七年级下册数学习题精选
- 格式:docx
- 大小:37.13 KB
- 文档页数:4
北师大版七年级下册数学几何及概率部分练习题精选1.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.2.如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.4.如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7.如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请你判断他的发现是否正确,并说明理由8.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC 交于点F.求证:DF=2CE.9. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10.如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论11.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13.已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想16.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论18.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.21.已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.23.已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.24.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA25.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠BAE=25°,求∠ACF的度数.26.在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.27.如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.28.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.29.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF30.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.31.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.32.已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.33.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.34.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.35.阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为36.已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.37.如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.38.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.39.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.40.已知:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E41.如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE有何关系?并证明你的猜想42.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC43.已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F 分别在AB,AC边上,连接DE,DF,∠EDF=90°,求证:BE=AF44.如图:△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点B,C,E在同一条直线上,连结DC.(1)请找出图中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.45.探究:(1)如图1,在ABC与ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:(不添加字母).(2)如图2,已知△ABC,AB=AC,∠BAC=90°,l是过A点的直线,CN⊥l,BM⊥l,垂足为N、M.求证:△ABM≌△CAN.解决问题:(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE=90°,求证:AC⊥CE.46.已知:如图,EF⊥BC于点F,ED⊥AB于点D交BC于点M,BD=EF.求证:BM=EM47.如图,在△ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD和等腰直角△ACE,CD与BE交于点P.试证:(1)CD=BE;(2)∠BPC=90°48.如图(1),△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E.(1)请说明:△ADC≌△CEB.(2)请你探索线段DE,AD,EB间的等量关系,并说明理由;(3)当直线MN绕点C旋转到图(2)的位置时,其它条件不变,线段DE,AD,EB又有怎样的等量关系(不必说理由).49.(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠B+∠D=180°(2)将图①变形成图②,∠A+∠DBE+∠C+∠D+∠E仍然为180°,请证明这个结论.(3)将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°,请继续证明这个结论.50.如图,在Rt△ABC中,∠ACB=90°,∠A=°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由51.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数52.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上53.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论54.已知△ABC,∠ACB=90°,AC=4,MN垂直平分AB,且BM=2CM,求CM的长.55.作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.56.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹57.△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF= °(用含n代数式表示)58.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E59.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与ABAC分别交于点D、G.求:(1)∠EAF的度数.(2)求△AEF的周长60.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B61.已知,如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C、D,求证:OP是CD的垂直平分线.62如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.63已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE64如图,已知l1,l2分别是△ABC的边AB、BC的垂直平分线,l1与l2相交于点O,试判断线段0A与OC的数量关系65如图,在△ABC中,∠BAC的平分线与BC的垂直平分线相交于点P,连接BP、CP.试问:∠ABP+∠ACP 的度数是定值吗?请证明你的结论66.图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.(1)如果∠CAD=20°,求∠B的度数.(2)如果∠CAB=50°,求∠CAD的度数.(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数67.如图,△ABC中,∠B=25°,∠C=40°,AB的垂直平分线DN交BC于D,AC的垂直平分线EF交BC于E,连接AD、AE.求△ADE各内角的度数68. 数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).69.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.70.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.71.已知:如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.72.已知:如图,在△ABC中,∠BAC=120°,若PM、QN分别垂直平分AB、AC.(1)求∠PAQ的度数;(2)如果BC=10cm,求△APQ的周长.73.△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.74.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.75.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.76.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线77.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为49和40,求△EDF的面积为多少?78.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.79.如图所示,已知∠B=∠C=90°,DM 平分∠ADC ,AM 平分∠DAB ,求证:M 是BC 的中点.80.已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D ,PC 和PD 有怎样的数量关系,请说明理由.81.如图,在△ABC 中,∠ACB=3∠B ,∠1=∠2,CD ⊥AD 于D ,求证:AB-AC=2CD82.如图,在△ABC 中,已知AD 平分∠BAC ,过AD 上一点P 作EF ⊥AD ,交AB 于E 、交AC 于F ,交BC 延长线于M ,则有正确结论:∠M=21(∠ACB-∠B ).请说明理由 83.如图,AD ∥BC ,∠DAB 的平分线与∠CBA 的平分线交于点P ,过点P 的直线垂直于AD ,垂足为D ,交BC 于点C .试问:点P 是线段CD 的中点吗为什么84.如图,在△ABC 中,D 为BC 中点,DE ⊥BC 交∠BAC 的平分线AE 于E ,EF ⊥AB 于F ,EG ⊥AC 交AC 的延长线于G ,求证:BF=CG85.观察、猜想、探究:在△ABC 中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD 为∠BAC 的角平分线时,求证:AB=AC+CD ;(2)如图②,当∠C≠90°,AD 为∠BAC 的角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD 为△ABC 的外角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.86.(1)如图1,在△ABC 中,∠ABC 的平分线BF 交AC 于F ,过点F 作DF ∥BC ,求证:BD=DF .(2)如图2,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?并证明这种关系.(3)如图3,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?请写出你的猜想.(不需证明)87.一个不透明的口袋里装有2个红球、1个黄球和若干个绿球(除颜色不同外其余都相同),若从中任1意摸出1个球是绿球的概率是4(1)求口袋中绿球的个数;(2)若第一次从口袋中任意摸出1个球,放回搅匀,第二次再摸出1个球,用列表或画树状图方法写出所有可能性,并求出刚好摸到一个红球和一个绿球的概率88.在一个不透明的布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,然后从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?89.在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球12个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为4(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.90.将6个完全相同的小球分装在甲、乙两个不透明的口袋中,甲袋中有3个球,分别标有数字1、3、5;乙袋中有3个球,分别标有数字2、4、6,从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率;(2)摸出的两个球上数字之和为多少时的概率最大?。
FED CB A 第五章 全等三角形 A一、选择题1.下列三角形不一定全等的是( ) A .有两个角和一条边对应相等的三角形 B .有两条边和一个角对应相等的三角形C .斜边和一个锐角对应相等的两个直角三角形D .三条边对应相等的两个三角形 2.下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等 其中正确的个数是( )A .1个B .2个C .3个D .4个3.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )=BD =DE 平分∠CBD D.图中有两对全等三角形是△ABC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下 列结论中错误的是 ( )=DF =AF =CD D.∠ADE=∠ADF5.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是130°,那么△ABC 中与这个 角对应的角是( ).A .∠AB .∠BC .∠CD .∠B 或∠C6.如图所示,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( ).A .25°B .27°C .30°D .45° 7.如右图,△ABC 中,∠C=90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE⊥AB,且AB =10 cm ,则△BED 的周长为 ( ) A .5 cm B .10 cm; C .15 cm D .20 cm8.如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( )A .3个B .2个C .1个D .0个9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF; B 、AF=BF; C 、AF>BF; D 、AF<BF E DCBAD A CE B CBAEF O二、填空题1.如果△ABC≌△A’B’C’,若AB =A’B’,∠B=50°,∠C=70°,则∠A’= °2.如图,若BD ⊥AE 于B ,DC ⊥AF 于C ,且DC=DC ,∠BAC=40°,∠ADG=130°,则∠DGF=________。
