2020届高考数学(文)二轮复习过关检测:解析几何十九
- 格式:pdf
- 大小:96.40 KB
- 文档页数:5
第六讲(文科) 测试卷一.选择题(本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合要求)1.已知1F ,2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则点M 的轨迹是( ). A.椭圆 B.直线 C.圆 D.线段2.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为( )A .30B .31C .24D .333.若双曲线222951xy p-=的左焦点在抛物线22(0)y px p =>的准线上,则p 的值为( ).A.3B.4C.6D.4.“0ab <”是方程“22ax by c +=表示双曲线”的( ).A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件5.设O 为坐标原点,F 为抛物线24y x =的焦点,A 为抛物线上一点,若4OA AF ⋅=-u u u r u u u r ,则点A 的坐标为( ).A.(2,±B.(1,2)±C.(1,2)D.6.若椭圆2211612x y +=上一点P 到两焦点12F F 、的距离之差为2,则12PF F ∆是( ).A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.已知点P 是椭圆22221(0,0)x y aba b xy +=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则OM 的取值范围是( ).A.(0,)cB.(0,)aC.(,)b aD.(,)c a 8.直线l 经过抛物线22(0)y px p =>的焦点F ,且与抛物线交于P 、Q 两点,由P 、Q 分别向准线引垂线PR 、QS ,垂足分别为R 、S .如果||,||PF a QF b ==,M 为RS 的中点,则||MF 为( ).A.a b +B.12()a b + C.ab9.已知椭圆22221(0)x y aba b +=>>,1F 、2F 为左、右焦点,B 为短轴的一个端点,O 为中心,E为OB 的中点,若12F E F B ⊥,则椭圆的离心率是( ).A.13 B.3C.3D.2310. 在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-二.填空题(本大题5个小题,每小题5分,共25分,把答案填在题中横线上)11.若椭圆22149x y m +=+的离心率12e =,则m 的值为________.12.已知抛物线24y x =的焦点为F ,且抛物线与240x y +-=交于A 、B 两点,则||||FA FB +=_____.13.已知P 是椭圆2212516x y +=上异于长轴端点的点,12F F 、是椭圆的焦点,I 是12PF F ∆的内心,PI 的延长线交12F F 于点B ,则||:||PI IB =________. 14.已知双曲线221691xy-=的左、右焦点分别为1F 、2F ,过右焦点2F 的直线l 交双曲线的右支于A 、B 两点,若||5AB =,则1ABF ∆的周长为________.15.过抛物线22(0)y px p =>的焦点F 作直线l ,交抛物线于A 、B 两点,交其准线于C 点,若3CB BF =u u u r u u u r,则直线l 的斜率为___________.三.解答题(本大题6个小题,共75分,解答题应写出文字说明、证明过程或演算步骤) 16. (本小题满分12分)已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于P Q 、两点.(Ⅰ)若12OP OQ ⋅=-u u u r u u u r ,求直线l 的方程;(Ⅱ)若OMP ∆与OPQ ∆的面积相等,求直线l 的斜率. 17.(本小题满分12分)已知1F 、2F 是椭圆222221(0)xy bbb +=>的左、右焦点,M 为x 轴上方的椭圆上一点,2MF 垂直于x 轴,过2F 且与OM 垂直的直线交椭圆于P 、Q 两点,若||PQ =求椭圆的标准方程.18.(本小题满分12分)2010年10月1日18时59分57秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约200公里、远地点高度约38万公里的直接奔月椭圆(地球球心O 为一个焦点)轨道Ⅰ飞行.当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面100公里、近月面15公里(月球球心F 为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以F 为圆心、距月面100公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测.已知地球半径约为6370公里,月球半径约为1730公里. ⑴比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小; ⑵以F 为右焦点,求椭圆轨道Ⅱ的标准方程.19.(本小题满分12分)已知直线1l :1y kx =-与双曲线221x y -=的左支交于A 、B 两点. ⑴求斜率k 的取值范围;⑵若直线2l 经过点(2,0)P -及线段AB 的中点Q ,且2l 在y 轴上截距为16-,求直线1l 的方程.20.(本小题满分13分) 已知B 是椭圆E: 22221x y a b+=(0)a b >>上的一点,F 是椭圆右焦点,且BF x ⊥轴,3(1,)2B . (Ⅰ)求椭圆E的方程.(Ⅱ)设1A 和2A 是长轴的两个端点,直线l 垂直于1A 2A 的延长线于点D, 4OD =,P是l 上异于点D的任意一点,直线1A P交椭圆E 于M (不同于1A 、2A ), 设λ=22A M A P ⋅u u u u u r u u u u r,求λ的取值范围.[21.(本小题满分14分)如图,已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==. (Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅u u u u r u u u r的最小值;(Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.第六讲(文科) 测试卷一、 1~5 D B C A B 6~10 B A D C C 提示:1. ∵1212||||8||MF MF F F +==,∴点M 在线段12F F 上运动.2. 切线长的长短由该点到圆心的距离来确定.即圆心()4,2-到直线2+=x y 的最短距离.d ===3.依题意,得2p =-,解得6p =,选C.4. 当0c =时,虽然0ab <,但是方程22ax by c +=不表示双曲线.若22ax by c +=表示双曲线,则方程化为221c c abxy+=,∴c a与c b异号,即0c ca b⋅<,故0ab <.∴“0ab <”是“方程22ax by c +=表示双曲线”的必要而不充分条件.5. 依题意(1,0)F ,设24(,)tA t ,则2224244416(,)(1,)4t t t tOA AF t t t ⋅=⋅--=--=-u u u r u u u r ,即4212160t t +-=,解得24t =或216t =-(舍去),∴(1,2)A ±.6.依题意知4a =,则1212||||8||||2PF PF PF PF +=⎧⎨-=⎩,∴1||5PF =,2||3PF =,又12||24F F c ==,∴12PF F ∆是直角三角形.7.延长1F M 交直线2PF 于点N ,∵PM 平分12F PF ∠,1PM F N ⊥,∴M 是1F N 的中点,1||||PN PF =, ∴21221122||||||||||||OM F N PF PF a PF ==-=-.又2||a c PF a c -<<+(易知P 、1F 、2F 三点不共线),∴2||c a PF c -<-<,故OM 的取值范围为(0,)c .8. 如图1所示,由抛物线定义知RS 连结RF 、SF ,则易知90RFS ∠=︒.又M 是中点,∴12||||MF RS =9.由12F E F B ⊥,知12Rt Rt OF E BF O ∆∆∽,∴2bcbc=,即222b c =,∴2222a c c -=,得223a c =,故椭圆的离心率3e =.10. 由已知的割线的坐标(4,114),(2,21),2a a K a ---=-,设直线方程为(2)y a x b =-+,则223651(2)b a =+- 又2564(2,9)(2)y x ax b a y a x b ⎧=+-⇒=-⇒=⇒--⎨=-+⎩.二、11. 8或11412. 7 13. 5:314. 26 15. ±提示:11.若焦点在x 轴上,则24a m =+,29b =,2225c a b m =-=-,∴12c ae ===,解得8m =.若焦点在y 轴上,则29a =,24b m =+,2225c a b m =-=-,∴312cae ===,解得114m =.故8m =或114.12.设11(,)A x y 、22(,)B x y ,∵抛物线24y x=的准线方程为1x =-,∴12||||2FA FB x x +=++.由24240y xx y ⎧=⎨+-=⎩,得2540x x -+=,∴125x x +=,故12||||27FA FB x x +=++=. 13.不妨取P 为短轴的端点,则由三角形内角平分线性质得,11||:||||:||:5:3PI IB PF FO a c ===. 14.连接1AF 、1BF ,∵12||||8AF AF -=,12||||8BF BF -=,22||||||5AF BF AB +==, ∴1122||||16(||||)16521AF BF AF BF +=++=+=,∴1ABF ∆的周长为11||||||26AF BF AB ++=.15.过点B 向准线作垂线BM ,垂足为M ,可知1cos 3MBC ∠=,所以直线l的斜率为± 三、16.解:(Ⅰ)依题意,直线l 的斜率存在,因为 直线l 过点(2,0)M -,可设直线l :(2)y k x =+.因为 P Q 、两点在圆221x y +=上,所以 1OP OQ ==u u u r u u u r,因为 12OP OQ ⋅=-u u u r u u u r ,所以 1cos 2OP OQ OP OQ POQ ⋅=⋅⋅∠=-u u u r u u u r u u u r u u u r ,所以120POQ ︒∠=所以O 到直线l 的距离等于12.所以12=,得15k =±, 所以直线l的方程为20x -+=或20x +=. ………6分(Ⅱ)因为OMP ∆与OPQ ∆的面积相等,所以2MQ MP =u u u u r u u u r,设 11(,)P x y ,22(,)Q x y ,所以 22(2,)MQ x y =+u u u u r ,11(2,)MP x y =+u u u r .所以 212122(2)2x x y y +=+⎧⎨=⎩即21212(1)2x x y y =+⎧⎨=⎩(*);因为P ,Q 两点在圆上,所以2211222211x y x y ⎧+=⎪⎨+=⎪⎩ 把(*)代入,得2211221114(1)41x y x y ⎧+=⎪⎨++=⎪⎩ ,所以11788x y ⎧=-⎪⎪⎨⎪=±⎪⎩, 所以直线l的斜率MP k k ==,即k =12分17. 解:设椭圆的右焦点2(,0)F c ,则2222b b c -=,即b c =,∴2(,)M c,2OM k =,∴PQ k =直线PQ的方程为)y x c =-, 代入方程222221xy bb+=,得22222[)]22x x c b c +-==,即225820x cy c -+=. ………6分设11(,)P x y ,22(,)Q x y ,则1285x x c +=,21225x x c =,∴125||||PQ x x =-===解得5b c ==.故椭圆的标准方程为2250251xy+=. (12)分18.解:⑴设椭圆轨道Ⅰ的半焦距为1c ,半长轴的长为1a ,则1111200637065703800006370386370a c a c -=+=⎧⎨+=+=⎩,解得12392940a =,12379840c =,∴13798403929400.967e =≈. ………3分设椭圆轨道Ⅱ的半焦距为2c ,半长轴的长为2a ,则2222151730174510017301830a c a c -=+=⎧⎨+=+=⎩,解得123575a =,1285c =,∴28535750.024e =≈.故12e e >. (7)分⑵依题意设椭圆轨道Ⅱ的标准方程为22221(0)x y aba b +=>>,则由⑴知2235754a =,22217451830b a c =-=⨯,故所求椭圆轨道Ⅱ的标准方程为22243575174518301xy⨯+=.………12分19.解:⑴将1y kx =-代入方程221x y -=,得22(1)220,k x kx -+-=222(2)4(1)(2)840k k k ∆=--⋅-=->,解得k <.设11(,)A x y ,22(,)B x y ,则22121221210k k k x x x x --⎧+=<⎪⎨=>⎪⎩, 由2210k k -<,得1k <-或01k <<;由2210k ->,得1k <-或1k >.∴1k <<-,故斜率k的取值范围是(1)-. ………7分 ⑵由已知可得2l 的方程为816y x =-- ①,Q 的坐标为121222(,)x x y y ++,即22111(,)kk k --,代入①得54k =-或34k =(舍去),∴1l 的方程为541y x =--,即5440x y ++=. ………12分20.(Ⅰ)解:依题意 半焦距1c = 左焦点为/F (1,0)-,则/2a BF BF =+,由3(1,)2B ,32BF =由距离公式得 /52BF =,24,2a a ==,2222213b a c =-=-= 所以,椭圆E的方程.的方程22143x y +=.来………7分 (Ⅱ)由(Ⅰ)知,1(2,0)A -,2(2,0)A .设M 00(,)x y . ∵M 在椭圆E 上,∴22003(4)4y x =-, 由P、M 、1A 三点共线可得P006(4,)2y x + ∴200(2,)A M x y =-u u u u u r ,0206(2,)2y A P x =+u u u u r ,∴2022000652(2)(2)22y A M A P x x x ⋅=-+=-+u u u u u r u u u u r ∵022x -<<,∴22(0,10)A M A P λ=⋅∈u u u u u r u u u u r……13分21.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=o ,即2p =,所以抛物线C 的方程为24y x =. 设⊙M 的半径为r ,则122cos60OB r =⋅=o,所以M e 的方程为22(2)4x y -+=………6分 (Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----u u u u r u u u r =222322x x y x x -++=++所以当0x =时, PM PF ⋅u u u u r u u u r有最小值为2(Ⅲ)以点Q 这圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+ 从而直线QS 的方程为320x ty --=(*)因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线QS 恒过一个定点,且该定点坐标为2(,0)3.………14分。
