人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案
- 格式:doc
- 大小:125.50 KB
- 文档页数:2
第十三章轴对称13.4课题学习《最短路径问题》一、教学目标让学生能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.二、教学重点及难点重点:利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称、平移将最短路径问题转化为线段(或线段的和)最短问题.三、教学用具电脑、多媒体、课件、刻度尺、直尺四、相关资源微课,动画,图片.五、教学过程(一)引言导入前面我们研究过一些关于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及选择最短路径的问题,本节课我们将利用数学知识探究“将军饮马”和“造桥选址”两个极值问题.设计意图:直接通过引言导入新课,让学生明确本节课所要探究的内容和方向.(二)探究新知问题1如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?1.将实际问题抽象为数学问题学生尝试回答,并相互补充,最后达成共识.(1)把A,B两地抽象为两个点;(2)把河边l近似地看成一条直线,C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.2.解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点C,根据“两点之间,线段最短”,可知这个交点C即为所求.(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离和最短?(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C.则点C即为所求.3.证明“最短”师生共同分析,证明“AC+BC”最短.证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′,由轴对称的性质知:BC=B′C,BC′=B′C′,∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.思考:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.若直线l上任意一点(与点C不重合)与A,B两点的距离都大于AC+BC,就说明AC +BC最小.问题2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)1.将实际问题抽象为数学问题把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?2.解决数学问题(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?(2)如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N +NB最小?(3)如图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.3.证明“最小”为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?证明:如图,在△A′N′B中,∵A′B<A′N′+BN′,∴A′N+BN+MN<AM′+BN′+M′N′.∴AM+MN+BN<AM′+M′N′+BN′.即AM+MN+BN最小.设计意图:通过“将军饮马问题”和“造桥选址问题”的解决,增强学生探究问题的信心,让学生通过轴对称、平移变换把复杂问题进行转化,有效突破难点,感悟转化思想的重要价值.六、课堂小结1.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.2.利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.设计意图:通过小结,使学生梳理本节所学内容,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.七、板书设计13.4 最短路径问题运用轴对称解决距离最短问题利用平移确定最短路径选址。
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
13.4课题学习最短路径问题(1)学习目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学过程一、引入新知引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.二、探索新知问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?追问1 这是一个实际问题,你打算首先做什么?将A ,B 两地抽象为两个点,将河l 抽象为一条直 线.追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A , B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).问题2 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当 A B ll l A B C点C 在l 的什么位置时,AC 与CB 的和最小?追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗? 作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C .则点C 即为所求.问题3 你能用所学的知识证明AC +BC 最短吗?证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′.由轴对称的性质知,BC =B ′C ,BC ′=B ′C ′. ∴ AC +BC = AC +B ′C = AB ′,AC ′+BC ′= AC ′+B ′C ′.在△AB ′C ′中,AB ′<AC ′+B ′C ′,∴ AC +BC <AC ′+BC ′.即 AC +BC 最短.三、运用新知练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小”.四、归纳小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?五、布置作业练习册l A B A BC P Q 山 河岸 大桥。
13.4 课题学习 最短路径问题1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 一、情境导入相传,古希腊有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?二、合作探究 探究点:最短路径问题 【类型一】 两点的所有连线中,线段最短 如图所示,在河a 两岸有A 、B 两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求?(画出图形,做出说明)解析:利用两点之间线段最短得出答案.解:如图所示,连接AB 交直线a 于点P ,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短.方法总结:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.【类型二】 运用轴对称解决距离最短问题在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小.解析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直线l 的交点M 即为所求的点.