6.1平方根习题题精选学校______班别______姓名______考号______一.选择题(共30小题)1.(2014?东营)的平方根是()3 9 9 ±±3 .A.C .DB.4的平方根是()2.(2014?鞍山)2 2 ±D .B.C.A.±)2014?陕西)4的算术平方根是(3.(2DC.A..﹣2 B.﹣)4.(2014?百色)化简得(0 100 1±10 D A..C B..20142y+2),则(=0x+y))等于(5.(2014?张家界)若+(20142014 1 .DC.A.1 ﹣B.3 3﹣)?6.(2014泸州)已知实数x、y满足+|y+3|=0,则x+y的值为(2 44 ﹣.﹣2B.DCA..2的值是(+=0,则m+n)7.(2014?福州)若(m﹣1)2 01 A.﹣1 B.DC..8.(2014?新泰市一模)的平方根是() 1.414 2 ±±2 ﹣.DCA...B的平方根是()|9.(2014?德州一模)﹣4| 22 ±B 2C.﹣存在.DA.不.2014?资阳一模)下列说法正确的是()10.(何数的平方根有两个.任A 只.B有正数才有平方根C.数既没有平方根,也没有立方根负.一个非负数的平方根的平方就是它本身D)201411.(?上城区二模)的算术平方根是(22 ±C.A...BD ±12.(2014的平方根是()?吉安模拟)9 33 9 ±±C ..B.A.D邻水县模拟)16的算术平方根的平方根是()?13.(2014 24 2 ±±4 .DA..B.C 的算术平方根的相反数是(2013.(?南充)0.49)14 0.7 00.7 ±DC..﹣A..B 0.7黄石模拟)算术平方根等于(2013?2的数是().154x=3 4 ±±.D.A. B C.2)(﹣?(16.2012滨湖区模拟)5的平方根是()55 ±5 ﹣..C A.B.D ±)m13m42m.若17﹣与﹣是同一个数两个不同的平方根,则的值(1 1.3 .A ﹣BC.1 或3﹣﹣.D18).下列说法正确的是(A..B 的平方根1是﹣﹣111是的算术平方根2C的平方根2是4 ..D1 的平方根是)1﹣(.)19.下列说法正确的是(A.9的平方根是±3 B.1的立方根是±1D.C.一个数的算术平方根一定是正数1 =±20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.0D.大于或等于等于0 C.小于021.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.B22.81的平方根是±9的数学表达式是()A D..B.C.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()100 25 A.B.C.10 或D.100或25 524.如果一个数的平方根是这个数本身,那么这个数是()0 1 ±1 A.B..﹣1C.D25.下列说法中正确的是()2A.B.3是的正平方根的负平方根3是﹣3﹣22D..C3是(﹣3))的平方根是﹣3 的正平方根(﹣326.若一个数的平方根是±8,则这个数是()16 64 ±±64 16 A.B.D.C.27.一个正数的平方根是2m+3和m+1,则这个数为()A.B.C.D.﹣1或28.下列说法正确的是()A.B.1的立方根是±1表示25的平方根 D 负数没平方根C..有平方根,而没有平方根)29.下列说法正确的是(2A..B 的平方根是a a﹣是a的平方根2.C.D一个实数总有两个平方根a的平方根是a )30.下列说法正确的是(2.B A.的正的平方根2是的负的平方根2 2﹣是﹣22D.C .(﹣2是(﹣22)的正的平方根)的平方根是﹣28小题)一.填空题(共_________.本溪)一个数的算术平方根是?(1.20142,则这个数是2.(2014?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为_________.3.(2014?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=_________.4.(2014?普陀区二模)._________的平方根是._________的算术平方根是?5.(2014道里区一模).?2013高港区二模)_________的平方根是(6.._________的值为ab的两个平方根,则9分别是b、a高淳县二模)如果?2013(.72.y=_________2x﹣4)互为相反数,那么2x﹣与(潮安县模拟)如果8.(2013?小题)二.解答题(共12.解方程:9222﹣15=0.10.解方程:0.25(3x+1(1)x﹣)﹣=0;(2)(x1)=36.22.1)=36(2)12.解方程:(1()x﹣=0;11.解方程:196x﹣1=0.2.﹣13.解方程:(2x+1)6=0b0.05477 0.1732 a 5.47717.3254.771.732结果的值;)求(1a和b (2)用一句话概括你发现的规律.15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 2256.00 259.21 262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289.00 x(1)268.96的平方根是多少?(2)≈_________.在哪两个数之间?为什么?)3(最接近的是哪个数?)表中与4(16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.17.计算:,=_________;)=_________1(;_________2(=).3(=)_________=,_________仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值.2的平方根.).若x+2,求(192的平方根.y﹣x,求=0)2﹣x(+.己知20.6.1平方根习题题精选(参考答案与试题解析)一.选择题(共30小题)1.(2014?东营)的平方根是()3 9 9 ±3 ±D .B.C.A.考点:平方根;算术平方根.计算题.专题:根据平方运算,可得平方根、算术平方根.分析:解答:,解:∵,的平方根是±39 .故选:A 本题考查了算术平方根,平方运算是求平方根的关键.点评:2.(2014?鞍山)4的平方根是()2 ±2 A.B.C.D.±平方根.考点:计算题.专题:利用平方根的定义计算即可.分析:2解答:=4解:∵(±2),2,∴4的平方根是±B故选此题考查了平方根,熟练掌握平方根的定义是解本题的关键.点评:3.(2014?陕西)4的算术平方根是()2 A.﹣2 B.C.D.﹣考点:算术平方根.专题:计算题.分析:根据算术平方根的定义进行解答即可.解答=解:的算术平方根故选:B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.4.(2014?百色)化简得()100 10 ±10 A.B.C. D .考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.22014等于())y+22014?张家界)若+()=0,则(x+y5.(20142014 1 A.﹣1 B.C.D.3 ﹣3考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.2解答:解:∵+(y+2)=0,,∴.解得,20142014 =1,﹣2)∴(x+y)=(1 B.故选:0.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为点评:)的值为(、xy满足+|y+3|=0,则x+y6.(2014?泸州)已知实数 4 2 4 ﹣D.B.C.A.﹣2非负数的性质:算术平方根;非负数的性质:绝对值.考点:分类讨论.专题:的值,然后将代数式化简再代值计算.x、y分析:根据非负数的性质,可求出解:∵+|y+3|=0,解答:;1=0,y+3=0∴x﹣,﹣3∴x=1,y=2 ﹣)=∴原式=1+(﹣3 .故选:A .时,这几个非负数都为0点评:本题考查了非负数的性质:几个非负数的和为02),则m+n的值是(2014?福州)若(m﹣1)+=07.( 2 0 1.C.DA.﹣1 B.非负数的性质:算术平方根;非负数的性质:偶次方.考点:的值,然后将代数式化简再代值计算.根据非负数的性质,可求出m、n分析:2解答:=0),+解:∵(m﹣1 n+2=0;﹣1=0,∴m 2,,n=﹣∴m=11 ﹣2)=(﹣∴m+n=1+ .故选:A .0时,这几个非负数都为0点评:题考查了非负数的性质:几个非负数的和为8.(2014?新泰市一模)的平方根是()±2 ±1.414 A.B. C .D.﹣2考点:平方根;算术平方根.专题:探究型.分析:先把化为2的形式,再根据平方根的定义进行解答即可.解答:解:∵=2,2的平方根是±,∴.的平方根是±故选C.点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.9.(2014?德州一模)|﹣4|的平方根是()2 ±2 A.B.C.﹣2 D.不存在考点:平方根.分析:先根据绝对值的性质求出|﹣4|的值,再根据平方根的定义得出答案即可.2解答:解:∵|﹣4|=4,(±2)=4,∴|﹣4|的平方根是±2.故选B.点评:本题考查的是绝对值和平方根的定义,如果一个数的平方等于a,这个数就叫做a的平方根,也叫的二次方根.a做10.(2014?资阳一模)下列说法正确的是()A.任何数的平方根有两个只有正数才有平方根B.负数既没有平方根,也没有立方根C.D.一个非负数的平方根的平方就是它本身考点:平方根.专题:常规题型.分析:本题根据平方根的定义即可解答.用排除法作答.解答:解:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如﹣1的立方根为﹣1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.点评:本题考查了平方根和立方根的定义,考查了考生对正负数的立方根理解.11.(2014?上城区二模)的算术平方根是()2 ±2 A.B.C.D.±考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.12.(2014?吉安模拟)的平方根是()9 3 ±9 ±3 A.B.C.D.考点:算术平方根;平方根.分析求=,求的平方根即可解答:解:∵=9,∴的平方根是±3,故选D.点评:本题考查了对算术平方根,平方根的定义的应用,主要考查学生的计算能力.13.(2014?邻水县模拟)16的算术平方根的平方根是()4 2 ±4 ±2 A.B.C.D.考点:算术平方根;平方根.分析:先求出16的算术平方根,再根据平方根定义求出即可.解答:解:∵16的算术平方根是4,∴16的算术平方根的平方根是±2,故选D.点评:本题考查了对平方根和算术平方根的应用,主要考查学生的计算能力.14.(2013?南充)0.49的算术平方根的相反数是()0.7 0 0.7 ±.D﹣0.7 C ..A.B算术平方根;相反数.:考点的算术平方根,然后求其相反数即可.分析:先算出0.49解答:,0.49的算术平方根为=0.7解:的算术平方根的相反数为:﹣则0.490.7..B故选.本题考查了算术平方根及相反数的知识,属于基础题,掌握各知识点概念是解题的关键.点评:)黄石模拟)算术平方根等于2的数是(15.(2013?4x=3 4 ±±D.A.B .C.考点:算术平方根.(a≥0)的算术平方根就是平方是a的非负数,据此即可判断.分析:根据a2解答:=4.2的数是2解:算术平方根等于故选:A.点评:本题考查了算术平方根的定义,正确理解定义是关键.2)?滨湖区模拟)(﹣5)的平方根是(16.(201255 ±5﹣..C.DA.B ±:平方根.考点:计算题.专题2分析:的值,再根据平方根的定义得出±先求出(﹣5),求出即可.2解答:=25,解:∵(﹣5)5,±∴±= A.故选点评:,一个正数有两个平方根,它们互0)的平方根是本题考查了对平方根的定义的应用,注意:a(a≥为相反数.)1是同一个数两个不同的平方根,则m的值(﹣17.若2m4与3m﹣1 1 ﹣D3或1 .3 B.C.﹣A.﹣平方根.考点:互为相反数,即可列方程﹣1﹣4与3m﹣4与3m﹣1是同一个数两个不同的平方根,则2m分析:根据2m m的值.求得=0,﹣1)2m﹣4)+(3m解答:解:根据题意得:(m=1.解得:B.故选本题考查了平方根的定义,正确理解两个平方根的关系是关键.点评:).下列说法正确的是(1的算术平方的平方是的平方1的平方根考平方根;算术平方根分析根据平方根的定义,分别得出各选项的答案即可解答解:.负数没有平方根,∴是的平方根错误,故此选项错误.的算术平方根,故此选项正确.∵(=,的平方根,故此选项错误.的平方根,故此选项错误故选:B.点评:此题主要考查了平方根的定义和性质,注意平方根的定义与立方根进行区分,这是易错点.19.下列说法正确的是()A.9的平方根是±3 B.1的立方根是±1C.D.一个数的算术平方根一定是正数 1 ±=考点:平方根;立方根.分析:根据平方根、立方根以及算术平方根的定义分别进行判断即可.解答:解:A、9的平方根为±3,所以A选项正确;B、1的立方根为1,所以B选项错误;C、=1,所以C选项错误;D、0的算术平方根为0,所以D选项错误..A故选.点评:本题考查了平方根的定义:如果一个数的平方等于a,那么这个数就叫a的平方根,记作(a≥0).也考查了算术平方根以及立方根的定义.20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.等于0 C.小于0 D.大于或等于0考点:平方根.分析:根据一个正数的平方根有两个,这两个数互为相反数得出即可.解答:解:∵一个正数的平方根有两个,这两个数互为相反数,∴一个数如果有两个平方根,那么这两个平方根之和是0,故选B.点评:本题考查了平方根和相反数的应用,注意:互为相反数的两个数相加等于0.21.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.1 2 3 4 A.B.C.D.考点:平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,算术平方根的定义对各小题分析判断后进行解答即可.解答:解:(1)9的平方根是±3,正确;(2)平方根等于它本身的数是0,故本小题错误;(3)﹣2是4的平方根,正确;(4)∵=4,4的算术平方根是2,故本小题错误.所以正确的有(1)(3)正确.故选B.点评:本题主要考查了平方根与算术平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.81的平方根是±9的数学表达式是()A.B.C.D.考平方根分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.解答:解:∵“81的平方根是±9”,根据平方根的定义,即可得出±=±9.故选:D.点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()0055025考平方根专计算题分析根据一个数的平方根互为相反数或相等,从而可得的值,进而可得的值解答解:3是的平方根31=31+7=∵31=时,解m∴3m﹣1=﹣10,∴p=100,当3m﹣1+m﹣7=0时,解得m=2,∴3m﹣1=5,∴p=25.故选D.点评:本题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.).如果一个数的平方根是这个数本身,那么这个数是(24 1 0 1 ±1 ﹣D.B.C.A.平方根.考点:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有分析:.0 .0的平方根是0解答:解:.故选这个数为0 .