2020年高考文科数学二轮专题复习九:解析几何(附解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程 (1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c220+=<mx ny mn1()(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 12.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .83.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .924.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.经典常规题(45分钟)1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-=3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x y C a b a b+=>>,1(2,2)P,2P ,3(2,3)P -,4(2,3)P 四点中恰有三点在椭圆C 上. (1)求C 的方程;(2)已知点(0,1)E ,问是否存在直线p 与椭圆C 交于M ,N 两点且||||ME NE =?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.高频易错题1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+=2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.33.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -=C .221(3)916x y x -=>D .221(4)169x y x -=>4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____精准预测题2020年高考文科数学二轮专题复习九:解析几何(解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程(1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y 两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c22+=mx ny(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 1【答案】D【解析】根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 2.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .8 【答案】D【解析】抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±,∴p p22=,∴8=p .经典常规题3.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .92【答案】B【解析】依据题意222224,5,9a b c a b ===+=, 设F 为右焦点,(3,0)F ,设P 在第一象限,(,)P x y ,根据||||PO OF =,22229145x y x y ⎧+=⎪⎨-=⎪⎩,得到53y =,所以15||22OPF S OF y ∆=⋅⋅=.4.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________. 【答案】)15,3(【解析】由椭圆22:13620x y C +=可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形12MF F 中,8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M , 代入22:13620x y C +=可得3=M x ,故M 的坐标为)15,3(.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.【答案】(1)2或6;(2)存在,(1,0)P ,详见解析.【解析】(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上, 设圆的方程为222()()x a y a r -+-=,又4AB =,根据222AO MO r +=,得2242a r +=,∵M e 与直线20x +=相切,∴2a r +=,联解方程得0a =,2r =或4a =,6r =. (2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+,即22242x y x ++=+,化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线, 所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=.1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 【答案】A【解析】2321132232AB BC m k k m --+=⇒=⇒=+-. 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )高频易错题(45分钟)A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-= 【答案】B【解析】由抛物线的性质知AB 为通径,焦点坐标为(1,0),直径224R AB p ===,即2R =,所以圆的标准方程为22(1)4x y -+=.3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.【答案】12-【解析】易知曲线21(0)4y x x =≥是抛物线2:4C x y =的右半部分,如图,其焦点为(0,1)F ,准线1y =-,过点A 作AH ⊥准线,垂足为H ,则||||AH AF =, 因为||6||FB FA =,所以||5||AB AH =,||tan||AHABHBH∠===,故直线l的斜率为.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x yC a ba b+=>>,1(2,2)P,2P,3(2,3)P-,4(2,3)P四点中恰有三点在椭圆C上.(1)求C的方程;(2)已知点(0,1)E,问是否存在直线p与椭圆C交于M,N两点且||||ME NE=?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.【答案】(1)2211612x y+=;(2)存在,11(,)22-.【解析】(1)由于3P,4P两点关于y轴对称,故由题设知C经过34,P P两点,又由22224449a b a b+<+知C不经过点1P,所以点2P在C上.因此222221211649121abba b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪+=⎪⎩,所以C的方程为2211612x y+=.(2)假设存在满足条件的直线:p y kx m=+,设11(,)M x y,22(,)N x y.将直线:p y kx m=+与椭圆联立可得22222(34)8448011612y kx mk x kmx mx y=+⎧⎪⇒+++-=⎨+=⎪⎩.222222644(34)(448)01612k m k m k m∆=-+->⇒+>①,故122834kmx xk-+=+,212244834mx xk-=+,设MN 的中点为00(,)F x y ,故12024234x x km x k +-==+,002334my kx m k =+=+, 因为||||ME NE =,所以EF MN ⊥,所以1EF k k =-,所以22231341(43)434mk k m k km k -+⋅=-⇒=-+-+, 代入①得22242111612(43)1683022k k k k k +>+⇒+-<⇒-<<, 故存在直线p 使得||||ME NE =,且直线p 斜率的取值范围是11(,)22-.1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+= 【答案】B【解析】由题意得11(,)A x y ,22(,)B x y 两点的坐标都满足方程3420x y --=, 所以过11(,)A x y ,22(,)B x y 两点的直线方程是3420x y --=.2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.3精准预测题【答案】C【解析】由题可知a =,则3c e a ===. 3.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -= C .221(3)916x y x -=> D .221(4)169x y x -=> 【答案】C【解析】如图,||||8AD AE ==,||||2BF BE ==,||||CD CF =,所以|||||82610|CA CB AB -=-=<=.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,且0y ≠, 故轨迹方程为221(3)916x y x -=>. 4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.【答案】22(1)36x y -+=【解析】由题意知,P 在抛物线上,且F 的坐标为(1,0),则||55162p PF =+=+=, 故所求的圆的标准方程为22(1)36x y -+=.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____.【答案】【解析】设00(,)M x y ,∴2004y x =,∴0y =,∴0sin 60︒=,020043214x x x =++, ∴20031030x x -+=,解得0=3x 或013x =(舍去),∴4MF =, ∵MN MF =,60NMF ∠=︒,∴△MNF 为等边三角形,∴M 到NF直线的距离为42⨯=。
专题12 解析几何(2)解析几何大题:10年10考,每年1题.命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆.1.(2019年)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.2.(2018年)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.3.(2017年)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.4.(2016年)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(1)求OH ON;(2)除H以外,直线MH与C是否有其它公共点?说明理由.5.(2015年)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围; (2)若OM ⋅ON u u u u r u u u r =12,其中O 为坐标原点,求|MN |.6.(2014年)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.7.(2013年)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.8.(2012年)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.9.(2011年)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.10.(2010年)设F1,F2分别是椭圆E:x2+22yb=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.专题12 解析几何(2)详细解析解析几何大题:10年10考,每年1题.命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆.1.(2019年)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解析】(1)∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d,又|AB|=4,∴在Rt△OMB中,d2+(12|AB|)2=R2,即224R+=①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得R2a=⎧⎨=⎩或4R6a=⎧⎨=⎩,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.2.(2018年)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解析】(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,∴M(2,2)或M(2,﹣2),直线BM的方程:y=12x+1,或:y=﹣12x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得222y xx ty⎧=⎨=+⎩,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=112y x++222yx+=()()()222112121222222y yy y y yx x⎛⎫⨯+⨯++⎪⎝⎭++=()()()1212122222y yy yx x⎛⎫++⎪⎝⎭++=0,∴直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.3.(2017年)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解析】(1)设A(x1,214x),B(x2,224x)为曲线C:y=24x上两点,则直线AB的斜率为k=22121244x xx x--=14(x1+x2)=14×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=24x,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=24x的导数为y′=12x,设M(m,24m),可得M处切线的斜率为12m,由C在M处的切线与直线AB平行,可得12m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为221212114422x xx x--⋅--=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t =7.则直线AB 的方程为y =x +7.4.(2016年)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON ;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.【解析】(1)将直线l 与抛物线方程联立,解得P (22t p,t ), ∵M 关于点P 的对称点为N , ∴2x x N M +=22t p ,2y y N M +=t , ∴N (2t p,t ), ∴ON 的方程为y =p tx , 与抛物线方程联立,解得H (22t p,2t ) ∴OHON =y y HN =2;(2)由(1)知k MH =2p t, ∴直线MH 的方程为y =2p t x +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0, ∴△=16t 2﹣4×4t 2=0,∴直线MH 与C 除点H 外没有其它公共点.5.(2015年)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围; (2)若OM ⋅ON u u u u r u u u r =12,其中O 为坐标原点,求|MN |.【解析】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程为y =kx +1,即kx ﹣y +1=0.由已知可得圆C 的圆心C 的坐标(2,3),半径R =1.1,kA (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点. (2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1, 可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=()2411k k ++,x 1•x 2=271k +, ∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=271k +•k 2+k •()2411k k +++1=2212411k k k +++, 由OM ⋅ON u u u u r u u u r =x 1•x 2+y 1•y 2=2212481k k k+++=12,解得 k =1, 故直线l 的方程为 y =x +1,即 x ﹣y +1=0.圆心C 在直线l 上,MN 长即为圆的直径.所以|MN |=2.6.(2014年)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【解析】(1)由圆C :x 2+y 2﹣8y =0,得x 2+(y ﹣4)2=16,∴圆C 的圆心坐标为(0,4),半径为4. 设M (x ,y ),则()C ,4x y M =-u u u u r ,()2,2x y MP =--u u u r .由题意可得:C 0M ⋅MP =u u u u r u u u r .即x (2﹣x )+(y ﹣4)(2﹣y )=0.整理得:(x ﹣1)2+(y ﹣3)2=2.