互作用表。
安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L8(27)正交表中的任何两列的交互作用列。
表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。
例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B交互作用列。
又如可以看到第4列与第6列的交互列是第2列,等等。
3.正交实验的表头设计表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。
表头设计的主要步骤如下:(1)确定列数根据试验目的,选择处理因素与不可忽略的交互作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。
当每个试验号无重复,只有1个试验数据时,可设2个或多个空白列,作为计算误差项之用。
(2)确定各因素的水平数根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。
三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。
(3)选定正交表根据确定的列数©与水平数(t)选择相应的正交表。
例如观察5个因素8个一级交互作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。
由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。
(4)表头安排应优先考虑交互作用不可忽略的处理因素,按照不可混杂的原则,将它们及交互作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。
例如某项目考察4个因素A、B、C、D及A×B交互作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其交互作用,故将二者优先安排在第1、2列,根据交互作用表查得A×B应排在第3列,于是C排在第4列,由于A×C交互在第5列,B×C 交互作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。
(5)组织实施方案根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。
例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。
实验结果数据记录在该行的末尾。
因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横着作”。
4.二水平有交互作用的正交实验设计与方差分析例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。
选用L8(27)正交表进行实验,实验结果见表17。
首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。
然后进行方差分析。
过程为:求:总离差平方和各列离差平方和 SSj=本例各列离均差平方和见表10最底部一行。
即各空列SSj之和。
即误差平方和自由度v为各列水平数减1,交互作用项的自由度为相交因素自由度的乘积。
分析结果见表18。
从表18看出,在α=0.05水准上,只有C因素与A×B交互作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到交互作用A×B的影响较大,且它们的二水平为优。
在C2的情况下,有B1A2和B1,A1两种组合状况下的回收率最高。
考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。
这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。
如果使用计算机进行统计分析,在数据是只需要输入试验因素和实验结果的内容,交互作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。
1.正交试验法的评价正交试验法的理论基础是正交拉丁方理论与群论。
在工作中可用的多因素寻优工作方法,一类是从优选区某一点开始试验,一步一步到达较优点,这类实验方法叫序贯试验法,如因素轮换法、爬山法等;另一类是,在优选区内一次布置一批试验点,通过对这批试验结果的分析,逐步缩小优选范围从而达到较优点,如正交试验法等。
科研中普遍采用正交试验法,因其具有如下优点:①实用上按表格安排试验,使用方便;②布点均衡、试验次数较少;③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。
特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。
这点在探索性工作中很重要,其他试验方法难于作到;④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。
且每个试验水平都重复相同次数,可以消除部分试验误差的干扰;⑤因其具有正交性,易于分析出各因素的主效应。
但其也有一些缺点:它提供的数据分析方法所获得的优选值,只能是试验所用水平的某种组合,优选结果不会超越所取水平的范围;另外,也不能给进一步的试验提供明确的指向性,使试验仍然带很强的摸索性色彩,不很精确。
这样,正交试验法用在初步筛选时显得收敛速度缓慢、难于确定数据变化规律,增加试验次数。
尤其在试验工作烦琐、费用昂贵的情况更显突出。
2.正交试验法的代数学基础对试验的寻优工作,用数学语言可描述为求多维连续空间上的最大或最小值(极值)。