故选A;负数00的平方根是点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;没有平方根.)25.下列说法中正确的是(2..B A 的正平方根3是的负平方根是﹣3﹣322..DC 的正平方根﹣3)3的平方根是﹣3 )3是(﹣(:平方根.考点根据平方根的定义即可解答.分析:2解答:93,负数没有平方根,故本选项错误;=﹣解:A、﹣、是的正平方根,故本选项错误;B 2 3,故本选项错误;3)的平方根是±C、(﹣2)的正平方根,故本选项正确;3是(﹣3D、D.故选;负数的平方根是0 本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0点评:没有平方根.),则这个数是(26.若一个数的平方根是±84 6 16 64 ±±16 D..C.A.B 平方根.考点:分析根据平方根的定义,求解即可解答=6解:这个故本题考查了平方根的知识,属于基础题,掌握平方根的定义是关键点评:)和m+1,则这个数为(27.一个正数的平方根是2m+3.DC.A.B.或1 ﹣考点:平方根.分析:根据互为相反数的两个数的和为0,可得m的值,根据平方,可得答案.解答:解:(2m+3)+(m+1)=0,m=﹣,m+1=﹣,(m+1)=,故选:C.点评:本题考查了平方根,先求出m的值,再求出平方根,最后求出这个数.28.下列说法正确的是()A.B.1的立方根是±1的平方根表示25D数没平方根负.C.没有平方根有平方根,而考点:平方根;算术平方根;立方根.分析:根据平方根以及立方根的定义,结合选项进行判断.解答:解:A、表示25的算术平方根,故本选项错误;B、1的立方根是﹢1,故本选项错误;C、负数没平方根,该说法正确,故本选项正确;D、=9,有平方根,也有平方根,故本选项错误.故选C.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.下列说法正确的是()2A.B.a的平方根是﹣a是a的平方根2一个实数总有两个平方根C.D.a的平方根是a考点:平方根.分析:根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根可得到答案.2解答:的平方根,故此选项正确;是a解:A、﹣a B、a的平方根是±,故此选项错误;C、一个实数总有两个平方根,说法错误,负数没有平方根,故此选项错误;2D、a的平方根是±a,故此选项错误;故选:A.点评:此题主要考查了平方根,关键是掌握平方根的性质.30.下列说法正确的是()2B.A.2是的正的平方根2的负的平方根﹣2是﹣22C.D .(﹣的正的平方根2)的平方根是﹣22是(﹣2)考点:平方根;算术平方根.分析:本题是一道运用平方根的性质解答的选择题,利用逐一推敲的方法和排除法解答本题.解答:解:A、应该是是2的正的平方根,故本选项错误;2B、﹣2是负数,没有平方根,故本选项错误;D、一个正数有两个平方根,并且互为相反数,故本选项错误.排除法故选C.点评:本题是一道涉及平方根和算术平方根的选择题,考查了平方根的性质和算术平方根的意义.一.填空题(共8小题)1.(2014?本溪)一个数的算术平方根是2,则这个数是4.考算术平方根专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.(2014?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为﹣3或1.考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得答案.解答:解:2x﹣4与1﹣3x是同一个数的平方根,∴(2x﹣4)+(1﹣3x)=0,或2x﹣4=1﹣3x解得x=﹣3或x=1故答案为:﹣3或1.点评:本题考查了平方根,一个正数的平方根的和为0..1﹣x=,则x﹣4和2﹣3x江西模拟)已知一个正数的两个不同的平方根是?2014(.3:平方根.考点,可得一元一次方程,根据解方程,可得根据一个正数的平方根互为相反数,可得平方根的和为0分析:x的值.﹣x,解:已知一个正数的两个不同的平方根是3x﹣2和4解答:)=0,+(4﹣x2(3x﹣)﹣1,解得x= 故答案为:﹣1.本题考查了平方根,平方根的和为0是解题关键.点评:.±2014?普陀区二模)的平方根是4.(考点:算术平方根;平方根.分析:先根据算术平方根的定义求=6,再根据平方根的概念求6的平方根即可.解答:解:∵=6,∴的平方根是±.故答案填±.点评:本题考查了平方根的概念.注意:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(2014?道里区一模)的算术平方根是.考点:算术平方根.专题:常规题型.分析:根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.2解答:=25,解:∵5∴=5,∴的算术平方根是.故答案为:.点评:本题考查了算术平方根的定义,先把化简是解题的关键.6.(2013?高港区二模)的平方根是.考点:算术平方根;平方根.分析:首先算术平方根的定义化简,然后根据平方根的定义即可求得结果.解答解:=的平方根∴的平方根是.故答案为:.点评:此题主要考查了平方根算术平方根定义,解题时注意:本题求的是2的平方根,不是4的平方根.7.(2013?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为﹣9.考点:平方根.专题:计算题.分析:根据平方根的定义得到9的平方根为±3,然后计算这两个数的积.解答:解:∵9的平方根为±3,∴ab=﹣3×3=﹣9.故答案为﹣9.点评:本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0).2.1)﹣4互为相反数,那么2x﹣y=与((8.2013?潮安县模拟)如果2x考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.2解答:解:∵与(2x﹣4)互为相反数,2,=0)4﹣2x(+∴∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二.解答题(共12小题)9.解方程:2=0;﹣(1)x2(2)(x﹣1)=36.考点:平方根.2分析:的值,再根据平方根的定义解答;x (1)求出(2)把(x﹣1)看作一个整体,然后利用平方根的定义解答即可.解答:2解:(1)x=,x=±;(2)x﹣1=6或x﹣1=﹣6,解得x=6或x=﹣5.点评:本题考查了利用平方根的定义求未知数的值,熟记概念是解题的关键.2.)﹣15=010.解方程:0.25(3x+1 平方根.考点:运用平方根解方程即可.分析:2解答:.﹣0.25(3x+1)15=0解:2.)=15移项得:0.25(3x+12=60 )(3x+1两边同时除以0.25得:2,开平方得:2x+1=±2x移项得:系数化为1得x=﹣+,x=﹣﹣.21点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.2.196x﹣1=011.解方程平方根考移项,根据平方根的定义两边开方,求出两个方程的解即可.分析:2解答:,=1解:移项得:196x 1,开方得:14x=±即方程的解是:x=,x=﹣.21点评:本题考查了平方根的应用,解此题的关键是能根据定义得出两个一元一次方程.12.解方程:(1)=0;2(2)(x﹣1)=36.考点:平方根.分析:运用开平方的定义解方程即可.解答:;=0)1(解:2,x得﹣46=0两边同时乘162,移项得,x=46.x=﹣开平方得,x=,212.1)=36(2)(x﹣,1=±6开平方得x﹣,x=1±6移项得.=﹣5解得x=7,x21本题主要考查了运用平方根解方程的知识,解题的关键是熟记开平方的定义.点评:2 6=0..解方程:(2x+1)﹣13 平方根.考点:运用平方根解方程即可.分析:2解答:6=0.解:(2x+1)﹣2 =6.移项得:(2x+1)±,开平方得:2x+1=±,移项得:2x=﹣1系数化为1得x=,x=.21点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.b1.732 a 0.05477 0.1732 17.325.477 54.77结果的值;和b(1)求a )用一句话概括你发现的规律.(算术平方根考规律型专倍,可得答案1分析根据被开方数扩10倍,算术平方根扩大解答:解:(1)=0.05477,,a==0.5477=17.32;b==173.2 倍.(2)被开方数扩大100倍,算术平方根扩大10 100 本题考查了算术平方根,注意被开方数扩大倍,算术平方根扩大10倍.点评:15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 2256.00 259.21 262.44 265.69 268.96 272.25275.56 278.89 282.24 285.61 289.00 x(1)268.96的平方根是多少?(2)≈17.在哪两个数之间?为什么?3)((4)表中与最接近的是哪个数?考点:算术平方根;平方根;估算无理数的大小.专题:规律型.分析:根据观察表格,可得相应的答案.解答:解:(1)16.4;(2)=16.9≈17;(3)在16.4与16.5之间,∵=16.4,=16.5,∴在16.4与16.5之间;,259.21最接近260)∵4(.∴最接近,∴最接近16.1.点评:本题考查了算术平方根,观察表格发现律是解题关键.16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.考点:算术平方根.分析:根据算术平方根的平方运算是被开方数,可得二元一次方程组,根据解二元一次方程组,可得答案.解答:解:2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,∴解得.点评:本题考查了算术平方根,先平方求被开方数,再解二元一次方程组.17.计算:(1)=3,=1;(2);0=0.6.,=(3)3=仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)考算术平方根专规律型分析原式各项利用平方根定义计算,归纳总结得到一个数的平方的算术平方根与这个数之间的关系可解答解)原=|3|=原式=|1|=1;(2)原式=|0|=0;(3)原式=|﹣3|=3;原式=|﹣0.6|=0.6,观察上面几道题的计算结果,一个数的平方的算术平方根与这个数之间的关系为=|a|..)3;0.631)3;;(2)0;(1故答案为:(点评:此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.b的值.144﹣b+1是的算术平方根,求a﹣3a2a+b18.已知的算术平方根是9,算术平方根.:考点根据算术平方根平方运算,可得二元一次方程组,根据解方程组,可得答案.分析:144的算术平方根,﹣的算术平方根是解:已知2a+b9,3ab+1是解答:,解得,a﹣b==﹣.本题考查了算术平方根,利用了乘方运算,开方运算.点评:2)的平方根.19.若,求(x+2 算术平方根;平方根.考点:计算题.专题:x 的值,代入原式计算求出平方根即可.分析:已知等式两边平方求出,,即解:已知等式两边平方得:x+2=4x=2解答:2.的平方根为±4则(x+2)=16,16 此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.点评:2y的平方根.=0,求x﹣﹣20.己知+(x2)非负数的性质:算术平方根;非负数的性质:偶次方;平方根.考点:计算题.:专题的值,代入所求代数式计算即可.x、y分析:根据非负数的性质列出方程求出2解答:=0,x﹣2)+解:∵(∴,,解得∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。
介父从州今凶分市天水学校10.1 平均数习题精选〔一〕填空1.某校学生在希望工程献爱心的活动中,下零用钱为贫困山区失学儿童捐款.各班捐款数额如下〔单位为元〕:99,101,103,97,98,102,96,104,95,105,那么该校平均每班捐款为______元.2.某小组的一次测验成绩统计如下:得100分的3人,90分的3人,80分的2人,65分的2人,60分的1人,54分的1人,计算本次测验的小组平均成绩是______分.3.为了解某校初三年级学生的视力情况,从中抽样检查了100人的视力,在这个问题中个体是______,样本的容量是______.4.为了考察某地区初中毕业生数学升学考试的情况,从中抽查了200名考生的成绩,在这个问题中,总体是______,样本容量是______.5.假设两组数x1,x2,…,xn;y1,y2,…,yn,它们的平均数平均数是______.6.为了了解10000个灯泡的使用寿命,从中抽取了20个进行试验检查,在这个问题中,总体是______,个体是______,样本是______,样本容量是______.7.为了考察初中三年级共一万名考生的数学升学成绩,从中抽出了10袋试卷,每袋30份,那么样本容量是______.8.样本:1,3,5,7,9,那么它的样本容量是______.9.为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量〔单位:kg〕分别如下:3.0,,,,.在这个问题中样本是指______,样本的容量是______,样本的平均数是______.10.如果一组数据,,,,的平均数是3,那么另一组数据,,,,的平均数是________.(二) 解答题1.两组数,…和,…的平均数是和,求:一组新数据8,8…8的平均数;一组新数据,…的平均数.2. 某养鱼户搞池塘养鱼已三年,头一年放养鲢鱼苗20000尾,其成活率约为70%,在秋季捕捞时,捞出10尾鱼,称得每尾的重量如下:〔单位:千克〕,,,,,,,,,,(1)根据样本平均数估计这塘鱼的总产量是多少千克?(2)如果把这塘鲢鱼全部卖掉,其场售价为每千克4元,那么能收入多少元?除去当年的HY本钱16000元,第一年纯收入多少元?(3)该养鱼户这三年纯收入132400元,求第二年、第三年平均每年的增长率是多少?3. 为了了解汽车在某一路口的流量,调查了10天中在每天同一时段里通过该路口的汽车车辆数,结果如下:167,183,209,195,178,204,215,191,208,197,在这个问题中,总体、个体、样本和样本容量各指什么?计算样本平均数.参考答案〔一〕填空1.100 3.每个学生的视力,100 4.这个地区所有考生的成绩,2006.10000个灯泡的使用寿命,每个灯泡的使用寿命,207.3008.59.5只鸡的重量,5, 10. 1.(二) 解答题1.由题意:∴ 8,8…8的平均数为:,…的平均数为:2.(1)〔千克〕(2)〔元〕(3) 设平均每年的增长率为,根据题意,得:解得:〔不含题意,舍去〕∴只取答:平均每年的增长率为10%.3. 总体是指汽车在某一路口的流量;个体是每天同一时段里通过该路口的汽车辆数;样本是指10天中在每天同一时段里通过该路口的汽车辆数;样本的容量是10.〔辆〕.。
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
七年级下册数学练习题七年级下册数学练习题精选一、选择题1、取质量相同的砂土、粘土和壤土,分别放入大烧杯中加水搅拌,其中颗粒沉降最快( )A、砂土B、粘土C、壤土2、在农业措施中,排灌对土壤的( )影响最大。
A、矿物质B、腐殖质C、水分D、空气3、下列土壤中肥力最大的是( )A、砂土B、粘土C、壤土4、土壤形成时具有下列哪个特征( )A、岩石风化B、最低等生物出现C、有地衣、苔藓植物出现D、森林和草原的出现5、占土壤固体物质质量约5%的是( )A、矿物质B、腐殖质C、水分D、空气6、植物最容易发生缺水现象的土壤是( )A、砂土B、粘土C、壤土7、下列关于砂土叙述正确的是( )A、通气性能好,保水性能差B、通气性能差,保水性能好C、通气性能差,保水性能差D、通气性能好,保水性能好8、长期单一使用化肥会破坏土壤,下列不属于使用单一化肥引起的是( )A、团粒结构破坏B、土壤容易板结C、腐殖质得到补充D、土壤容易积水9、关于植物对土壤的保护作用叙述错误的是( )A、植物的根能把土壤颗粒紧紧地粘在一起B、植物的树冠能减缓雨水对土壤的冲击C、茎叶能减缓土壤的腐殖质形成D、植物能减小风力对土壤的侵蚀10、下列不属于黄土高原水土治理的措施是( )A、开荒种地B、退耕还草C、打坝淤地D、修筑梯田11、下列不属于塑料地膜有害影响的是( )A、土壤渗水透气B、作物根系生长C、保持土壤温度D、机械作业12、下列防治土壤污染的措施中,正确的'是( )A、控制和消除工业“三废”的排放B、禁止化学农药的使用C、只能少量使用化学肥料D、禁止污水灌溉二、填空题1、土壤中的矿物质由形成的,腐殖质由在土壤表层中经过一系列复杂的分解,转化而成的。