∴M 的轨迹方程是(x ﹣1)2+(y ﹣3)2=2.(2)由(1)知M 的轨迹是以点N (1,3由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .∵k ON =3,∴直线l 的斜率为﹣13. ∴直线PM 的方程为()1223y x -=--,即x +3y ﹣8=0. 则O 到直线l= 又N 到l5= ∴|PM |=5=.∴1162555S ∆POM =⨯=. 7.(2013年)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【解析】(1)由圆M :(x +1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3.设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,∴a =2,c =1,b 2=a 2﹣c 2=3. ∴曲线C 的方程为22143x y +=(x ≠﹣2).(2)设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0),R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,则1Q R Q r P =M ,可得Q (﹣4,0),所以可设l :y =k (x +4), 由l 于M1=,解得4k =±.当4k =时,联立224143y x x y ⎧=⎪⎪⎨⎪+=⎪⎩,得到7x 2+8x ﹣8=0. ∴1287x x +=-,1287x x =-. ∴|AB |21x -187=,由于对称性可知:当k =|AB |=187. 综上可知:|AB |=187. 8.(2012年)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【解析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p点A 到准线l的距离F F d =A =B =,∵△ABD 的面积S △ABD=∴11D 222d p ⨯B ⨯=⨯= 解得p =2,所以F 坐标为(0,1), ∴圆F 的方程为x 2+(y ﹣1)2=8.(2)由题设200,2x x p ⎛⎫A ⎪⎝⎭(00x >),则F 0,2p ⎛⎫ ⎪⎝⎭, ∵A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:200,2x x p p ⎛⎫B -- ⎪⎝⎭2022x p p p ⇒-=-2203x p ⇒=,得:3,2p ⎫A ⎪⎭,直线m:32p p p y x -=+02x ⇒+=, 22x py =22x y p ⇒=3x y p '⇒==x ⇒=⇒切点,36p ⎛⎫P ⎪ ⎪⎝⎭, 直线n:6p y x -=⎝⎭06x p ⇒-=, 坐标原点到m ,n3=. 9.(2011年)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x ﹣y +a =0交与A ,B 两点,且OA ⊥OB ,求a 的值.【解析】(1)法一:曲线y =x 2﹣6x +1与y 轴的交点为(0,1),与x 轴的交点为(,0),(3﹣,0).可知圆心在直线x =3上,故可设该圆的圆心C 为(3,t ),则有32+(t ﹣1)2=()2+t 2,解得t =1,故圆C3=,所以圆C 的方程为(x ﹣3)2+(y ﹣1)2=9. 法二:圆x 2+y 2+Dx +Ey +F =0, x =0,y =1有1+E +F =0,y =0,x 2 ﹣6x +1=0与x 2+Dx +F =0是同一方程,故有D =﹣6,F =1,E =﹣2,即圆方程为x 2+y 2﹣6x ﹣2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组()()220319x y a x y -+=⎧⎪⎨-+-=⎪⎩,消去y ,得到方程2x 2+(2a ﹣8)x +a 2﹣2a +1=0,由已知可得判别式△=56﹣16a ﹣4a 2>0. 在此条件下利用根与系数的关系得到x 1+x 2=4﹣a ,x 1x 2=2212a a -+①, 由于OA ⊥OB 可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以可得2x 1x 2+a (x 1+x 2)+a 2=0② 由①②可得a =﹣1,满足△=56﹣16a ﹣4a 2>0.故a =﹣1. 10.(2010年)设F 1,F 2分别是椭圆E :x 2+22y b =1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.【解析】(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4,又2|AB |=|AF 2|+|BF 2|,得43AB =. (2)l 的方程式为y =x +c,其中c =设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩,化简得(1+b 2)x 2+2cx +1﹣2b 2=0. 则12221c x x b-+=+,2122121b x x b -=+. 因为直线AB 的斜率为1,所以21x AB =-,即2143x =-. 则()()()()()2242121222222414128849111b b b x x x x b b b --=+-=-=+++.解得2b =.。
专题08解析几何-2020年高考数学(文)二轮专项复习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(专题08解析几何-2020年高考数学(文)二轮专项复习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为专题08解析几何-2020年高考数学(文)二轮专项复习的全部内容。
专题08 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式.【例题分析】例1 解下列方程或不等式:(1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4.略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3,则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x =4或x =2.(2)与(1)类似,如图8-1-2,图8-1-2则|x -3|≤4表示直线坐标系上点A 到点B 的距离小于或等于4,所以,原不等式的解集为{x |-1≤x ≤7}.(3)与(2)类似,解不等式1<|x -3|,得解集{x |x >4,或x <2},将此与不等式|x -3|≤4的解集{x |-1≤x ≤7}取交集,得不等式1<|x -3|≤4的解集为{x |-1≤x <2,或4<x ≤7}.【评析】解绝对值方程或不等式时,如果未知数x 的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x -a |的几何意义:表示数轴(直线坐标系)上点A (x )到点B (a )的距离.例2 已知矩形ABCD 及同一平面上一点P ,求证:PA 2+PC 2=PB 2+PD 2.解:如图8-1-3,以点A 为原点,以AB 为x 轴,向右为正方向,以AD 为y 轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB =a ,AD =b ,则 A (0,0),B (a ,0),C (a ,b ),D (0,b ),设P (x ,y ), 则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+ =x 2+y 2+(x -a )2+(y -b )2,所以PA 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|PA |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a40)2(2++-=a , 即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0).(3)设M (x ,y ,0),则有,4)0()2()10()2()1(22222+-+-=++-+-y x y x整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0.【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )A .-4B .4C .-12D .12 2.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量AB 的数量的最小值为( )A .21B .0C .41D .41 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( )A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______.6.点A (2,3)关于点B (-4,1)的对称点为______.7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______.图8-1-4三、解答题9.求证:平行四边形ABCD满足AB2+BC2+CD2+DA2=AC2+BD2.10.求证:以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A(1,3),B(4,5),点P在x轴上,求|PA|+|PB|的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程.....,这条直线叫做这个方程的直线...... 2.直线的倾斜角和斜率x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x 轴平行或重合的直线的倾斜角为零度角.因此,倾斜角的取值范围是0°≤<180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率⋅--=1212x x y y k 倾斜角为90°的直线的斜率不存在,倾斜角为的直线的斜率k =tan (≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1);斜截式:y =kx +b ;两点式:);,(2121121121y y x x x x x x y y y y =/=/--=-- 一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则(1)l 1与l 2相交⇔A 1B 2-A 2B 1≠0或)0(222121=/=/B A B B A A (2)l 1与l 2平行⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C C B B A A C A C A B C C B B A B A 或或而(3)l 1与l 2重合⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212*********C B A C C B B A A C C B B A A 或λλλλ 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交⇔k 1≠k 2;l 1∥l 2⇔k 1=k 2,b 1≠b 2;l 1与l 2重合⇔k 1=k 2,b 1=b 2.5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔A 1A 2+B 1 B 2=0.当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1.6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式⋅+++=2211||B A C By Ax d【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标.【例题分析】例1(1)直线082=-+y x 的斜率是______,倾斜角为______; (2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.略解:(1)直线082=-+y x 可以化简为,22822+-=x y所以此直线的斜率为22-,倾斜角;22tan arc π-=α(2)如图8-2-1,设直线AC 的倾斜角为,图8-2-1因为此直线的斜率为341213=++=AC k ,所以;34tan =α设直线BC 的倾斜角为,因为此直线的斜率为,231312-=+-+=BC k 所以⋅-=23tan β因为直线l 与线段AB 相交,所以直线l 的倾斜角满足≤≤, 由正切函数图象,得tan ≥tan 或tan ≤tan ,故l 斜率k 的取值范围为]23,[],34[-∞+∞∈ k .【评析】(1)求直线的斜率常用方法有三种:①已知直线的倾斜角,当≠90°时,k =tan ;②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =1212x x y y --; ③已知直线的方程Ax +By +C =0,当B ≠0时,k =B A -. (2)已知直线的斜率k 求倾斜角时,要注意当k 〉0时,=arctan k ;当k 〈0时,=-arctan|k |.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等; (2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍),令y =0,得x =2-k3(k ≠0);令x =0,得y =3-2k , 由题意,得2-k 3=3-2k ,解得k =23或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0;(2)设所求直线方程为y -1=k (x +2)或x =-2,当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得1|122|2++++-k k k =1,解得34-=k , 所以,直线03534=---y x ,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意.所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值;(2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4),解得m =2或m =-1或m =-4,验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0,解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直;当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-22-+m m ,k 2=m m 42-,截距b 1=-21+m ,b 2=m 3-, 若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4,若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2;(2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率"的情况),解题过程中要注意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组⎩⎨⎧=-+=--03013y x y x 得交点(1,2), 由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为215323-=--=AB k ,此时)1(212:--=-x y l ,即x +2y -5=0; ②当l 过AB 的中点时,因为AB 的中点坐标为),25,4(M 所以,1412252:--=--x y l 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围.