解:如图所示:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′交直线l 于点M ;(3)点M 即为所求的点.方法总结:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系求解. 【类型三】最短路径选址问题 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂址到A ,B 两村的距离相等,则应选择在哪建厂(要求:保留作图痕迹,写出必要的文字说明)? (2)若要使厂址到A ,B两村的水管最短,应建在什么地方?解析:(1)欲求到A 、B 两村的距离相等,即作出AB 的垂直平分线与EF 的交点即可,交点即为厂址所在位置;(2)利用轴对称求最短路线的方法是作出A 点关于直线EF 的对称点A ′,再连接A ′B 交EF 于点N ,即可得出答案.解:(1)作出AB 的垂直平分线与EF 的交点M ,交点M 即为厂址所在位置;(2)如图所示:作A 点关于直线EF 的对称点A ′,再连接A ′B 交EF 于点N ,点N 即为所求.【类型四】 运用轴对称解决距离之差最大问题如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A、B 的距离之差最大.解析:此题的突破点是作点A (或B )关于直线l 的对称点A ′(或B ′),作直线A ′B (AB ′)与直线l 交于点C ,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l 为对称轴,作点A 关于直线l 的对称点A ′,A ′B 的连线交l 于点C ,则点C 即为所求.理由:在直线l 上任找一点C ′(异于点C ),连接CA ,C ′A ,C ′A ′,C ′B .因为点A ,A ′关于直线l 对称,所以l 为线段AA ′的垂直平分线,则有CA =CA ′,所以CA -CB =CA ′-CB =A ′B .又因为点C ′在l 上,所以C ′A =C ′A ′.在△A ′BC ′中,C ′A -C ′B =C ′A ′-C ′B <A ′B ,所以C ′A ′-C ′B <CA -CB .方法总结:如果两点在一条直线的同侧,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.三、板书设计课题学习 最短路径问题1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.通过本节课进一步体会数学与自然及人类社会的密切联系,了解数学的价值.在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题.体会在解决问题中与他人合作的重要性.体会运用数学的思维方式观察、分析现实社会,解决日常生活中和其他学科中的问题,增强应用数学的意识.。
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.作者留言:非常感谢!您浏览到此文档。
《课题学习:最短路径问题》教学设计一、课程标准解读及地位作用(1)课程标准解读:《课题学习:最短路径问题》属于综合与实践这一部分,这节课就是综合运用所学的数学思想、方法、知识、技能解决一些生活和社会中的问题,以实际生活中的问题为载体,以学生自主参与为主的学习活动,是培养学生应用意识、创新意识、过程经验很重要的载体,通过课题学习能够把知识系统化,解决一些实际问题。
针对问题情境,学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程应该“少而精”的原则,保证每学期至少一次,可以在课堂上完成,也可以将课内外结合.(2)地位及作用:《课题学习:最短路径问题》位于人教版八年级上第十三章《轴对称》,为让学生能灵活的运用两点之间线段最短、合理使用轴对称、平移等解决最短路径问题而设置的一节课。
本节课是在学习轴对称、等腰三角形的基础上,引导学生探究如何利用线段公理解决最短路径问题。
它既是轴对称、平移、等腰三角形知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用.二、教学内容和内容解析1、内容:利用轴对称研究某些最短路径问题.2、内容解析:最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等进行变换进行研究.这节课我以数学史中的一个经典问题---将军饮马问题为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小值问题,再利用轴对称将线段和最小值问题转化为“两点之间,线段最短”问题。
基于以上分析,确定本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.三、目标和目标解析1、目标:能利用轴对称能利用轴对称和平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.2、目标解析:达成目标的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,经历将实际问题抽象为数学的线段和最小值问题的过程;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称“桥梁“的作用,感悟转化思想.四、教学问题诊断分析最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
13. 4课题学习最短路径问题
通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.
重点
应用所学知识解决最短路径问题.
难点
选择合理的方法解决问题.
一、创设情境
多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.
这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?
二、自主探究
探究一:最短路径问题的概念
1.多媒体出示图①和图②,提出问题:
(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?
2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.
探究二:河边饮马问题
多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?
提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?
思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?
教师引导学生讨论,明确找点的方法.
让学生对刚才的方法通过逻辑推理的方法加以证明.
教师巡视指导学生的做题情况,有针对性地进行点拨.
探究三:造桥选址问题
多媒体出示问题2.(教材第86页)
提出问题:
(1)根据问题1的探讨你对这道题有什么思路和想法?
(2)这个问题有什么不同?
(3)要保证路径AMNB最短,应该怎样选址?
学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.
尝试选址作出图形.
多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.
根据问题1和问题2,你有什么启示?
三、知识拓展
已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?
[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]
四、归纳总结
1.本节课你学到了哪些知识?
2.怎样解决最短路径问题?
本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。