2、我国耕地质量总体不高,分析下列土壤要以通过改变什么成分来提高土壤质量。
⑴发生龟裂的土壤;⑵沼泽地;⑶缓坡上的梯田。
3、人类开垦利用土壤,栽种各种作物,获得及各种工农业生产的。
4、高山、平原、洼地、沿海和内陆的不同地区生长着不同的天然植物,这说明植物与土壤有怎样的关系。
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
华东师大版七年级数学下册习题第六章一元一次方程 (1)第七章一次方程组 (9)第八章一元一次不等式 (16)第九章多边形 (23)第十章轴对称、平移与旋转 (31)期中试卷 (39)期末测试 (46)第六章一元一次方程一、选择题(每小题3分,共30分)1.下列是一元一次方程的是( )A.8+72=2×40 B.9x=3x-8C.5y-3 D.x2+x-1=02.解方程x-13-4-x2=1时,去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=6 3.研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:①去括号,得1+8x-12=5x-1-3x;②移项,得8x-5x+3x=-1-1+12;③合并同类项,得6x=10;④未知数系数化为1,得x=5 3 .对于上面的解法,你认为( )A.完全正确 B.变形错误的是①C.变形错误的是② D.变形错误的是③4.当x=3时,下列方程成立的个数有( )①-2x-6=0;②|x+2|=5;③(x-3)(x-1)=0;④13x=x-2.A.1个 B.2个 C.3个 D.4个5.已知关于x的方程2x+m-8=0的解是x=3,则m的值为( ) A.2 B.3 C.4 D.56.单项式3a3b2x与-13b4(x-12)a3是同类项,那么x的值是( )A.-1 B.1 C.-14D.147.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于正方体的重量的个数为( )A.2个 B.3个 C.4个 D.5个8.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( ) A.54+x=80%×108 B.54+x=80%(108-x)C.54-x=80%(108+x) D.108-x=80%(54+x)9.将x0.5-10.7=1变形为10x5=1-107,其错在( )A.不应将分子、分母同时扩大10倍 B.移项未改变符号C.去括号出现错误 D.以上都不是10.小明需要在规定时间内从家里赶到学校,若每小时走5千米,可早到20分钟;若每小时走4千米,就迟到15分钟.设规定的时间为x小时,则可列方程为( )A.5(x-2060)=4(x+1560) B.5(x+2060)=4(x-1560)C.5(x-1560)=4(x+2060) D.5(x+1560)=4(x+2060)二、填空题(每小题3分,共15分)11.若2x=-5x+3,则2x+___=3,依据是.12.当x =____时,代数式3x -28的值是2. 13.已知x =4是关于x 的一元一次方程(即x 为未知数)3a -x =x2+3的解,则a =____.14.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为____元.15.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转____周,时针和分针第一次相遇.三、解答题(共75分) 16.(8分)解下列方程:(1)x 2-7=5+x; (2)x -32-2x +13=1.17.(9分)截至2020年底,某省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?18.(9分)已知关于x的方程4x+2m-1=3x的解比关于x的方程3x+2m =6x+1的解大4,求m的值及这两个方程的解.19.(9分)已知小明骑车和步行的速度分别为240米/分钟,60米/分钟,小红每次从家步行到学校所需时间相同,请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.20.(9分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.21.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.(10分)某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,甲队单独完成该项工程需20天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独做,每天各可完成多少工作量?单独完成这项工程乙需要多少天?(2)若工程管理部门决定从这两个队中选一个单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式.由于0.7·=0.777……,设x =0.777……①, 则10x =7.777……②,②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315315……,2.01·8·=2.01818……) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85714·=27,则3.7·14285·=________.(注:0.2·85714·=0.285714285714……)答案选择题:1-5:BCBCA 6-10:BDBBA 填空题:11._5x 等式的性质 12. 6 13.3 14.415. 1211 解答题16..(1)x =-24 (2)x =-1717. 解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据题意,得10+x +5+x =49,解得x =17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个18. 解:m =-1,第一个方程的解是x =3,第二个方程的解是x =-1 19. 解:设小红从家步行到学校所需时间为x 分钟,则小明从家步行到学校需(x +2)分钟,小明从家到学校骑车需(x -4)分钟,则240×(x -4)=60×(x +2),解得x =6,∴小明从家到学校的路程为240×(6-4)=480(米),小红从家步行到学校需6分钟20. 解:(1)设成人人数为x 人,则学生人数为(12-x)人.根据题意,得35x +352(12-x)=350.解得x =8.所以学生人数为12-8=4(人),成人人数为8人 (2)如果买团体票,按16人计算,共需费用:35×0.6×16=336(元).336<350,所以购团体票更省钱21. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法.∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为:5(19-x)=(95-5x)个 (2)由题意,得2(2x +76)=3(95-5x),解得x =7,∴盒子的个数为2×7+763=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子22. 解:(1)甲的工作量为120,由题意得乙每天完成的工作量为112-120=130,∴乙单独完成的天数为1÷130=30(天),∴甲、乙两队单独做,每天完成的工作量分别为120,130;单独完成这项工程乙需要30天 (2)设乙队每天的工程费用为x 元,则甲队的费用为(x +150)元,∴12x +12(x +150)=13 800, 解得x =500,x +150=650(元),甲单独完成所需费用为20×650=13 000(元),乙单独完成所需费用为30×500=15 000(元),故从节约资金的角度考虑,应选择甲工程队23. 解:(1)由题意知0.5·=59,5.8·=5+89=539,故答案为:59 539(2)0.2·3·=0.232323……,设x =0.232323……①,则100x =23.2323……②,②-①,得99x =23,解得x =2399,∴0.2·3·=2399(3)同理,0.3·15·=315999=35111,2.01·8·=2+110×1899=11155,故答案为:55111 11155(4)①0.9·=99=1,故答案为:= ②3.7·14285·=3+714285999999=3+57=267.故答案为:267第七章 一次方程组一、选择题(每小题3分,共30分)1.已知2x -3y =1,用含x 的代数式表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.方程组⎩⎨⎧3x +2y =7①,4x -y =13②,下列变形正确的是( )A .①×2-②消去xB .①-②×2消去yC .①×2+②消去xD .①+②×2消去y 3.方程组⎩⎨⎧x -y =3,3x -8y =14的解为( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2C.⎩⎨⎧x =-2y =1D.⎩⎨⎧x =2y =-14.已知有理数x ,y 满足|x +6y -7|+6x +y =0,则x +y 的值是( ) A .1 B.32 C.52D .35.二元一次方程3x +y =10在正整数范围内解的组数是( )A .1B .2C .3D .46.已知⎩⎨⎧x =3,y =2是二元一次方程组⎩⎨⎧ax +by =5,ax -by =1的解,则b -a 的值为( )A .0B .1C .2D .37.如果方程组⎩⎨⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,则k 的值为( )A .2B .0C .1D .-28.对于有理数x ,定义f (x )=ax +b ,若f (0)=3,f (-1)=2,则f (2)的值为( )A .5B .4C .3D .1 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.阅读理解:a ,b ,c ,d 是实数,我们把符号⎪⎪⎪⎪⎪⎪a b c d 称为2×2阶行列式,并且规定:⎪⎪⎪⎪⎪⎪ab cd =a ×d -b ×c ,例如:⎪⎪⎪⎪⎪⎪3 2-1 -2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧⎪⎪⎪⎪x =D xD y =D yD ;其中D =⎪⎪⎪⎪⎪⎪a 1 b 1a 2b 2,D x =⎪⎪⎪⎪⎪⎪c 1 b 1c 2 b 2,D y =⎪⎪⎪⎪⎪⎪a 1 c 1a 2 c 2. 问题:对于用上面的方法解二元一次方程组⎩⎨⎧2x +y =1,3x -2y =12时,下面说法错误的是( )A .D =⎪⎪⎪⎪⎪⎪2 13 -2=-7 B .D x =-14C .D y =27 D .方程组的解为⎩⎨⎧x =2y =-3二、填空题(每小题3分,共15分)11.若关于x ,y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3,y =2,则a =____.12.若二元一次方程组⎩⎨⎧x +y =3,3x -5y =4的解为⎩⎨⎧x =a ,y =b ,则a -b =____.13.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是____元.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为___.15.若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是____. 三、解答题(共75分)16.(8分)解方程组:(1)⎩⎨⎧x +y =1,4x +y =10; (2)⎩⎪⎨⎪⎧x +32+y +53=6,x -43+2y -35=23.17.(9分)已知a +b =9,a -b =1,求2(a 2-b 2)-ab 的值.18.(9分)用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2.②时,两位同学的解法如下: 解法一:由①-②,得3x =3.解法二:由②得,3x +(x -3y)=2,③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x -2y =4,ax +by =7与⎩⎨⎧2ax -3by =19,5y -x =3有相同的解,求a ,b 的值.20.(9分)当m 为何值时,方程组⎩⎨⎧3x +2y =m ,2x -y =2m +1的解x ,y 满足x -y =2?并求出此方程组的解.21.(10分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.(10分)随着中国传统节日“端午节”的临近,商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.(11分)为庆祝六一儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛,请你为两所学校设计一种最省钱的购买服装方案.答案选择1-5:CDDAC6-10:AAADC填空:11.412. 7413.1514. ⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =17415.⎩⎪⎨⎪⎧a =32,b =-12解答题16. (1)解:⎩⎨⎧x =3,y =-2 (2)解:⎩⎨⎧x =3,y =417. 解:-218. 解:(1)解法一中的解题过程有错误,由①-②,得3x =3“×”,应为由①-②,得-3x =3 (2)由①-②,得-3x =3,解得x =-1,把x =-1代入①,得-1-3y =5,解得y =-2.故原方程组的解是⎩⎨⎧x =-1,y =-219. 解:a =4,b =-120. 解:m =1,x =1,y =-121. 解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得⎩⎨⎧x =45y +15,x =60(y -1),解得⎩⎨⎧x =240,y =5.答:这批学生有240人,原计划租用45座客车5辆 (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6(辆),所需费用为220×6=1320(元),租60座客车需要5-1=4(辆),所需费用为300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算22. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5200,解得⎩⎨⎧x =40,y =120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元23. 解:(1)5 000-92×40=1 320(元) (2)设甲、乙两所学校各有x 名,y 名学生准备参加演出,则⎩⎨⎧x +y =92,50x +60y =5 000,解得⎩⎨⎧x =52,y =40 (3)∵甲校有10人不能参加演出,∴甲校有52-10=42(人)参加演出,若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买可以节约(42+40)×60-4 100=820(元),但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元可节约4 100-3 640=460(元),因此,最省钱的购买方案是两校联合购买91套服装(即比实际人数多购买9套)第八章 一元一次不等式一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B.m 4>n4C .6m <6nD .