解法一:解方程组⎩⎨⎧=++=52y x k kx y ,得交点),1255,125(+--+-k k k k由题意,得⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k ,解得⋅<<250k 解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0),因为,0,252005==+-=BP AP k k 由题意,得⋅<<250k 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则),4(4044:---=-x ay l 将y =4x 代入直线l 的方程,得点A 的坐标为),3)(34,3(>--a a a a a 则△ABO 的面积,121)611(3234212+--=-⨯⨯=a a a a S 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为53,则l 的斜率k 是( ) A .43- B .43 C .43-或43 D .34或34- 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“21=m ”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直"的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.若直线3:-=kx y l 与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .)3π,6π[B .)2π,3π(C )2π,6π(.D .]2π,6π[ 二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______.6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______.7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______.8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则ba 11 的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).(1)求|PA |的最小值;(2)若|PA |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程.11.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C 的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x,y)叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x-2y+a=0的上方,则实数a的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是______.解:(1)将直线化为,223a x y += 由题意,得23231a +⨯>,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反,则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1),02210⎪⎩⎪⎨⎧≥+-->≤y x y x (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以⎩⎨⎧<->+0202b a b a 或⎩⎨⎧>-<+0202b a b a ,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x 求:(1)z 1=x +y 的最大值;(2)z 2=x -y 的最大值;(3)z 3=x 2+y 2的最小值;(4)14-=x y z 的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5;(2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值2)52(,即z 3有最小值;54 (4)1-x y 可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞).【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是( )(A )80 (B )85 (C )90 (D )95略解:由题意,根据已知不等式组及⎩⎨⎧≥≥00y x 可得到点(x ,y )的可行域.如图8-3-4.图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得),29,211(M 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值,所以,z max =10×5+10×4=90,选C .【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x y x上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M )720,712(,此时z 取到最大值71290⨯.440720100=⨯+ 答:当每天提供甲原料712吨,乙原料720吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域;(2)试利用(1)所得的区域,求f (-2)的取值范围.解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴⎩⎨⎧≤+≤≤-≤.42,21b a b a 即⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a b a 如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1),此时f (-2)取到最大值4×3-2×1=10.同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得),21,23(C此时f (-2)取到最小值.5212234=⨯-⨯ 所以5≤f (-2)≤10.【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( )A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( )A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x 则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北)2π0(≤≤α方向行走-段时间后,再向正北方向行走一段时间,但的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7A .⎩⎨⎧≤≤≤≤200200y xB .⎩⎨⎧≥+≤+2040022y x y xC .⎪⎩⎪⎨⎧≥≥≤+0040022y x y x D .⎪⎩⎪⎨⎧≤≤≥+202020y x y x二、填空题5.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x 表示的平面区域的面积是______.6.若实数x 、y 满足⎪⎩⎪⎨⎧≤>≤+-2001x x y x ,则x y 的取值范围是______. 7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x 内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(%100⨯=投资额盈利额盈利率),可能的最大亏损率分别为30%和10%(投资额亏损额亏损率= %100⨯),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1。
考点过关检测(十九)1.(2020届高三·唐山联考)已知F 为抛物线E :y 2=4x 的焦点,过点P (0,2)作两条互相垂直的直线m ,n ,直线m 交E 于不同的两点A ,B ,直线n 交E 于不同的两点C ,D ,记直线m 的斜率为k .(1)求k 的取值范围;(2)设线段AB ,CD 的中点分别为点M ,N ,证明:直线MN 过定点Q (2,0).解:(1)由题设可知k ≠0,所以直线m 的方程为y =kx +2,与y 2=4x 联立,整理得ky 2-4y +8=0.①由Δ1=16-32k >0,解得k <12. 直线n 的方程为y =-1kx +2,与y 2=4x 联立, 整理得y 2+4ky -8k =0,由Δ2=16k 2+32k >0,解得k >0或k <-2.所以k <-2或0<k <12, 故k 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12. (2)证明:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).由①得,y 1+y 2=4k ,则y 0=2k ,x 0=2k 2-2k, 所以M ⎝ ⎛⎭⎪⎫2k 2-2k ,2k . 同理可得N (2k 2+2k ,-2k ).直线MQ 的斜率k MQ =2k 2k 2-2k-2=-k k 2+k -1, 直线NQ 的斜率k NQ =-2k 2k 2+2k -2=-k k 2+k -1=k MQ , 所以直线MN 过定点Q (2,0).2.(2019·兰州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的一个端点与其两个焦点构成面积为3的直角三角形.(1)求椭圆C 的方程;(2)过圆E :x 2+y 2=2上任意一点P 作圆E 的切线l ,l 与椭圆C 交于A ,B 两点,以AB为直径的圆是否过定点,若过定点,求出该定点;若不过定点,请说明理由.解:(1)因为椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以b =c ,12·2c ·b =b 2=3,又因为a 2=b 2+c 2,所以a 2=6,b 2=3.故椭圆C 的方程为x 26+y 23=1. (2)圆E 的方程为x 2+y 2=2,设O 为坐标原点,①当直线l 的斜率不存在时,不妨设直线AB 的方程为x =2,A (2,2),B (2,-2),所以∠AOB =90°,所以以AB 为直径的圆过坐标原点O (0,0).②当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).因为直线与相关圆相切,所以d =|m |1+k 2=m 21+k 2=2,所以m 2=2+2k 2. 联立方程组⎩⎪⎨⎪⎧ y =kx +m ,x 26+y 23=1消去y ,得(1+2k 2)x 2+4kmx +2m 2-6=0, 则Δ=16k 2m 2-4(1+2k 2)(2m 2-6)=8(6k 2-m 2+3)=8(4k 2+1)>0,且x 1+x 2=-4km 1+2k2,x 1x 2=2m 2-61+2k2, 所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(2m 2-6)1+2k 2-4k 2m 21+2k 2+m 2=3m 2-6k 2-61+2k2=0, 所以OA →⊥OB →,所以以AB 为直径的圆恒过坐标原点O (0,0).综合①②可知,以AB 为直径的圆恒过坐标原点O (0,0).3.(2019·柳州联考)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为5.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (t,4),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.解:(1)由题意知抛物线C 的焦点在x 轴的正半轴上,可设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p 2, ∵P (4,m )到焦点的距离等于点P 到准线的距离,∴4+p 2=5,∴p =2. ∴抛物线C 的方程为y 2=4x .(2)把M (t,4)代入抛物线C 的方程,得16=4t ,∴t =4,∴M (4,4).由题易知直线DE 的斜率不为0,设直线DE 的方程为x =ky +n ,联立⎩⎪⎨⎪⎧ x =ky +n ,y 2=4x 消去x ,得y 2-4ky -4n =0, Δ=16k 2+16n >0,①设D (x 1,y 1),E (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4n .∵MD ⊥ME ,∴MD →·ME →=(x 1-4,y 1-4)·(x 2-4,y 2-4)=x 1x 2-4(x 1+x 2)+16+y 1y 2-4(y 1+y 2)+16=y 214·y 224-4⎝ ⎛⎭⎪⎫y 214+y 224+16+y 1y 2-4(y 1+y 2)+16 =(y 1y 2)216-(y 1+y 2)2+3y 1y 2-4(y 1+y 2)+32 =n 2-16k 2-12n +32-16k =0,即n 2-12n +32=16k 2+16k ,得(n -6)2=4(2k +1)2,∴n -6=±2(2k +1),得n =4k +8或n =-4k +4,当n =4k +8时,代入①式满足Δ>0,∴直线DE 的方程为x =ky +4k +8=k (y +4)+8,直线过定点(8,-4).当n =-4k +4时,代入①式,当k ≠2时,Δ>0,此时直线DE 的方程为x =k (y -4)+4,直线过定点(4,4),不合题意,舍去.∴直线过定点(8,-4). 4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎪⎫1,22,且两焦点与短轴的一个端点的连线构成等腰直角三角形.(1)求椭圆的方程.(2)动直线l :mx +ny +13n =0(m ,n ∈R )交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T .若存在.求出点T 的坐标;若不存在,请说明理由.解:(1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴a =2b ,∴x 22b 2+y 2b 2=1. 又∵椭圆经过点P ⎝ ⎛⎭⎪⎫1,22,将点P 的坐标代入椭圆方程得b 2=1,∴a 2=2,故椭圆方程为x 22+y 2=1. (2)由题意动直线l 过点⎝ ⎛⎭⎪⎫0,-13. 当l 与x 轴平行时,以AB 为直径的圆的方程为 x 2+⎝ ⎛⎭⎪⎫y +132=⎝ ⎛⎭⎪⎫432; 当l 与y 轴平行时,以AB 为直径的圆的方程为x 2+y 2=1.由⎩⎪⎨⎪⎧ x 2+⎝ ⎛⎭⎪⎫y +132=⎝ ⎛⎭⎪⎫432,x 2+y 2=1,解得⎩⎪⎨⎪⎧ x =0,y =1,即两圆相切于点(0,1),因此,如果所求的点T 存在,只能是(0,1),下证点T (0,1)就是所求的点.证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (0,1).当直线l 不垂直于x 轴,可设直线l :y =kx -13. 由⎩⎪⎨⎪⎧ y =kx -13,x 22+y 2=1消去y 并整理,得(18k 2+9)x 2-12kx -16=0. 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9. 又∵TA →=(x 1,y 1-1),TB →=(x 2,y 2-1),∴TA →·TB →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+⎝⎛⎭⎪⎫kx 1-43⎝ ⎛⎭⎪⎫kx 2-43 =(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)·-1618k 2+9-43k ·12k 18k 2+9+169=0. ∴TA ⊥TB ,即以AB 为直径的圆恒过点T (0,1), ∴在坐标平面上存在一个定点T (0,1)满足条件.。
教学资料范本【2020最新】人教版最新高考文科数学解析几何练习题及参考答案编辑:__________________时间:__________________(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.掌握双曲线的定义、标准方程和双曲线的简单几何性质.掌握抛物线的定义、标准方程和抛物线的简单几何性质.了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是双曲线及其标准方程双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,.双曲线的内外部点在双曲线的内部.点在双曲线的外部.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.若渐近线方程为双曲线可设为.若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).双曲线的切线方程双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。
专题突破练19专题五立体几何过关检测一、选择题1.(2019河南开封一模,文5)已知直线m,n和平面α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.3.(2019湘赣十四校联考二,文6)已知直线l⊥平面α,直线m⊂平面β,则下列四个结论:①若α∥β,则l ⊥m;②若l⊥β,则m∥α;③若l∥m,则α⊥β;④若m∥α,则l⊥β.其中正确的结论的个数是()A.0B.1C.2D.34.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.85.(2019河北石家庄二模,文8)设l表示直线,α,β,γ表示不同的平面,则下列命题正确的是()A.若l∥α,且α⊥β,则l⊥βB.若γ∥α,且γ∥β,则α∥βC.若l∥α,且l∥β,则α∥βD.若γ⊥α,且γ⊥β,则α∥β6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(2019安徽淮南一模,文8)某圆锥的侧面展开图是面积为3π,圆心角为的扇形,则该圆锥的母线与底面所成的角的余弦值为()A. B. C. D.8.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.9.(2019山东淄博一模,文7)一个底面是正三角形,侧棱和底面垂直的三棱柱,其三视图如图所示.若该三棱柱的外接球的表面积为124π,则侧视图中的x的值为()A. B.9 C.3 D.310.(2019湖南六校联考,文11)如图,在平面四边形ABCD中,E,F分别是AD,BD的中点,AB=AD=CD=2,BD=2,∠BDC=90°,将△ABD沿对角线BD折起至△A'BD,使平面A'BD⊥平面BCD,则在四面体A'BCD中,下列结论不正确的是()A.EF∥平面A'BCB.异面直线CD与A'B所成的角为90°C.异面直线EF与A'C所成的角为60°D.直线A'C与平面BCD所成的角为30°11.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.812.(2019湘赣十四校联考二,文10)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,底面是边长为的正三角形,且该三棱柱外接球的表面积为7π,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A. B. C. D.二、填空题13.已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.14.(2019天津卷,文12)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.15.在三棱锥D-ABC中,CD⊥底面ABC,AC⊥BC,AB=BD=5,BC=4,则此三棱锥的外接球的表面积为.16.(2019河北石家庄二模,文16)在三棱锥P-ABC中,底面ABC是等边三角形,侧面PAB是直角三角形,且PA=PB=2,PA⊥BC,则该三棱锥外接球的表面积为.三、解答题17.(2019江苏卷,16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.18.如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.19.(2019山东泰安二模,文18)如图,在四棱锥P-ABCD中,∠PDA=90°,∠PDC=120°,AD∥BC,∠BCD=90°,△ABD是等边三角形,E是PA的中点,PD=2,AB=2.(1)求证:AD⊥BE;(2)求三棱锥P-ABD的体积.20.(2019湖南长郡中学适应考试一,文19)如图,在多边形ABPCD中(图1),ABCD为长方形,△BPC为正三角形,AB=3,BC=3,现以BC为折痕将△BPC折起,使点P在平面ABCD内的射影恰好在AD上(图2).(1)证明:PD⊥平面PAB;(2)若点E在线段PB上,且PE=PB,当点Q在线段AD上运动时,求三棱锥Q-EBC的体积. 21.(2019天津卷,文17)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.22.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.参考答案专题突破练19专题五立体几何过关检测1.D解析当“m∥n”时,推不出“m∥α”,也有可能m⊂α,故充分性不成立;当“m∥α”时,直线m,n的位置关系也可能异面,故必要性也不成立.故选D.2.D解析=a3,V截去部分由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a,则V正方体=a3,故截去部分体积与剩余部分体积的比值为.3.D解析已知直线l⊥平面α,直线m⊂平面β,若α∥β,则l⊥平面β,所以l⊥m,①正确;已知直线l⊥平面α,若l⊥β,则平面α∥平面β,又直线m⊂平面β,故m∥α,②正确;已知直线l⊥平面α,直线m⊂平面β,若l∥m,则m⊥平面α,所以α⊥β,③正确;已知直线l⊥平面α,直线m⊂平面β,若m∥α,则α∥β不一定成立,所以l⊥β也不一定成立,④不正确.4.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2×πr2+πr×2r+×4πr2=5πr2+4r2=16+20π,解得r=2.5.B解析在A中,若l∥α且α⊥β,则l与β可能相交、平行或l⊂β;在B中,若γ∥α且γ∥β,则α∥β;在C中,若l∥α且l∥β,则α与β相交或平行;在D中,若γ⊥α且γ⊥β,则α与β相交或平行,故选B.6.A解析由三视图可知该几何体是球截去后所得几何体,则×R3=,解得R=2,所以它的表面积为×4πR2+×πR2=14π+3π=17π.7.B解析由圆锥的侧面展开图是面积为3π,圆心角为的扇形,可知圆锥的母线l满足l2×πl2=3π.故l=3.又由2πr=l×,得r=1,所以该圆锥的母线与底面所成的角的余弦值为.故选B.8.B解析由题意知要使球的体积最大,则它与直三棱柱的若干个面相切.设球的半径为R,易得△ABC的内切球的半径为=2,则R≤2.又因为2R≤3,所以R≤,所以V max=,故选B.9.A解析将三视图还原后,可得如图所示的正三棱柱ABC-A1B1C1.O为外接球球心,O1为△ABC外接圆圆心,由球的性质,可知OO1⊥平面ABC,球的表面积S=4πR2=124π,则R2=31,即OB2=31.由题意,可知BO1=BD=x,OO1=×4=2.又B+O=OB2,则x2+4=31,解得x=.10.C解析因为E,F分别为A'D,BD的中点,所以EF∥A'B,所以EF∥平面A'BC,故A正确;因为平面A'BD⊥平面BCD,交线为BD,且CD⊥BD,所以CD⊥平面A'BD,所以CD⊥A'B,故B正确;取CD边中点M,连接EM,FM(图略),则EM∥A'C,所以∠FEM为异面直线EF与A'C所成角,又EF=1,EM=,FM=,所以EF2+EM2=FM2,即∠FEM=90°,故C错误;连接A'F(图略),可得A'F⊥平面BCD,连接CF,则∠A'CF为A'C与平面BCD所成角,又sin∠A'CF=,所以直线A'C与平面BCD所成的角为30°,故D正确.11.C解析在长方体ABCD-A1B1C1D1中,AB⊥平面BCC1B1,连接BC1,则∠AC1B为AC1与平面BB1C1C所成的角,∠AC1B=30°,所以在Rt△ABC1中,BC1==2,又BC=2,所以在Rt△BCC1中,CC1==2,所以该长方体的体积V=BC·CC1·AB=8.12.B解析如图所示,P为正三角形A1B1C1的中心,设O为△ABC的中心,由题意知,PO⊥平面ABC,连接OA,则∠PAO即为PA与平面ABC所成的角.易知OP的中点为三棱柱外接球的球心,又7π=4πr2,∴r2=,∴AO2+2=.在正三角形ABC中,AB=BC=AC=,∴AO==1,∴PO=.∴tan∠PAO=,∴∠PAO=.13.解析如图,设球O的半径为R,则AH=,OH=.∵π·EH2=π,∴EH=1.在Rt△OEH中,R2=+12,∴R2=.∴S球=4πR2=.14.解析如图,由底面边长为,可得OC=1.设M为VC的中点,则O1M=OC=,O1O=VO,VO==2,∴O1O=1.∴V=π·O1M2·O1O=π×2×1=.圆柱15.34π解析由题意,在三棱锥D-ABC中,CD⊥底面ABC,AC⊥BC,AB=BD=5,BC=4,可得AC=CD==3,故三棱锥D-ABC的外接球的半径R=,则其表面积为4π×2=34π.16.12π解析∵PA=PB,△PAB是直角三角形,∴PA⊥PB.又PA⊥BC,PB∩BC=B,∴PA⊥平面PBC,∴PA⊥PC.在Rt△PAB中,AB==2.∵△ABC是等边三角形,∴AC=BC=AB=2.在Rt△PAC中,PC==2.在△PBC中,PB2+PC2=BC2,∴PB⊥PC.∴该三棱锥外接球的半径R=,其表面积为4πR2=12π.17.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.18.(1)证明因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.连接OB,因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)解作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=AC=2,CM=BC=,∠ACB=45°.所以OM=,CH=.所以点C到平面POM的距离为.19.(1)证明取AD中点F,连接BF,EF.∵E,F分别为AP,AD的中点,AD⊥PD,∴AD⊥EF.又△ABC是正三角形,∴AD⊥BF.∵BF∩EF=F,∴AD⊥平面BEF.又BE⊂平面BEF,∴AD⊥BE.(2)解∵AD∥BC,∠BCD=90°,∴AD⊥CD.∵AD⊥PD,PD∩CD=D,∴AD⊥平面PCD.又AD⊂平面ABCD,∴平面ABCD⊥平面PCD.过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD.在直角三角形PDH中,∠PDH=60°,PD=2,∴PH=,∴V P-ABD=S△ABD×PH=×(2)2×=3.20.解(1)过点P作PO⊥AD,垂足为O.由于点P在平面ABCD内的射影恰好在AD上,∴PO⊥平面ABCD.∴PO⊥AB.∵四边形ABCD为矩形,∴AB⊥AD.又AD∩PO=O,∴AB⊥平面PAD,∴AB⊥PA,AB⊥PD.又由AB=3,PB=3,可得PA==3,同理PD=3.又AD=3,∴PA2+PD2=AD2,∴PA⊥PD,且PA∩AB=A,∴PD⊥平面PAB.(2)设点E到底面QBC的距离为h,则V Q-EBC=V E-QBC=S△QBC×h.由PE=PB,可知,∴,得h=.=×BC×AB=×3×3=,又S△QBC∴V Q-EBC=S△QBC×h==3.21.(1)证明连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明取棱PC的中点N,连接DN,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)解连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=,又DN⊥AN,在Rt△AND 中,sin∠DAN=.所以,直线AD与平面PAC所成角的正弦值为.22.(1)证明连接A1B,在△A1BC中,∵E和F分别是BC和A1C的中点,∴EF∥A1B.又∵A1B⊂平面A1B1BA,EF⊄平面A1B1BA,∴EF∥平面A1B1BA.(2)证明∵AB=AC,E为BC中点,∴AE⊥BC.∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC.∴BB1⊥AE.又∵BC∩BB1=B,∴AE⊥平面BCB1.又∵AE⊂平面AEA1,∴平面AEA1⊥平面BCB1.(3)解取BB1中点M和B1C中点N,连接A1M,A1N,NE,∵N和E分别为B1C和BC的中点,∴NE B1B,∴NE A1A,∴四边形A1AEN是平行四边形,∴A1N AE.又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,∴∠A1B1N即为直线A1B1与平面BCB1所成角,在△ABC中,可得AE=2, ∴A1N=AE=2.∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB.又由AB⊥BB1,∴A1M⊥BB1,在Rt△A1MB1中,A1B1==4,在Rt△A1NB1中,sin∠A1B1N=,∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°.。
专题08 解析几何一、选择题1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[2,6]B .[4,8]C .D .A 【解析】圆心(2,0)到直线的距离d ==所以点P 到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB =ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A . 2.圆22(1)2x y ++=的圆心到直线3y x =+的距离为A .1B .2CD .C 【解析】圆心坐标为(1,0)-,由点到直线的距离公式可知d ==,故选C. 3.已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是A .内切B .相交C .外切D .相离B 【解析】由2220x y ay +-=(0a >)得()222x y a a +-=(0a >),所以圆M 的圆心为()0,a ,半径为1r a =,因为圆M 截直线0x y +=所得线段的长度是,=,解得2a =,圆N 的圆心为()1,1,半径为21r =,所以MN ==123r r +=,121r r -=,因为1212r r r r -<MN <+,所以圆M 与圆N 相交,故选B .4.圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =A .−43 B .−34C D .2A 【解析】由题意知圆心为(1,4)1=,解得43a =-,故选A .5.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D C 【解析】不妨设0a >,因为椭圆C 的一个焦点为(20),,所以2c =,所以222448a b c =+=+=,所以C 的离心率为2c e a ==.故选C . 6.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 1D 【解析】由题设知1290F PF ∠=o,2160PF F ∠=︒,12||2F F c =,所以2||PF c =,1||PF =.由椭圆的定义得12||||2PF PF a +=2c a +=,所以1)2c a =,故椭圆C 的离心率1c e a ===.故选D . 7.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .C 【解析】由题意25=a ,=a P 到该椭圆的两个焦点的距离之和为2=a 故选C .8.椭圆22194x y +=的离心率是A .B C .23 D .59B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B .9.已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .13A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A .10.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞UA 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60a b ≥=o ≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab ≥=o ≥, 得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,选A .11.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .34B 【解析】不妨设直线l 过椭圆的上顶点(0,)b 和左焦点(,0)c -,0,0b c >>,则直线l 的方程为0bx cy bc -+=,由已知得124b =⨯,解得223b c =,又222b ac =-,所以2214c a =,即12e =,故选B .12.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .34A 【解析】由题意,不妨设点P 在x 轴上方,直线l 的方程为()(0)y k x a k =+>,分别令x c =-与0x =,得||()FM k a c =-,||OE ka =,设OE 的中点为G ,由OBG FBM ∆∆:,得||||||||OG OB FM BF =,即2()ka a k a c a c =-+,整理得13c a =, 所以椭圆C 的离心率13e =,故选A . 