-8m >-8n 2.不等式3x -6≥0的解集在数轴上表示正确的是( )3.不等式组⎩⎨⎧x +1>0,2x -6≤0的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .25.已知(x -2)2+|2x -3y -m |=0中,y 为正数,则m 的取值范围是( )A .m <2B .m <3C .m <4D .m <56.在解不等式1-x 3<3x -22时,其中错误的一步是( ) ①去分母,得2(1-x )<3(3x -2);②去括号,得2-2x <9x -6;③移项,得-2x -9x <-6-2;④合并同类项,得-11x <-8;⑤系数化为1,得x <811. A .① B .② C .③ D .⑤7.不等式14(2x +m )>1的解集是x >3,则m 的值为( ) A .-2 B .-12 C .2 D.128.若关于x 的一元一次不等式组⎩⎨⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,则m 的取值范围是( )A .m >4B .m ≥4C .m <4D .m ≤49.某商店老板销售一种商品,他要以不低于进价120%的价格出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店老板才肯出售( )A .80元B .100元C .120元D .160元10.某种饮料原零售价为每瓶6元,凡购买2瓶以上(含2瓶),超市推出两种优惠销售方法:第一种:第一瓶按原价,其余按原价的七折出售;第二种:全部按原价的八折出售.购买相同数量饮料的情况下,要使第一种销售方法比第二种销售方法的优惠多,至少要购买这种饮料( )A .3瓶B .4瓶C .5瓶D .6瓶二、填空题(每小题3分,共15分)11.用不等号填空:若a <b <0,则-a 5___-b 5;2a -1___2b -1. 12.不等式组⎩⎨⎧2(x +1)>5x -7,43x +3>1-23x的解集为____. 13.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打__8__折.14.若关于x 的一元一次不等式组⎩⎨⎧3-2x >2,x -a >0有3个整数解,则a 的取值范围是____.15.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x -1的所有解,其所有解为___.三、解答题(75分)16.(8分)解下列不等式(组),并把不等式(组)的解集在数轴上表示出来.(1)3x -22≤2; (2)⎩⎨⎧3x -5≤1①,13-x 3<4x ②.17.(9分)解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.18.(9分)已知不等式5(x -3)-2(x -1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m 的值相等,求代数式m -1m +1的值.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x +2y =m +1,2x +y =m -1,当m 为何值时,x >y?20.(9分)已知方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?21.(10分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(11分)为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?答案选择题1—5:BBCCC 6-10:DADCB 填空题11. > ; < 12. -1<x <3 13. 814. -3≤x <-2 15. _x =0.5或x =116. (1)解:x ≤2(2)解:1<x ≤2 在数轴上表示解集略17. 解:解不等式12(x +1)≤2,得x ≤3,解不等式x +22≥x +33,得x ≥0,则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=618. 解:(1)x >5 (2)5719. 解:用含m 的代数式分别表示x ,y ,得x =m -3,y =-m +5,因为x>y ,所以m -3>-m +5,解此不等式,得m>4,所以当m>4时,x>y20. 解:(1)解方程组,得⎩⎨⎧x =-3+a ,y =-4-2a ,根据题意,得⎩⎨⎧-3+a ≤0,-4-2a<0,解不等式组,得-2<a ≤3 (2)当-2<a ≤3时,|a -3|+|a +2|=3-a +a +2=5 (3)解不等式(2a +1)x>2a +1,根据题意,得2a +1<0,解得a<-12,所以a 的取值范围为-2<a <-12,又∵a 为整数,∴a =-121. 解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得⎩⎨⎧2x +y =55,x +3y =65,解得⎩⎨⎧x =20,y =15,答:A 种商品的单价为20元,B 种商品的单价为15元 (2)设第三次购买商品A 种a 件,则购买B 种商品(12-a)件,根据题意可得a ≥2(12-a),解得8≤a ≤12,第三次购买这两种商品的总费用为20a +15(12-a)=(5a +180)元,当a =8时所花钱数最少,即购买A 商品8件,B 商品4件22. 解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x +3×3x =550,解得x =50,经检验,x =50符合题意,∴3x =150(元),即温馨提示牌和垃圾箱的单价分别是50元和150元 (2)设购买温馨提示牌y 个(y 为正整数),则垃圾箱为(100-y)个,根据题意得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,∴50≤y ≤52,∵y 为正整数,∴y 为50,51,52,共3种方案;即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,购买温馨提示牌和垃圾箱的总费用为50y +150(100-y)=-100y +15000,当y =52时,所需资金最少,最少是9800元23. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得⎩⎨⎧15x +9y =57000,10x +16y =68000,解得⎩⎨⎧x =2000,y =3000,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元 (2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意,得⎩⎨⎧2000m +3000(40-m )≤102000,m <40-m 解得18≤m <20,∵m 为整数,∴m =18或m =19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱第九章多边形一、选择题(每小题3分,共30分)1.一个五边形的内角和为( )A.540° B.450° C.360° D.180°2.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )A.54° B.62° C.64° D.74°4.一副分别含有30°和45°角的两个直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A.15° B.25° C.30° D.10°5.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15° B.20° C.25° D.30°6.从一个n边形的一个顶点出发,分别连结这个顶点与其余的各顶点,若把这个多边形分割成6个小三角形,则n的值是( )A.6 B.7 C.8 D.97.幼儿园的小朋友们打算选择一种形状、大小都相同的多边形塑料板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑料板:①正三角形;②正四边形;③正五边形;④正六边形;⑤正八边形.可以选择的是( )A.③④⑤ B.①②④ C.①④ D.①③④⑤8.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90° B.180° C.210° D.270°9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2βC.γ=α+β D.γ=180°-α-β10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13 B.14 C.15 D.16二、填空题(每小题3分,共15分)11.一个多边形的每一个外角都是36°,则这个多边形的边数是____.12.求图中∠1的度数:(1)∠1=____;(2)∠1=____;(3)∠1=____.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是____.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小的内角的度数为____.15.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=___.三、解答题(共75分)16.(8分)如图,已知∠A=20°,∠B=27°,AC⊥DE.求∠1,∠D度数.17.(9分)如图,△ABC中,∠ABC∶∠C=5∶7,∠C比∠A大10°,BD是△ABC的高,求∠A与∠CBD的度数.18.(9分)如图,将△ABC沿EF折叠,使点C落在点C′处,试探究∠1,∠2与∠C的关系.19.(9分)小明在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?20.(9分)如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(10分)已知△ABC.(1)如图①,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数.(2)如图②,△ABC的外角∠CAE的平分线的反延长线与∠ACB的平分线交于点O,则∠O和∠B有什么数量关系?说明你的理由.23.(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图①,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.探究2:如图②中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图③中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:________.答案选择题1-5:ACCAB6-10:CBBAB填空题11. 1012. (1)∠1=62°;(2)∠1=23°;(3)∠1=105°13. 40°14. 30°15. 72°16. 解:∠1=110°,∠D=43°17. 解:设∠ABC=(5x)°,∠C=(7x)°,则∠A=(7x-10)°.由∠A+∠ABC +∠C=180°,得5x+7x+7x-10=180.解得x=10.∴∠ABC=50°,∠C=70°,∠A=60°.∵BD是△ABC的高,∴∠BDC=90°.∴∠CBD=90°-∠C=90°-70°=20°18. 解:根据翻折的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE,则∠1+2∠CEF =180°,∠2+2∠EFC=180°,所以∠1+∠2+2∠CEF+2∠EFC=360°,而∠C+∠CEF+∠CFE=180°,所以∠1+∠2+2(180°-∠C)=360°,所以∠1+∠2=2∠C19. 解:设此多边形的边数为n,则由题意,得0<(n-2)×180-1125<180,解得8.25<n<9.25,所以n=9, 少加的一个内角为1260°-1125°=135°20. 解:∵∠A=40°,∠B=72°,∴∠ACB=180°-40°-72°=68°,∵CE 平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°21. 解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F =∠CEB=25°22. 解:∵AI平分∠BAC,∴∠IAC=12∠BAC,∵CI平分∠BCA,∴∠ICA=12∠BCA,∵∠BAC=50°,∠ACB=70°,∴∠IAC=25°,∠ICA=35°,∴∠AIC=180°-25°-35°=120°(2)∠B=2∠O,理由:∵CO平分∠ACB,∴∠ACO=1 2∠ACB,∵AD平分∠EAC,∴∠DAC=12∠EAC,∵∠O+∠ACO=∠DAC,∴2∠O+∠ACB=∠EAC,又∵∠B+∠ACB=∠EAC,∴∠B=2∠O23. 解:(1)探究2结论:∠BOC=12∠A,理由如下:如图∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3:∠OBC =12(∠A +∠ACB),∠OCB =12(∠A +∠ABC),∠BOC =180°-∠OBC -∠OCB =180°-12(∠A +∠ACB)-12(∠A +∠ABC)=180°-12∠A-12(∠A +∠ABC +∠ACB)=90°-12∠A ,∴结论:∠BOC =90°-12∠A第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.。
初中数学七年级下册第七章平面直角坐标系专项攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、已知点A 的坐标为(﹣4,﹣3),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限2、如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2021的坐标为( )A .(1011,1011)B .(1010,﹣1011)C .(504,﹣505)D .(505,﹣504)3、已知点P 在第四象限,且到x 轴,y 轴的距离分别为2,5.则点P 的坐标为( )A .(5,﹣2)B .(﹣2,5)C .(2,﹣5)D .(﹣5,2)4、如图是某校的平面示意图的一部分,若用“()0,0”表示校门的位置,“()0,3”表示图书馆的位置,则教学楼的位置可表示为( )A .()0,5B .()5,3C .()3,5D .()5,3-5、已知y 轴上点P 到x 轴的距离为3,则点P 坐标为( )A .(0,3)B .(3,0)C .(0,3)或(0,﹣3)D .(3,0)或(﹣3,0)6、已知点P (﹣3,﹣3),Q (﹣3,4),则直线PQ ( )A .平行于x 轴B .平行于y 轴C .垂直于y 轴D .以上都不正确7、在平面直角坐标系中,点(0,-10)在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8、点P 在第二象限内,P 点到x 、y 轴的距离分别是4、3,则点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)9、将点()4,3-先向右平移7个单位,再向下平移5个单位,得到的点的坐标是( )A .()3,2-B .()3,2-C .()10,2--D .()3,810、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒二、填空题(5小题,每小题4分,共计20分)1、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.2、在平面内,已知M(3,0),N(﹣2,0),则线段MN的中点坐标P(____,____),MN长度为_______.3、在平面直角坐标系xOy中,对于点P(x,y)我们把P(﹣y+1,x+1)叫做点P的伴随点,已知A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到A1,A2,A3,…An,若点A1的坐标为(3,1),则点A2021的坐标为_________.4、如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.5、如图,在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…,如此继续运动下去,则P2020的坐标为________.