13.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .14.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .=y xA 【解析】解法一 由题意知,==c e a ,所以=c ,所以==b ,所以=ba以该双曲线的渐近线方程为=±=by x a,故选A .解法二 由===c e a ,得=b a 所以该双曲线的渐近线方程为=±=b y x a.故选A .15.(2018全国卷Ⅲ)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为AB .2C .2D .D 【解析】解法一 由离心率ce a==c =,又222b c a =-,得b a =,所以双曲线C 的渐近线方程为y x =±,由点到直线的距离公式,得点(4,0)到C=.故选D .解法二 离心率e =y x =±,由点到直线的距离公式,得点(4,0)到C=D . 16.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -= B .22193x y -= C .221412x y -= D .221124x y -= A 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a +=,所以2294a a +=,解得23a =,所以双曲线的方程为22139x y -=,故选A .优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a +=,所以2294a a +=,解得23a =,所以双曲线的方程为22139x y -=,故选A . 17.已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为A .13 B .12 C .23 D .32D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=, 得(2,3)P ±,所以||3PF =,又A 的坐标是(1,3),所以点A 到PF 的距离为1, 故APF ∆的面积为133(21)22⨯⨯-=,选D . 18.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= D 【解析】由题意,2222tan 60c c a b ba⎧⎪=⎪=+⎨⎪⎪=⎩o ,解得21a =,23b =,选D .19.过抛物线C :24y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为AB. C. D.C 【解析】由题意可知,如图60MFx ∠=o,又抛物线的定义得MF MN =,所以MNF ∆ 为等边三角形,在三角形NFH 中,2FH =,cos 60FHNF=o ,得4NF =,所以M 到NF 的距离为等边三角形MNF ∆中NF边上的高,易知为2NF =C .20.设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = A .12 B .1 C .32D .2D 【解析】易知抛物线的焦点为(1,0)F ,设(,)P P P x y ,由PF x ⊥轴得1P x =,代入抛物线方程得2P y =(2-舍去),把(1,2)P 代入曲线(0)ky k x=>的2k =,故选D . 21.已知抛物线2C: 2(0)y px p =>的焦点F 到准线的距离为2,点P 在抛物线上,且3||2PF =,延长PF 交C 于点Q ,则OPQ ∆的面积为( )A.2 B.4 C.8 D.16【答案】A 【解析】由题意知p=2,抛物线方程为:24y x =①,点F(1,0),设点P 11(,)x y ,点Q 22(,)x y , 因为131||22PF x p ==+,解得112x =,又点P在抛物线上,则1y =不妨设1(2P ,则直线PF的方程为:y =-+②联立①②可得:240y +-=,解得12y y ==-121()22OPQ S OF y y ∆=+=故选:A22.过抛物线2:4C y x =焦点的直线交该抛物线C 于点A ,B ,与抛物线C 的准线交于点P .若点P 到x 轴距离为2,则(PA PB =u u u r u u u rg )A .16B .12C .8D .18【答案】A 【解析】解:由题意知:抛物线的焦点(1,0)F ,准线方程1x =-,由题意设(1,2)P -,这时2111AB k ==---,设直线AB 的方程为1x y =-+,设(,)A x y ,(,)B x y ''联立与抛物线的方程整理得:2440y y +-=,4y y '+=-,4yy '=-,426x x '+=+=,2()116yy xx ''==,()()1,21,2PA PB x y x y ''=+-+-u u u r u u u rg g ()12()416148416xx x x yy y y ''''=++++-++=++-++=,故选:A .23.已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于,A B 两点.若223AF BF =,125BF BF =,则C 的方程为( ).A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】A 【解析】解:22||3||AF BF =Q ,2||4||AB BF ∴=,又125BF BF =,又12||||2BF BF a +=,23||aBF ∴=, 2||AF a ∴=,1||53BF a=,12||||2AF AF a +=Q ,1||AF a ∴=,12||||AF AF ∴=,A ∴在y 轴上. 在Rt △2AF O 中,21cos AF O a ∠=,在△12BF F 中,由余弦定理可得222154()()33cos 223a a BF F a+-∠=⨯⨯,根据221cos cos 0AF O BF F ∠+∠=,可得21320a a a -+=,解得22a =, 222211b a c =-=-=.所以椭圆C 的方程为:2212x y +=.故选:A .24.已知抛物线24x y =-的焦点为F ,A 是抛物线上异于坐标原点的任意一点,以F 为圆心,AF 为半径的圆交y 轴负半轴于点B .平行于AB 的直线l 与抛物线相切于点D ,设A ,D 两点的横坐标分别为Ax 和Dx ,则A D x x ⋅=( ) A. -4 B. 2C. -2D. 4【答案】A 【解析】(,),(,)A A D D A x y D x y ,抛物线24x y =-准线方程为1y =,||1AAF y ∴=-,以抛物线焦点(0,1)F -为圆心,AF 为半径的圆方程为222(1)(1)A x y y ++=-,令0,0A x y y ==->或2A y y =-, 点B 在y 轴负半轴上,22(0,2),A A A AB A A y y B y k x x --∴-==-,22114,,42x y y x y x '=-=-∴=-,抛物线相切于点D 直线l 的斜率为12Dx -,AB 平行于直线l ,12,42D A D Ax x x x -=∴⋅=-.故选:A二、填空题25.(2018全国卷Ⅰ)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =__.22(1)4x y ++=,所以圆心坐标为(0,1)-,半径为2,则圆心到直线1y x =+的距离d ==,所以||AB == 26.(2018天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__.2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=22(40)D E F +->,则0110420F D E F D F =⎧⎪++++=⎨⎪++=⎩,解得2D =-,0E =,0F =,故圆的方程为2220x y x +-=.27.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r ,则点A 的横坐标为 . 3【解析】因为0AB CD ⋅=u u u r u u u r ,所以AB CD ⊥,又点C 为AB 的中点,所以45BAD ∠=o,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan 2θ=,tan()34k πθ=+=-.又(5,0)B ,所以直线AB 的方程为3(5)y x =--,又A 为直线l :2y x =上在第一象限内的点,联立直线AB 与直线l 的方程,得3(5)2y x y x =--⎧⎨=⎩,解得36x y =⎧⎨=⎩,所以点A 的横坐标为3.28.设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .22(1)(1x y ++-=【解析】设圆心为(1,)C m -,由题意(0,)A m ,(1,0)F ,所以(1,0)AC =-u u u r ,(1,)AF m =-u u u r,所以1cos 2||||AC AF CAF AC AF ⋅∠===-⋅u u u r u u u u u r,解得m =因为以C 为圆心的圆与y 轴的正半轴相切于点A ,所以0m >,取m =所求圆的方程为22(1)(1x y ++-=.29.若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为 . 8【解析】由题意有121a b+=,所以1242(2)()448b a a b a b a b a b +=++=+++=≥. 当且仅当4b aa b=,即4b =,2a =时等号成立. 30.在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅u u u r u u u r≤,则点P 的横坐标的取值范围是 .[-【解析】设(,)P x y ,由20PA PB ⋅u u u r u u u r≤,得250x y -+≤,如图由250x y -+≤可知,P 在¼MN 上,由2225050x y x y -+=⎧⎨+=⎩,解得(1,7)M ,(5,5)N --, 所以P 点横坐标的取值范围为[-.31.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___时,点B 横坐标的绝对值最大.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤, 所以当5m =时,点B 横坐标的绝对值最大,最大值为2.32.椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .2【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得||||OQ OF =,又1||||OF OF =,所以1F Q QF ⊥,不妨设1||QF ck =, 则||QF bk =,1||F F ak =,因此2c ak =,又2a ck bk =+,由以上二式可得22c a k a b c ==+,即c a a b c=+,即22a c bc =+,所以bc =,2e =. 33.(2018北京)若双曲线2221(0)4x y a a -=>,则a =_________.4【解析】由题意得22454a a +=,得216a =,又0a >,所以4a =,故答案为4. 34.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 2【解析】不妨设双曲线的一条渐近线方程为b y x a =,2b c ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==.35.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 5【解析】由双曲线的标准方程可得渐近线方程为:3y x a=±,结合题意可得:5a =. 36.在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .2y x =±【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为y x =. 37.在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .232a x c ==,渐近线的方程为3y x =±,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 38.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.(1,0)【解析】由题意知0a >,对于24y ax =,当1x =时,y =±l 被抛物线24y ax =截得的线段长为4,所以4=,所以1a =,所以抛物线的焦点坐标为(1.0). 三、解答题39.(2018全国卷Ⅰ)设抛物线C :22=y x ,点(2,0)A ,(2,0)-B ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.【解析】(1)当l 与x 轴垂直时,l 的方程为2=x ,可得M 的坐标为(2,2)或(2,2)-.所以直线BM 的方程为112=+y x 或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠=∠ABM ABN . 当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,11(,)M x y ,22(,)N x y , 则10>x ,20>x .由2(2)2y k x y x=-⎧⎨=⎩,得2240--=ky y k ,可知122+=y y k ,124=-y y .直线BM ,BN 的斜率之和为1221121212122()22(2)(2)++++=+=++++BM BN y y x y x y y y k k x x x x .① 将112y x k =+,222yx k=+及12+y y ,12y y 的表达式代入①式分子,可得 121221121224()882()0++-++++===y y k y y x y x y y y k k.所以0+=BM BN k k ,可知BM ,BN 的倾斜角互补,所以∠=∠ABM ABN . 综上,∠=∠ABM ABN .40.在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【解析】(1)不能出现AC BC ⊥的情况,理由如下:设1(,0)A x ,2(,0)B x ,则1x ,2x 满足220x mx +-=,所以122x x =-.又C 的坐标为(0,1),故AC的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC⊥的情况. (2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立2221()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以过A 、B 、C 三点的圆的圆心坐标为1(,)22m --,半径29m r +=.故圆在y 轴上截得的弦长为222()32m r -=,即过A 、B 、C 三点的圆在y 轴上的截得的弦长为定值. 41.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点(2,4)A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=u u r u u r u u u r求实数t 的取值范围.【解析】圆M 的标准方程为()()226725x y -+-=,所以圆心M(6,7),半径为5,(1)由圆心N 在直线6x =上,可设()06,N y .因为圆N 与x 轴相切,与圆M 外切,所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =. 因此,圆N 的标准方程为()()22611x y -+-=.(2)因为直线l ∥OA ,所以直线l 的斜率为40220-=-.设直线l 的方程为2y x m =+,即20x y m -+=, 则圆心M 到直线l的距离d因为BC OA ===而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5m =或15m =-. 故直线l 的方程为250x y -+=或2150x y --=.(3)设()()1122,,Q ,.P x y x y 因为()()2,4,,0,A T t TA TP TQ +=u u r u u r u u u r ,所以212124x x ty y =+-⎧⎨=+⎩ ……①因为点Q 在圆M 上,所以()()22226725.x y -+-= …….②将①代入②,得()()22114325x t y --+-=.于是点()11,P x y 既在圆M 上,又在圆()()224325x t y -++-=⎡⎤⎣⎦上,从而圆()()226725x y -+-=与圆()()224325x t y -++-=⎡⎤⎣⎦有公共点,所以5555,-≤≤+解得22t -≤≤+.因此,实数t的取值范围是22⎡-+⎣.42.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B两点.若OAB △,求直线l 的方程.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=AB =. 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为2.综上,直线l的方程为y =+43.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22x FB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r44.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .【解析】(1)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232mx x +=-,212334m x x -=,则12|||AB x x =-==易得当20m =时,max ||AB =,故||AB.(3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=, 将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.45.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B.已知椭圆的离心率为3,||AB =(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍, 可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去; 当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.46.设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r .由NP =u u u r u u u r得 0x x =,02y y =.因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r,33OQ PF m tn ⋅=+-u u u r u u u r ,(,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .47.已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA△的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =.所以,椭圆的离心率为12. (Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++.由已知|FQ |=32c ,有222(22)33[]()()222m c c cc m m -++=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c-+=⎧⎪⎨+=⎪⎩消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2cP c,进而可得5|2|c FP ==,所以53||||||22c cFP FQ Q c P -=-==.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.48.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N e 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N e 分别相切于点E ,F ,求EDF ∠的最小值.【解析】(Ⅰ)由椭圆的离心率为2,得2222()a a b =-,又当1y =时,2222a x a b =-,得2222a a b-=,所以24a =,22b =,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx m x y =+⎧⎨+=⎩得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421km x x k +=+ ,因此122221my y k +=+ , 所以222(,)2121km m D k k -++ ,又(0,)N m - ,所以222222()()2121km m ND m k k =-++++整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m = 所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++ 令283t k =+,3t ≥故21214t k ++=所以2221616111(1)2NDt t NF t t=+=++++. 令1y t t =+,所以211y t '=-.当3t ≥时,0y '>,从而1y t t=+在[3,)+∞上单调递增, 因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF+=≤, 由(*)得 m <<且0m ≠,故12ND NF ≥,设2EDF θ∠=,则1sin 2NF ND θ=≥ ,所以θ得最小值为6π.从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k=,(m ∈⋃时,EDF ∠取得最小值为3π.49.如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是223b a c =-= 因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ②由①②,解得21,xx x yy-=-=,所以21(,)xQ xy--.因为点Q在椭圆上,由对称性,得21xyy-=±,即22001x y-=或22001x y+=.又P在椭圆E上,故2200143x y+=.由220022001143x yx y⎧-=⎪⎨+=⎪⎩,解得004737,77x y==;220022001143x yx y⎧+=⎪⎨+=⎪⎩,无解.因此点P的坐标为4737(,)77.50.如图,已知双曲线C:2221xya-=(0a>)的右焦点F,点BA,分别在C的两条渐近线上,xAF⊥轴,BFOBAB,⊥∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点)0)((,0≠yyxP的直线1:20=-yyaxxl与直线AF相交于点M,与直线23=x相交于点N,证明:当点P在C上移动时,NFMF恒为定值,并求此定值.【解析】(1)设(,0)F c,因为1b=,所以21c a+直线OB方程为1y xa=-,直线BF的方程为1()y x ca=-,解得(,)22c cBa-又直线OA的方程为1y xa=,则3(,),.ABcA c ka a=又因为AB⊥OB,所以31()1a a-=-,解得23a=,故双曲线C的方程为22 1.3xy-=(2)由(1)知3a l的方程为0001(0)3x xy y y-=≠,即033x xyy-=因为直线AF的方程为2x=,所以直线l与AF的交点023(2,)3xMy-直线l 与直线32x =的交点为003332(,)23x N y- 则220222004(23)9[(2)]x MF NF y x -=+-因为是C 上一点,则2200 1.3x y -=,代入上式得 222002222200004(23)4(23)49[(2)]39[1(2)]3x x MF x NF y x x --===+--+-,所求定值为MF NF = 51.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与C 交于A ,B两点,||8=AB . (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--, 即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.52.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 【解析】(1)设00(,)P x y ,211(,)4y A y ,222(,)4y B y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程221014()422y x y y ++=⋅即2210100280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴. (2)由(1)可知1202120028y y y y y x y +=⎧⎨=-⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB ∆的面积32212001||||(4)24PABS PM y y y x ∆=⋅-=-.因为220014y x +=0(0)x <,所以2200004444[4,5]y x x x -=--+∈.因此,PAB ∆面积的取值范围是. 53.设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.【解析】(1)设11(,)A x y ,22(,)B x y ,则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2xy'=.设33(,)M x y ,由题设知312x =,解得32x =,于是(2,1)M .设直线AB 的方程为y x m =+,故线段AB 的中点为(2,2)N m +,|||1|MN m =+.将y x m =+代入24x y =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=||2||AB MN =,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+.54.如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ ⋅的最大值.【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-。
过关检测(十七)1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.(2019·南充期末)若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0解析:选D 依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,此时直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.3.(2019·广东六校模拟)与圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4解析:选D 设所求圆的圆心为(a ,b ),则⎩⎪⎨⎪⎧b 2=33×a +22,b a -2=-3,∴⎩⎨⎧a =1,b =3,∴所求圆的方程为(x -1)2+(y -3)2=4.4.(2019·河南八市质检)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:选B 由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)(3-1)+y (1-0)=5,即2x +y -7=0.5.(2019·安徽六安模拟)已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦AB 的长为( )A .2B .3C .4D .5解析:选A 将圆C :x 2+y 2-6x +5=0整理,得其标准方程为(x -3)2+y 2=4,∴圆C 的圆心坐标为(3,0),半径为2.∵线段AB 的中点坐标为D (2,2),∴|CD |=1+2=3,∴|AB |=24-3=2.故选A.6.(2019·东北十校联考)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )A. 2 B .2 2 C. 3D .2 3解析:选C 圆的标准方程为(x -1)2+(y -1)2=1,圆心C (1,1),半径r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB的面积最小,则只需|PC |最小,最小时为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2.所以四边形PACB 面积的最小值为(|PC |min )2-r 2=4-1= 3. 7.(2019·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为___________________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得⎩⎪⎨⎪⎧a =1,b =0,又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=08.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →,则椭圆C 的标准方程为________,圆A 的标准方程为__________.解析:如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.答案:x 24+y 2=1 (x -2)2+y 2=859.(2019·安阳一模)已知AB 为圆C :x 2+y 2-2y =0的直径,点P 为直线y =x -1上任意一点,则|PA |2+|PB |2的最小值为________.解析:圆心C (0,1),设∠PCA =α,|PC |=m , 则|PA |2=m 2+1-2m cos α,|PB |2=m 2+1-2m cos (π-α)=m 2+1+2m cos α, ∴|PA |2+|PB |2=2m 2+2.又C 到直线y =x -1的距离d =|0-1-1|2=2,即m 的最小值为2,∴|PA |2+|PB |2的最小值为2×(2)2+2=6. 答案:610.(2019·南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程; (2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由.解:(1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01-(-1)=1.设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为|MN |=|AB |=22+22=22,而|CM |2=d 2+⎝ ⎛⎭⎪⎫|MN |22,所以4=(2+m )22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x-y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|PA |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,化简得x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|< (2-0)2+(0-1)2<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以存在点P ,点P 的个数为2.11.(2019·武汉一模)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)若直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点Q ,使得O Q →=OA→+OB →?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心O 到直线l 的距离d =|3|1+k2<2,所以k >52或k <-52.假设存在点Q ,使得OQ →=OA →+OB →.因为A ,B 在圆上,且OQ →=OA →+OB →,同时|OA →|=|OB →|,由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直且平分.所以原点O 到直线l :y =kx +3的距离d =12|OQ |=1,即|3|1+k 2=1, 解得k 2=8,则k =±22,经验证满足条件.所以存在点Q ,使得OQ →=OA →+OB →,此时直线l 的斜率为±2 2.。