三、解答题(5小题,每小题10分,共计50分)1、观察如图所示象棋棋盘,回答下列问题:(1)说出“将”与“帅”的位置;(2)说出“马3进4”(即第3列的“马”前进到第4列)后的位置.2、如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2).(1)求S四边形ABCO;(2)连接AC,求S△ABC;(3)在x轴上是否存在一点P,使S△PAB=8?若存在,请求点P坐标.3、如图所示,在平面直角坐标系中,已知A(0,1),B(3,0),C(3,4).(1)在图中画出△ABC ,△ABC 的面积是 ;(2)在(1)的条件下,延长线段CA ,与x 轴交于点M ,则M 点的坐标是 .(作图后直接写答案)4、五一假期到了,七年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是(4,2)-.”王磊说:“丛林飞龙的坐标是(2,1)--.”若他们二人所说的位置都正确,请完成下列问题.(1)在图中建立适当的平面直角坐标系;(2)用坐标表示出西游传说、华夏五千年、太空飞梭、南门的位置.5、已知点(2,28)P a a -+分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;---------参考答案-----------一、单选题1、C【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A的坐标为(﹣4,﹣3),∴点A在第三象限;故选C.【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题的关键.2、A【分析】求出图中写出点的坐标,发现规律再解决即可.【详解】解:P0(1,0)P1(1,1)P2(-1,1)P3(-1,-2)P4(3,-2)P5(3,3)P6(-3,3)P 7(-3,-4)P 8(5,-4)P 9(5,5)看了上述之后就会发现P 1(1,1),P 5(3,3),P 9(5,5)的横纵坐标相等,均为序数加1再除以2的结果,∵5411,9421÷=÷=,202145051÷=,∴P 2021的坐标为(1011,1011),故选:A .【点睛】此题考查坐标的规律探究,根据图形得到点的坐标并发现坐标的变化规律,并能运用规律解决问题,能总结特殊点的坐标并总结运用规律是解题的关键.3、A【分析】根据“点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值”,求解即可.【详解】解:点P 在第四象限,所以横坐标大于0,纵坐标小于0又∵点P 到x 轴,y 轴的距离分别为2,5∴横坐标为5,纵坐标为-2即点P 的坐标为(5,﹣2)故选:A【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.4、B【分析】根据校门和图书馆的额坐标,可得出校门为坐标原点,过校门的水平方向为x 轴,竖直方向为y 轴,从而得出教学楼的坐标.【详解】解:∵校门()0,0,图书馆()0,3∴建立坐标系,如下图:∴教学楼的位置可表示为(5,3)故选:B【点睛】本题考查了坐标确定位置,平面位置对应平面直角坐标系,解题的关键是根据题意正确建立平面直角坐标系.5、C【分析】根据题意,结合点的坐标的几何意义,可得点P 横坐标为0,且纵坐标的绝对值为3,即可得点P 的坐标.【详解】解:∵y 轴上点P 到x 轴的距离为3,∴点P 横坐标为0,且纵坐标的绝对值为3,∴点P 坐标为:(0,3)或(0,﹣3).故选:C .【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是点到x 轴的距离.6、B【分析】横坐标相同的点在平行于y 轴的直线上,纵坐标相同的点在平行于x 轴的直线上,由此分析即可.【详解】解:∵P (﹣3,﹣3),Q (﹣3,4),∴P 、Q 横坐标相等,∴由坐标特征知直线PQ 平行于y 轴,故选:B .【点睛】本题考查平面直角坐标系中点的特征,理解横坐标相同的点在平行于y 轴的直线上,纵坐标相同的点在平行于x 轴的直线上,是解题关键.7、D【分析】根据y 轴上点的横坐标为零,可得答案.【详解】解:点()0,10-的横坐标为0,纵坐标为10-,可知点()0,10-在y 轴负半轴上.故选:D .【点睛】本题考查平面直角坐标系中坐标轴上的点,熟知y 轴上点的横坐标的特点是解题的关键.8、C【分析】点P 到x 、y 轴的距离分别是4、3,表明点P 的纵坐标、横坐标的绝对值分别为4与3,再由点P 在第二象限即可确定点P 的坐标.【详解】∵P 点到x 、y 轴的距离分别是4、3,∴点P 的纵坐标绝对值为4、横坐标的绝对值为3,∵点P 在第二象限内,∴点P 的坐标为(-3,4),故选:C .【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x 、y 轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.9、A【分析】让点A 的横坐标加7,纵坐标减5即可得到平移后点的坐标.【详解】解:点()4,3A -先向右平移7个单位,再向下平移5个单位,得到的点坐标是(47,35)-+-,即(3,2)-, 故选A .【点睛】本题考查了坐标与图形变化-平移,解题的关键是掌握点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.10、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.二、填空题1、学习【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,组成的英文单词为study,中文为学习,故答案为:学习.【点睛】此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.2、12##0.5 0 5【解析】【分析】观察M、N两点坐标可知横坐标相等,直线MN在x轴上,线段MN的长为两点纵坐标的差;MN中点横坐标与M、N两点横坐标相同,纵坐标为两点纵坐标的平均数.【详解】解:∵点M(3,0)和点N(-2,0)横坐标相等,∴MN在x轴上,MN=3-(-2)=5,MN中点的坐标为(23122,0),即(12,0).故答案填:12、0,5.【点睛】本题考查了点的坐标与坐标轴平行的关系,以及在平行线上求相等长度、中点坐标的一般方法.3、(3,1)【解析】【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点2021A的坐标即可.【详解】解:1A的坐标为(3,1),2(0,4)A ∴,3(3,1)A -,4(0,2)A -,5(3,1)A ,⋯⋯,依此类推,每4个点为一个循环组依次循环,202145051÷=⋯⋯,∴点2021A 的坐标与1A 的坐标相同,为(3,1).故答案是:(3,1).【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,解题的关键是求出每4个点为一个循环组依次循环.4、(2021,0)【解析】【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.【详解】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位, ∵2022÷4=505余2,∴第2022次运动为第505循环组的第2次运动,横坐标为1505422021-+⨯+=,纵坐标为0,∴点P 运动第2022次的坐标为(2021,0).故答案为:(2021,0).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.5、 (1011,﹣1010)【解析】【分析】根据第一象限中点的特征,探究规律,利用规律解决问题.【详解】解:由题意P1(1,1),P5(3,3),P9(5,5),•••P2021(1011,1011),∴P2020(1011,-1010),故答案为:(1011,-1010).【点睛】本题考查坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法.三、解答题1、(1)“将”在第9行第5列,“帅”在第1行第5列;(2)第7行第4列【解析】【分析】(1)根据已知点的位置即可确定行列表示的数据的顺序,进而得出答案;(2)根据“马”的位置,经过平移后得到新的位置,根据新的位置,确定行列表示的数据,进而得出答案.【详解】(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列;(2)第7行第4列.【点睛】本题考查了用有序实数对表示位置,点的平移,掌握用有序数对表示位置是解题的关键.2、(1)11;(2)7;(3)存在,(0,0)或(8,0).【解析】【分析】(1)如图1,过点B作BD⊥OA于点D,根据 S四边形ABCO=S梯形CODB+S△ABD,利用面积公式求解即可;(2)根据S△ABC=S四边形ABCO-S△AOC,利用面积公式求解即可;(3)设P(m,0),构建方程求出m即可.【详解】解:(1)如图1,过点B作BD⊥OA于点D,∵点A(4,0),B(3,4),C(0,2),∴OC=2,OD=3,BD=4,AD=4-3=1,∴S四边形ABCO=S梯形CODB+S△ABD=1(24)32⨯+⨯+1142⨯⨯=9+2=11;(2)如图2,连接AC,S△ABC=S四边形ABCO-S△AOC=11-1422⨯⨯=11-4=7;(3)设P(m,0),则有12×|m-4|×4=8,∴m=0或8,∴P(0,0)或(8,0).【点睛】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是学会利用分割法求四边形面积,学会利用参数构建方程解决问题.3、(1)见解析; 6;(2)作图见解析;(-1,0).【解析】【分析】(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;(2)根据题意作图,由图知点M的坐标.【详解】(1)如图,△ABC的面积=14362⨯⨯=,故答案为:6;(2)如图,设经过点A ,C 的直线为y kx b =+,代入A (0,1),C (3,4)得,134b k b =⎧⎨+=⎩11k b =⎧∴⎨=⎩1y x ∴=+令0y =,则1x =-点M 的坐标(-1,0),故答案为:(-1,0).【点睛】本题考查平面直角坐标系中点的坐标特征、一次函数的图象与坐标轴的交点等知识,是基础考点,掌握相关知识是解题关键.4、(1)见解析;(2)(3,3),(1,4)--,(0,0),(0,5)-【解析】【分析】(1)根据题意可的,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)由题意可得,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系,如下图:(2)西游传说(3,3),华夏五千年(1,4)--,太空飞梭(0,0)、南门(0,5)-【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键.5、(1)()6,0-;(2)()1,14【解析】【分析】(1)根据点在数轴上的特点,令280a +=,即可求得a ,进而求得P 的坐标;(2)根据平行与y 轴的直线的特点,令21a -=,即可求得a ,进而求得P 的坐标;【详解】(1)点P 在x 轴上,∴280a +=,4a =-2426a ∴-=--=-∴点P 的坐标()6,0-(2)点Q 的坐标为(1,5),直线PQ ∥y 轴,∴21a -=解得3a =286814a ∴+=+=∴点P 的坐标()1,14【点睛】本题考查了平面直角坐标系中坐标轴上的点的坐标特点,掌握以上知识是解题的关键.。
不等式习题精选一、你能填对吗设x>y,用“>”或“<”号填空.x+2______y+2;x-1____y一1;3x_____3y;-3x______-3y;________________2.不等式>1的解集是_____3.当x________时,代数式2x-5的值不大于0;当x______时,代数式2x-5的值等于0.4.若2x-l<x+2,则x<3,变形的根据是______________.二、选一选5.下列不等式中一定成立的是().A.4a>3aB.3-a<4-aC.-a>-2aD.>6.若a<b,则成立的不等式为().A.d(-c)<b(-c)B.ac>bcC.ac<bcD.a-c<b-c7.如果d,a+1,-a,1-a四个数在数轴上所对应的点是按从左到右顺序排列的,那么满足下列各式的是().A.B.C.a>0D.a<08.a,b在数轴上的位置如图2所示,则,的值().A.>0B.<0C.=0D.≥0三、解答题9.按照下列条件,写出仍能成立的不等式,并说明根据.(1)a>b两边都加上-3;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以5;(4)d≤2b两边都加上c;(5)a>b两边都乘以c.10.说明下列不等式是怎样变形的,并指出变形的依据.(1)若3x-2y>0,则3x>2y;(2),则a<b+c.11.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)8x>7x+3;(2);(3)-5x>l0.四、能力提示12.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)(2)(3)-3x>2(4)一3x+2<2x+3五、拓展创新13.用不等式表示下列各式,并化为x>a或x<a的形式(a为常数).(1)a的是非负数;(2)m的相反数与1的和是正数.14.下列几组数字分别表示三个线段的长,每一组中三个线段能否组成三角形?为什么? (1)3,4,5(2)2,3,13(3)2,6,8(4)4,6,11六、中考热身15.(2005·安徽)根据图3所示,对a,b,c三种物体的重量判断正确的是().A.a<cB.0<bC.a>cD.b<c参考答案:1.> > < > < <2.x<-33.4.不等式的基本性质5.B6.D7.A8.B9.(1)a-3>b-3(不等式性质);(2)(不等式性质3);(3)5a≥15b(不等式性质2);(4)a+c≤2b+c(不等式性质1);(5)∵c表示的数有三种可能∴①当c>0时,ac>bc(不等式性质2),②当c<0时,ac<bc(不等式性质3),③当c=0时,ac=bc(0的特殊性).10.(1)根据不等式性质1,两边加上2y;(2)根据不等式性质3,两边乘以-3,得a-c<b,再根据不等式性质1,两边同时加上c.11.(1)x>3(2)x<27(3)x<-212.(1);x>-2;(2);x≤3;(3)(4)-3x-2x<3-2,-5x<1,.13.(1),a≥0.(2)-m+1>0,m<114.3,4,5查、可以作为三角形的三边,因为3+4>5,5-4<3,符合两边之各大于第三边,两边之差小于第三边的要求。
七年级数学下册练习题精选数学(总28页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--整式的运算1、把代数式2a2b2c和a3b2的共同点写在横线上___________。
2、(π-1)x2y3z是多项式还是单项式π+2是多项式还是单项式?多项式xy2-xy+24是_____次_____项式。
3、任意写一个三位数,使百位数字比个位数字大3,交换百位数字与个位数字,用大数减去小数,交换差的百位数字与个位数字,做两个数的加法,得到的结果为1089,。
用不同的三位数再做几次,结果都是1089吗?找出其中的原因。
4、某种商品的销售统计表明,当单价为a(元/件)时,销售量为b(件),以后在单价下降幅度不超过20%时,单价每下降1%,销售量就增加2%。
⑴设单价下降的百分比为x(0<x<20%),求销售额;(销售额=单价×销售量)⑵若a=200(元/件),b=120(件),x=15%,销售额比原来增加还是减少增加或减少多少5、已知一个长方体的长为(a+3)cm,宽为bcm,高为(3-a)cm.求长方体的表面积的代数式。
6、通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20﹪,现在收费标准是每分钟b元,则原收费标准每分钟是_______元7、A、B两地相距s千米,甲、乙两人同时从两地相向而行,甲每小时行4千米,乙每小时行5千米,t小时后,两人还未相遇,此时两人相距________千米。
答案:1、都是单项式;都含有字母a、b;次数都是5 2、单项式;单项式;三;三 3、略 4、⑴a(1-x)×b(1+2x);⑵增加;增加了2520元 5、12b+18-2a2 6、54b+a7、s-9t1、已知关于x的多项式(m+2)x2- (m -3)x+4的一次项系数为2,则这个多项式是________.2、多项式a2x3+ax2-9x3+3x-x+1是关于x的二次多项式,求a2+1a的值3、如果(a+1)2x2y n-1是关于x,y的五次单项式,则n,a应满足的条件是什么?4、多项式(a2-9)x3- (a-3)x2+x+4是关于x的二次三项式,求下列代数式的值:①a2-2a+1; ②(a-1)25、一条水渠的横断面为梯形,已知梯形的面积为(a3-ab2)m2,高为(a2-ab)m,上底长为(a-b)m,求下底的长度。
2019-2020学年度华师大版初中数学七年级下册9.3 用正多边形铺设地面习题精选三十二第1题【单选题】在下列4种正多边形的瓷砖图案中不能铺满地面的是( )A、B、C、D、【答案】:【解析】:第2题【单选题】下列多边形中,能够铺满地面的是( )A、正方形B、正五边形C、正七边形D、正八边形【答案】:【解析】:第3题【单选题】用两种边长相等的正多边形地砖铺地,已有正方形的地砖,还可选择地砖形状为( )A、正五边形B、正六边形C、正八边形D、正十边形【答案】:【解析】:第4题【单选题】某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖,有人提出了以下4种地砖的形状供设计选用.其中不能进行密铺的地砖的形状是A、正三角形B、正四边形C、正五边形D、正六边形【答案】:【解析】:第5题【单选题】下列四种正多边形中,用同一种图形不能铺满平面的是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第6题【单选题】下列正多边形的组合中,能够铺满地面的是( )A、正六边形和正方形B、正六边形和正三角形C、正五边形和正八边形D、正十边形和正三角形【答案】:【解析】:第7题【填空题】如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是______.【答案】:【解析】:第8题【填空题】用正方形和正方形组合能够铺满地面,每个顶点周围有m个正三角形和n个正方形,则m+n=______.【答案】:【解析】:第9题【填空题】用边长相等的正多边形瓷砖铺地板,围绕一个顶点处的瓷砖可以是2块正三角形瓷砖和______块正六边形瓷砖.【答案】:【解析】:第10题【填空题】用边长相等的正三角形与正方形能够密铺,设在一个顶点周围有x个正三角形的角,有y个正方形的角,则x=______ ,y=______.【答案】:【解析】:第11题【填空题】如图,用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色,其他地方铺白色.铺满这块地面一共用了白色瓷砖100块,那么黑色瓷砖共用了______块.【答案】:【解析】:第12题【填空题】如图是以正八边形为“基本单位”铺成的图案的一部分,(其中有4×3个“基本单位”),其间存有若干个小正方形空隙,以及图案的4个角处有更小的三角形空隙,若密铺5×4个“基本单位”的图案,并填满空隙,则需要______个小正方形,______小三角形.(不含图案的4个角)【答案】:【解析】:第13题【解答题】现有大小、形状完全相同且足够多的四边形大理石下脚料,能用这些大理石铺设地面吗?请用所学的数学知识说明理由.【答案】:【解析】:第14题【解答题】如图,周长为68cm 的长方形ABCD是由七个相同的小长方形组合而成,请问这是平面图形的密铺吗? 并求出长方形ABCD的面积.【答案】:【解析】:第15题【综合题】已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数的有误.试分别确定A、B是什么正多边形?画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可);判断你所画图形的对称性(直接写出结果).【答案】:无【解析】:。
精选全文完整版(可编辑修改)七年级下册数学第一单元练习题(北师大版)一.选择题(共8小题,每小题3分)1.下列运算中正确的是()A.a2+a3=a5B.a2•a4=a8C.(a2)3=a6D.(3a)2=9 2.下列各数(﹣2)0,﹣(﹣2),(﹣2)2,﹣(﹣2)2中,负数的个数为()A.1个B.2个C.3个D.4个3.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣64.若a•2•23=28,则a等于()A.4B.8C.16D.325.若(7×106)(5×105)(2×10)=a×10n,则a,n的值分别为()A.a=7,n=11B.a=5,n=12C.a=7,n=13D.a=2,n=136.已知3m=4,3n=5,33m﹣2n的值为()A.39B.2C.D.7.若a=355,b=444,c=533,则a,b,c的大小关系是()A.b>c>a B.b>a>c C.c>a>b D.a<b<c8.已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1,②c1/ 32 / 3=a +2,③a +c =2b ,其中正确的个数有( )A .0个B .1个C .2个D .3个二.填空题(共5小题,每小题4分)9.计算:()﹣2= .10.已知a m =2,b m =6,则(ab )m = .11.已知:2x +3y =3,计算:4x •8y 的值= .12.若a =(﹣)﹣2,b =(﹣1)﹣1,c =(﹣)0,则a 、b 、c 三个数中最大的数是 .13.已知m =,n =,那么2016m ﹣n = .三.解答题(共4小题)14.计算(30分)(1)(−10)2+(−10)0+10−2×(−102)(2)13×(32−3−2)(3)(m −n )3∙(n −m )∙(n −m )2(4)2x 5∙x 2−x 9÷x 2+(2x 2)3∙x(5)x 12÷[(−x 3)2∙(−x 2)3] (6)(318)12×(825)11×(−2)315.(8分)(1)若4m =3,16n =11,求43m -2n 的值.(2)已知x a+b =3,x a =6,求x b 的值16.(8分)(1)已知a m=2,a n=3.求a m+n的值;(2)已知n为正整数,且x2n=3.求(x3n)2﹣(x2)2n的值.17.(10分)先阅读下列材料,再解答后面的问题.一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4),类似的有log39=2,log327=3等.(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)根据幂的运算法则:a m•a n=a m+n以及对数的含义猜想一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).3/ 3。
初中数学七年级下册第七章平面直角坐标系定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点()9,0A -在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上2、在平面直角坐标系中,点A 的坐标为(-2,3)若线段AB ∥y 轴,且AB 的长为4,则点B 的坐标为( )A .(-2,-1)B .(-2,7)C .(﹣2,-1)或(-2,7)D .(2,3)3、在平面直角坐标系中,点A (2,﹣4),点B (﹣3,1)分别在( )象限A .第一象限,第三象限B .第二象限,第四象限C .第三象限,第二象限D .第四象限,第二象限4、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、如果点(3,1)P m m ++在直角坐标系的x 轴上,那么P 点坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,-4)6、象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“卒”的点的坐标分别为(0,2),(﹣1,1),则表示棋子“馬”的点的坐标为( )A .(﹣3,3)B .(0,3)C .(3,2)D .(1,3)7、已知过(),2A a -,()3,4B -两点的直线平行于y 轴,则a 的值为( )A .-2B .3C .-4D .28、根据下列表述,能确定位置的是( )A .某电影院4排B .大桥南路C .北偏东60°D .东经118°,北纬30°9、如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)10、平面直角坐标系中,属于第四象限的点是( )A .()3,4--B .()3,4C .()3,4-D .()3,4-二、填空题(5小题,每小题4分,共计20分)1、如图,某吉祥物所处的位置分别为M (﹣2,2)、B (1,1),则A 、C 、N 三点中为坐标原点的是______点.2、如图,在平面直角坐标系中,正方形ABCD 的顶点A 、D 的坐标分别为(﹣2,1)和(3,1),则点C 的坐标为_________.3、已知点(1,)P y ,(,2)Q x ,若PQ //x 轴,且线段3PQ =,则x =_____,y =____.4、如图,动点从(0,3)出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0).则第2020次碰到长方形边上的点的坐标为_________________5、若点P (m ,n )的坐标满足m n mn +=,则称点P 为“和诣点”,请写出一个“和诣点”的坐标____.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中描出下列各组点,并将各组内的点依次用线段连接起来.(1)()0,0,()1,3,()2,0,()3,3,()4,0;(2)()0,3,()1,0,()2,3,()3,0,()4,3.观察所得的图形,你觉得它像什么?2、观察如图所示的图形,解答下列问题.(1)写出每个象限四个点的坐标,它们的坐标各有什么特点?(2)写出与x 轴平行的线段上的四个点的坐标,并说说它们的坐标的特点.3、在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A (2,- 4),B (4,-2).C 是第四象限内的一个格点,由点C 与线段AB 组成一个以AB 为底,且腰长为无理数的等腰三角形.(1)填空:C 点的坐标是 ,△ABC 的面积是(2)将△ABC 绕点C 旋转180°得到△A 1B 1C 1,连接AB 1、BA 1, 则四边形AB 1A 1B 的形状是何特殊四边形?___________________.(3)请探究:在坐标轴上是否存在这样的点P ,使四边形ABOP 的面积等于△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.4、如图,分别写出五边形各个顶点的坐标.5、已知()A 3,5,()1,2B -,()1,1C .(1)在所给的平面直角坐标系中作出ABC ;(2)求ABC 的面积---------参考答案-----------一、单选题1、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点A (9-,0),纵坐标为0∴点A (9-,0)在x 轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x 轴上点的纵坐标为0,y 轴上点的横坐标为0.2、C【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =,∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.3、D【分析】应先判断出点A ,B 的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵20,40,30,10>-<-<>∴点A (2,﹣4)在第四象限,点B (﹣3,1)在第二象限故选:D【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、C【分析】根据点P (2,b )在第四象限内,确定b 的符号,即可求解.【详解】解:点P (2,b )在第四象限内,∴0b <,所以,点Q (b ,-2)所在象限是第三象限,故选:C .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.5、B【分析】因为点(3,1)P m m ++在直角坐标系的x 轴上,那么其纵坐标是0,即10m +=,1m =-,进而可求得点P 的横纵坐标.【详解】 解:点(3,1)P m m ++在直角坐标系的x 轴上,10m ∴+=,1m ∴=-,把1m =-代入横坐标得:32+=m .则P 点坐标为(2,0).故选:B .【点睛】本题主要考查了点在x 轴上时纵坐标为0的特点,解题的关键是掌握在x 轴上时纵坐标为0.6、C【分析】根据“炮”和“卒”的点的坐标分别为(0,2),(﹣1,1),得到直角坐标系,即可求解.【详解】解:如图所示:棋子“馬”的点的坐标为(3,2).故选:C .【点睛】此题主要考查坐标与图形,今天的关键是根据已知的坐标画出直角坐标系.7、B【分析】根据平行于y 轴的直线上的点的横坐标相等,即可求解.【详解】解:∵过(),2A a -,()3,4B -两点的直线平行于y 轴,∴A 、B 两点的横坐标相等,即:a =3,故选B .【点睛】本题主要考查点的坐标特征,熟练掌握“平行于y 轴的直线上的点的横坐标相等”是解题的关键.8、D【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【详解】解:A、某电影院4排,不能确定具体位置,故本选项不符合题意;B、大桥南路,不能确定具体位置,故本选项不符合题意;C、北偏东60°,不能确定具体位置,故本选项不符合题意;D、东经118°,北纬40°,能确定具体位置,故本选项符合题意.故选:D.【点睛】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.9、C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.10、D【分析】根据各象限内点的符号特征判断即可.【详解】解:A.(-3,-4)在第三象限,故本选项不合题意;B.(3,4)在第一象限,故本选项不合题意;C.(-3,4)在第二象限,故本选项不合题意;D.(3,-4)在第四象限,故本选项符合题意;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题1、A【解析】【分析】根据点的平移规律将点B移动到原点即可.【详解】解:∵B(1,1),∴点B向左一个单位,向下一个单位为坐标原点,即点A为坐标原点.故答案为:A .【点睛】本题考查了平面直角坐标系,点的平移规律,熟练掌握平面直角坐标系中点的坐标表示方法是解本题的关键.2、(3,6)【解析】【分析】根据点的坐标求得正方形的边长,然后根据点D 的坐标即可求出点C 的坐标.【详解】解:∵点A 、D 的坐标分别为(﹣2,1)和(3,1),∴AD =3-(-2)=5,∴CD = AD =5,∵点D 的坐标为(3,1),∴点C 的坐标为(3,6),故答案为:(3,6).【点睛】本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的纵坐标相等时,其两点之间的距离为横坐标的差.3、 2-或4##4或-22【解析】【分析】根据PQ x ∥轴可知纵坐标相等得出y 的值,再由3PQ =,分点P 在Q 的左右两侧相距3个单位得出x 的值.【详解】(1,)P y ,(,2)Q x ,且PQ x ∥轴,2y ∴=,又3PQ =,|1|3x ∴-=4x ∴=或2-,故答案为:4或2-,2.【点睛】平面直角坐标系中点的坐标,掌握PQ x ∥轴可知纵坐标相等是解题的关键.4、(5,0)【解析】【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出2020次碰到长方形边上的点的坐标.【详解】根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵2020÷6=336…4,∴第2020次碰到长方形边上的点的坐标为(5,0),故答案为:(5,0).【点睛】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.5、(2,2)【解析】【分析】+=,当m=2时,代入得到2+n=2n,求出n即可.由题意点P(m,n)的坐标满足m n mn【详解】+=,,解:∵点P(m,n)的坐标满足m n mn当m=2时,代入得:2+n=2n,∴n=2,故答案为(2,2).【点睛】此题主要考查了点的坐标,正确掌握“和谐点”的定义是解题关键.三、解答题1、(1)像字母M;(2)像字母W.【解析】【分析】先描出相应的点,再连接成图形,观察即可得答案.解:(1)如图:所得的图形像字母M;(2)如图:所得的图形像字母W;【点睛】本题主要是对点的坐标的表示及正确描点、连线等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.2、(1)见解析;(2)见解析.【分析】(1)结合坐标轴写出点坐标,由坐标可得其特点;(2)结合坐标轴写出点坐标,由坐标可得其特点;【详解】(1)第一象限点的坐标:()1,2,()2,2,()4,1,()5,4等,坐标的特点:横坐标为正实数,纵坐标为正实数;第二象限点的坐标:()1,3-,()1,5-,()3,4-,()5,5-等,坐标的特点:横坐标为负实数,纵坐标为正实数;第三象限点的坐标:()5,1--,()5,2--,()3,1--,()3,2--等,坐标的特点:横坐标为负实数,纵坐标为负实数;第四象限点的坐标:()2,1-,()2,2-,()41-,,()7,1-,坐标的特点:横坐标为正实数,纵坐标为负实数;(2)与x 轴平行的线段上的点的坐标:()8,1--,()5,1--,()41-,,()7,1-等,坐标的特点,纵坐标相等;【点睛】本题主要考查的是点的坐标的定义、坐标轴上点的特点、平行坐标轴的直线上的点的坐标特点,掌握相关知识是解题的关键.3、(1)(1,-1); 4 ;(2)矩形;(3)存在,点P 的坐标为(-1,0),(0,-2).【解析】【详解】.解:(1)(1,-1); 4 ;(2) 矩形,(3)存在.由(1)知S △ABC =4,则S 四边形ABOP =8.同(1)中的方法得S △ABO =16-4-4-2=6. 当P 在x 轴负半轴时,S △APO =2,高为4,那么底边长为1,所以P (-1,0); 当P 在y 轴负半轴时,S △APO =2,高为2,所以底边长为2,此时P (0,-2). 而当P 在x 轴正半轴及y 轴正半轴时均不能形成四边形ABOP故点P 的坐标为(-1,0),(0,-2).4、()5,2A ,()0,5B ,()5,2C -,()3,4D --,()3,4E -.【解析】【分析】结合坐标系写出点的坐标即可;【详解】解:()5,2A ,()0,5B ,()5,2C -,()3,4D --,()3,4E -【点睛】本题考查了坐标与图形的性质,解题的关键是结合坐标系写出点的坐标;5、(1)见解析;(2)5.【解析】【分析】(1)将A、B、C画出来,顺次连接即可;(2)△ABC的面积等于长为4,宽为4的正方形的面积减去三个三角形的面积.【详解】解:(1)如图即为所求作的△ABC,(2) ∵A(3,5),B(−1,2),C(1,1),∴S△ABC=4×4-12×2×1-12×3×4-12×4×2=16-1-6-4=5;【点睛】本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点是解题的关键.。
人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。
立方根1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1 B. 2 C.3 D. 42.下列各式中正确的是()A.B.C.D.3.一个立方体的体积是9,则它的棱长是()A.3 B.3C.D.4.的立方根是()A.8 B.±2 C.4 D.25.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2 B.﹣2 C.1 D. 16.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2 D. 47.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2 C.|﹣8|的立方根是﹣2 D.的算术平方根是48.下列各式中错误的是()A. B.C.D.9.的立方根()A.﹣9 B. 9,﹣9 C. 9 D.10.下列表达式不正确的是()A.B. C.D.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B.x20=2 C.x±20=20 D.x3=±2012.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D. 4个13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D. 3个15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零16.下列判断错误的是()A.B. C.的算术平方根是4 D.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣218.下列结论中不正确的是()A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣119.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是320.下列各式中,运算正确的是()A.B.C.D.21.的立方根是()A.﹣4 B. ±4 C. ±2 D.﹣222.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±124.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B.±1 C.0 D.不存在26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 27.在下列式子中,正确的是()A.B.C.D.=±2 28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1. A.①③B.②④C.①④D.③④29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.30.(1)﹣+;(2)﹣+.立方根参考答案与试题解析1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1B.2C.3D.4解:∵﹣27的立方根是﹣3,∴(1)错误;∵49的算术平方根为+7,∴(2)错误;∵的立方根为,∴(3)正确;∵的平方根为±,∴(4)错误;∴正确的说法的个数是1个,故选A.2.下列各式中正确的是()A.B.C.D.解:A、=|﹣7|=7,故本选项错误;B、=4,故本选项错误;C、(﹣)2=3,故本选项错误;D、=﹣3,故本选项正确;故选D.3.一个立方体的体积是9,则它的棱长是()A.3B.3C.D.解:设立方体的棱长为a,则a3=9,∴a=.故选D.4.的立方根是()A.8B.±2 C.4D.2解:∵=8而8的立方根等于2,∴的立方根是2.故选D.5.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2B.﹣2 C.1D.1解:由题意得,a=﹣2,b=所以a10×(﹣b)9=(﹣2)10×(﹣)9=﹣2 故选B.6.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2D.4解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.故选D.7.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2C.|﹣8|的立方根是﹣2 D.的算术平方根是4解:A、=6,6的平方根是±,故选项错误;B、的平方根是±2,故选项正确;C、|﹣8|=8,8的立方根﹣2,故选项错误;D、=4,4的算术平方根是2,故选项错误.故选B.8.下列各式中错误的是()A.B.C.D.解:A、,故说法正确;B、原式=﹣,故说法错误;C、,故说法正确;D、,故说法正确.故选B.9.的立方根()A.﹣9 B.9,﹣9 C.9D.解:∵=9,∴的立方根是.故选D.10.下列表达式不正确的是()A.B.C.D.解:A、=a,故本选项错误;B、=﹣a,故本选项错误;C、=|a|,故本选项正确;D、=a,故本选项错误.选C.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B. x20=2 C. x±20=20 D. x3=±20解:根据题意,可知x20=2,能得出.故选B.12.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D.4个解:(1)1的平方根是±1,故说法错误;(2)﹣1的平方根是﹣1,负数没有平方根,故说法错误;(3)0的平方根是0,故说法正确;(4)1是1的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选B.13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 解:A、=9,9的平方根是±3,故选项正确;B、1的立方根是它本身1,故选项错误;C、=1,故选项错误;D、当x=0时,=0,故选项错误.故选A.14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D.3个解:①结果应为2,故说法错误;②结果应为﹣2,故说法错误;③±=±25,故说法正确;④结果应为5,故说法错误.故选B.15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.16.下列判断错误的是()A.B.C.的算术平方根是4 D.解:A、,故选项正确;B、,故选项正确;C、=4的算术平方根是2,故选项错误;D、,故选项正确.故选C.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣2解:A、27的立方根是3,故选项错误;B、的立方根是,故选项正确;C、﹣2的立方是﹣8,故选项正确;D、﹣8的立方根是﹣2,故选项正确故选A.18.下列结论中不正确的是()故选B.A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣1 解:A、平方为9的数是+3或﹣3,故选项正确;B、立方为27的数是3,故选项错误;C、绝对值为3的数是3或﹣3,故选项正确;D、倒数等于原数的数是1或﹣1,故选项正确.19.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是3解:A、6是36的算术平方根正确,故本选项正确;B、﹣9没有平方根,故本选项错误;C、∵=5,∴的算术平方根是,故本选项错误;D、9的立方根是,故本选项错误.20.下列各式中,运算正确的是()A.B.C.D.解:A选项错误,应该为;B选项正确;C选项错误,根号下下的结果为25,故开平方后的结果为5,不是﹣5;D选项错误,由于>1,故应为.故答案选B.21.的立方根是()A.﹣4 B.±4 C.±2 D.﹣2解:∵=﹣8∴﹣8的立方根是﹣2,∴的立方根是﹣2.故选D.22.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在解:∵(﹣4)3=﹣64∴﹣=4又∵(±2)2=4∴4的平方根为±2.故选C.23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±1解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.24.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 解:A、=4,故本选项错误;B、=﹣3,故本选项正确;C、±=±4,故本选项错误;D、=4,故本选项错误;故选B.25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B. ±1 C. 0 D.不存在解:根据算术平方根非负数,立方根不改变这个数的正负性,相加等于0,则这个数是0.故选C.26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 解;A、=2,故选项A错误;B、=2,故选项B错误;C、∵(﹣1)3=﹣1,∴﹣1的立方根是﹣1,故选项正确;D、±=±3,故选项D错误.故选C.27.在下列式子中,正确的是()A.B.C.D.=±2 解:A、,故选项A正确;B、没有意义,故选项B错误;C、,故选项C错误;D、=2,故选项D错误.故选A.28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.二.解答题(共2小题)29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.解:(1)∵x2=4,∴x=±2;(2)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.30.(1)﹣+;(2)﹣+.(1)解:原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣.。
七年级下册数学习题精选
数学是一门需要反复练习与实践的学科。
在初中数学学习中,理论并不唯一的重要,数学中各种类型的习题练习同样重要。
下面我将为大家整理出一些七年级下册的数学习题精选,希望对大家巩固数学基础,提高数学能力有所帮助。
一、集合论
1.集合间的基本运算:交集、并集、补集
2.集合的运算律:交换律、结合律、分配律
3.常用公式:
(A∪B)′=(A′∩B′)
(A∩B)′=A′∪B′
(A∪B)∩C=(A∩C)∪(B∩C)
(A∩B)∪C=(A∪C)∩(B∪C)
二、函数
1.函数的概念,函数自变量、函数值的含义
2.常用符号:f(x)、y=f(x)、y=f(x)+k、y=f(x)*k、y=k*f(x)
3.奇函数和偶函数
三、代数式
1.代数式的概念及求值
2.加减乘除运算、公因式提取、分配律、合并同类项
3.解方程、组方程
四、等差数列
1、等差数列的概念及前n项和公式
2、常见问题:最后一个数、公差、第n项
五、直线方程
1. 直线方程的两种形式:一般式、斜截式
2.斜率的定义与斜截式中的含义:
3.常见问题:根据两个坐标点求斜率、直线的倾斜方向、平行或垂直于坐标轴的直线方程
六、平面图形
1.三角形的分类、构造、性质、内角和公式
2.四边形的分类、构造、性质、对角线及内角和公式
3.圆的构造、半径、直径、弧长、面积公式
七、统计与概率
1.统计的基本概念:数据集、频数、频率、频数分布表、直方图
2.概率基本概念:试验、事件、结果、样本空间、事件概率
3.求概率的方法:定义法、古典概型、频率法
以上是七年级下册数学经典习题的精选,希望同学们能够在平时的学习中注重实践,加大练习量,认真消化每一个知识点和练习题,以便在考试中能够应对得当,取得更好的成绩。