增分强化练一、选择题1.直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,则实数a 的值为( ) A .-52B.72C.56D.16解析:∵直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,∴3(1-2a )-2=0,∴a =16,故选D. 答案:D2.过点(1,-1)且与直线x -2y +1=0平行的直线方程为( ) A .x -2y -1=0 B .x -2y +1=0 C .x -2y -3=0D .2x +y -1=0解析:由题意得所求直线的斜率为12,又直线过点(1,-1),故所求直线的方程为y +1=12(x-1),即x -2y -3=0.故选C. 答案:C3.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A .-7 B .-1 C .-1或-7D.133解析:当m =-3时,两条直线分别化为:2y =7,x +y =4,此时两条直线不平行;当m =-5时,两条直线分别化为:x -2y =10,x =4,此时两条直线不平行;当m ≠-3,-5时,两条直线分别化为:y =-3+m 4x +5-3m 4,y =-25+m x +85+m ,∵两条直线平行,∴-3+m 4=-25+m ,5-3m 4≠85+m ,解得m =-7.综上可得:m =-7.故选A. 答案:A4.在直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是( ) A .(5,-3) B .(9,0) C .(-3,5)D .(-5,3)解析:根据题意可知:所求点即为过P 点垂直于已知直线的直线与已知直线的交点,因为已知直线3x -4y -27=0的斜率为34,所以过P 点垂直于已知直线的斜率为-43,又P (2,1),则该直线的方程为:y -1=-43(x -2)即4x +3y -11=0,与已知直线联立得⎩⎪⎨⎪⎧4x +3y -11=0 ①3x -4y -27=0 ②①×4+②×3得25x =125,解得x =5, 把x =5代入①解得y =-3,所以⎩⎪⎨⎪⎧x =5y =-3,所以直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是(5,-3). 故选A. 答案:A5.圆x 2+y 2=8与圆x 2+y 2+4x -16=0的公共弦长为( ) A .8 B .4 C .2D .1解析:两圆方程作差得x =2,当x =2时,由x 2+y 2=8得y 2=8-4=4,即y =±2, 即两圆的交点坐标为A (2,2),B (2,-2), 则|AB |=2-(-2)=4, 故选B. 答案:B6.过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程是( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +5=0解析:∵过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程经过圆心, ∴其直线方程为过点(2,1)和圆心(1,-2)的直线, ∴其方程为:y +2x -1=1+22-1, 整理,得3x -y -5=0. 故选A. 答案:A7.圆C :x 2+y 2-2x =0被直线y =3x 截得的线段长为( ) A .2 B. 3 C .1D. 2解析:圆C :x 2+y 2-2x =0的圆心为(1,0),半径为1,圆心到直线y =3x 的距离为d =|3|(3)2+1=32,弦长为2·1-⎝⎛⎭⎪⎫322=1,故选C. 答案:C8.已知直线l :y =kx +1与圆O :x 2+y 2=2相交于A ,B 两点,则 “k =1”是“∠AOB =120°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意得圆心(0,0)到直线l :y =kx +1的距离为d =11+k2,若∠AOB =120°,则有11+k2=2·12,该方程等价于k 2=1即k =±1,若k =1时,则∠AOB =120°,但∠AOB =120°时,k =-1或k =1,故选A. 答案:A9.(2019·青岛模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为( ) A.15 B.14 C.13D.12解析:直线l 方程为kx -y +2k =0, 当直线l 与圆C 相切时可得|2k |k 2+1=1,解得k =±33,∴直线l 与圆C 相交时,k ∈⎝⎛⎭⎪⎫-33,33, ∴所求的概率P =23323=13.故选C. 答案:C10.(2019·威海模拟)已知圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,则b 的值为( )A .-2或2B .2或43+2C .-2或43+2D .-43-2或2解析:由圆(x -2)2+y 2=1,可得圆心坐标为(2,0),半径r =1,设圆心(2,0)到直线y =3x +b 的距离为d ,则d =|23+b |3+1,因为圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,所以d -r =3,即|23+b |3+1-1=3,解得b =2或b =-43-2,故选D.答案:D11.圆C 1:(x -1)2+(y -3)2=9和C 2:x 2+(y -2)2=1,M ,N 分别是圆C 1,C 2上的点,P 是直线y =-1上的点,则|PM |+|PN |的最小值是( ) A .52-4 B.17-1 C .6-2 2D.17解析:圆C 1关于y =-1的对称圆的圆心坐标A (1,-5),半径为3,圆C 2的圆心坐标(0,2),半径为1,由图象(图略)可知当P ,C 2,A ,三点共线时,|PM |+|PN |取得最小值,|PM |+|PN |的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即|AC 2|-3-1=1+49-4=52-4.故选A. 答案:A12.设过点P (-2,0)的直线l 与圆C :x 2+y 2-4x -2y +1=0的两个交点为A ,B ,若8PA →=5AB →,则|AB |=( ) A.855 B.463 C.665D.453解析:由题意,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my -2,由⎩⎪⎨⎪⎧x 2+y 2-4x -2y +1=0x =my -2,得(m 2+1)y 2-(8m +2)y +13=0,则y 1+y 2=8m +2m 2+1,y 1y 2=13m 2+1,又8PA →=5AB →,所以8(x 1+2,y 1)=5(x 2-x 1,y 2-y 1),故8y 1=5(y 2-y 1),即y 2=135y 1,代入y 1y 2=13m 2+1得:y 21=5m 2+1,故y 22=16925×5m 2+1,又(y 1+y 2)2=⎝ ⎛⎭⎪⎫8m +2m 2+12,即y 21+y 22+2y 1y 2=19425×5m 2+1+26m 2+1=⎝ ⎛⎭⎪⎫8m +2m 2+12,整理得:m 2-40m +76=0,解得m =2或m =38,又|AB |=1+m 2·(y 1+y 2)2-4y 1y 2=23m 2+8m -12m 2+1,当m =2时,|AB |=855;当m =38时,|AB |=855.综上,|AB |=855.故选A. 答案:A 二、填空题13.若直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a 为________. 解析:∵直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直, ∴(a +2)(a -1)+(1-a )(2a +3)=0, ∴(a -1)(a +2-2a -3)=0, ∴(a -1)(a +1)=0, ∴a =1或a =-1. 答案:±114.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线x -y +1=0所得的弦长为2,则圆C 的标准方程是________.解析:设圆心为(t,0),且t >0, ∴半径为r =|t |=t ,∵圆C 截直线x -y +1=0所得的弦长为2,∴圆心到直线x -y +1=0的距离d =|t -0+1|2=t 2-1,∴t 2-2t -3=0, ∴t =3或t =-1(舍), 故t =3, ∴(x -3)2+y 2=9. 答案:(x -3)2+y 2=915.已知圆x 2+y 2=9被直线mx +y -2m -1=0所截得弦长为32,则实数m 的值为________. 解析:因为圆x 2+y 2=9的圆心是(0,0),半径为3, 根据弦长为32,所以圆心到直线的距离为d =9-⎝⎛⎭⎪⎫3222=322, 所以d =|-2m -1|m 2+1=322,解得m =1或m =7.答案:1或716.已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________. 解析:点P 关于x 轴的对称点为P ′(-1,-2),由反射的对称性可知,P ′Q 与圆相切于点T ,|PQ |+|QT |=|P ′T |, ∵圆(x -3)2+(y -4)2=4的圆心坐标为A (3,4),半径r =2, ∴|AP ′|2=(-1-3)2+(-2-4)2=52, |AT |=r =2,∴|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3. 答案:4 3增分强化练考点一 圆锥曲线的定义及标准方程1.(2019·榆林模拟)已知抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:由抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,根据抛物线的定义可得p 2=12,∴p =1,所以抛物线的标准方程为y 2=2x .故选B.答案:B2.(2019·株洲模拟)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线l 的倾斜角为π3,且C 的一个焦点到l 的距离为3,则双曲线C 的方程为( ) A.x 212-y 24=1 B.x 24-y 212=1 C.x 23-y 2=1 D .x 2-y 23=1解析:由x 2a 2-y 2b 2=0可得y =±b a x ,即渐近线的方程为y =±bax ,又一条渐近线l 的倾斜角为π3, 所以b a =tan π3= 3.因为双曲线C 的一个焦点(c,0)到l 的距离为3, 所以|bc |a 2+b 2=b =3,所以a =1,所以双曲线的方程为x 2-y 23=1.故选D. 答案:D3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 的长轴长与焦距之和为6,则椭圆C的标准方程为( ) A.4x 225+y26=1 B.x 24+y 22=1 C.x 22+y 2=1 D.x 24+y 23=1 解析:依题意椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12得c a =12,椭圆C 的长轴长与焦距之和为6,2a +2c =6, 解得a =2,c =1,则b =3,所以椭圆C 的标准方程为:x 24+y 23=1,故选D.答案:D4.设F 1,F 2是椭圆E :x 225+y 216=1的左右焦点,P 是椭圆E 上的点,则|PF 1|·|PF 2|的最小值是________.解析:由椭圆方程可知a =5,c =3,根据椭圆的定义,有|PF 2|=2a -|PF 1|=10-|PF 1|,故|PF 1|·|PF 2|=|PF 1|·(10-|PF 1|),由于|PF 1|∈[a -c ,a +c ]=[2,8]注意到二次函数y =x (10-x )的对称轴为x =5,故当x =2,x =8时,都是函数的最小值,即最小值为2×8=16. 答案:16考点二 圆锥曲线的性质1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12B .焦距为34 C .短轴长为14D .离心率为32解析:由椭圆方程16x 2+4y 2=1化为标准方程可得x 2116+y 214=1 ,所以a =12,b =14,c =34,长轴为2a =1 ,焦距2c =32,短轴2b =12,离心率e =c a =32.故选D. 答案:D2.(2019·九江模拟)已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( ) A .y =±x B .y =±2x C .y =±2xD .y =±3x解析:由双曲线方程可得渐近线为:y =±bax ,A (a,0),F (c,0), 则点A 到渐近线距离d 1=|ab |a 2+b2=ab c, 点F 到渐近线距离d 2=|bc |a 2+b2=bcc=b , ∴d 1∶d 2=ab c∶b =a ∶c =1∶2,即c =2a ,则b a =c 2-a 2a =a a=1, ∴双曲线渐近线方程为y =±x . 故选A. 答案:A3.已知双曲线C :x 2-y 2=1,则点(4,0)到C 的渐近线的距离为________.解析:双曲线C :x 2-y 2=1(a >b >0)的渐近线方程y =±x ,点(4,0)到C 的渐近线的距离为|±4|2=2 2. 答案:2 24.(2019·株洲模拟)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点,B 是短轴的一个端点,线段BF 2的延长线交椭圆C 于点D ,若△F 1BD 为等腰三角形,则椭圆C 的离心率为________. 解析:如图,不妨设点B 是椭圆短轴的上端点,则点D 在第四象限内,设点D (x ,y ). 由题意得△F 1BD 为等腰三角形,且|DF 1|=|DB |.由椭圆的定义得|DF 1|+|DF 2|=2a ,|BF 1|=|BF 2|=a , 又|DF 1|=|DB |=|DF 2|+|BF 2|=|DF 2|+a , ∴(|DF 2|+a )+|DF 2|=2a ,解得|DF 2|=a2.作DE ⊥x 轴于E ,则有|DE |=|DF 2|sin ∠DF 2E =|DF 2|sin ∠BF 2O =a 2×b a =b2,|F 2E |=|DF 2|cos ∠DF 2E =|DF 2|cos ∠BF 2O =a 2×c a =c 2,∴|OE |=|OF 2|+|F 2E |=c +c 2=3c2,∴点D 的坐标为⎝⎛⎭⎪⎫3c 2,-b 2.又点D 在椭圆上,∴⎝ ⎛⎭⎪⎫3c 22a2+⎝ ⎛⎭⎪⎫-b 22b2=1,整理得3c 2=a 2,所以e =c a =33. 答案:33考点三 直线与圆锥曲线的相关问题1.(2019·内江模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,上下顶点分别为A 、B ,直线AF 2与该椭圆交于A 、M 两点.若∠F 1AF 2=120°,则直线BM 的斜率为( )A.14B.34C.32D. 3解析:由题意,椭圆x 2a 2+y 2b2=1(a >b >0),且满足∠F 1AF 2=120°,如图所示,则在△AF 2O 中,|OA |=b ,|AF 2|=a ,且∠OAF 2=60°,所以a =2b , 不妨设b =1,则a =2,所以c =a 2-c 2=3,则椭圆的方程为x 24+y 2=1,又由A (0,1),F 2(3,0),所以kAF 2 =-33,所以直线AF 2的方程为y =-33x +1,联立方程组⎩⎪⎨⎪⎧y =-33x +1x 24+y 2=1,整理得7x 2-83x =0,解得x =0或x =837,把x =837代入直线y =-33x +1,解得y =-17,即M ⎝ ⎛⎭⎪⎫837,-17 , 又由点B (0,-1),所以BM 的斜率为k BM =-17-(-1)837-0=34,故选B.答案:B2.已知直线l :y =2x +b 被抛物线C :y 2=2px (p >0)截得的弦长为5,直线l 经过C 的焦点,M 为C 上的一个动点,设点N 的坐标为(3,0),则MN 的最小值为________.解析:(1)∵⎩⎪⎨⎪⎧y =2x +by 2=2px ⇒4x 2+(4b -2p )x +b 2=0,则52=(1+22)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2b -p 22-4×b 42, 又直线l 经过C 的焦点,则-b 2=p 2,∴b =-p ,由此解得p =2, 抛物线方程为y 2=4x ,M (x 0,y 0),∴y 20=4x 0,则|MN |2=(x 0-3)2+y 20=(x 0-3)2+4x 0=(x 0-1)2+8, 故当x 0=1时,|MN |min =2 2. 答案:2 23.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的动点到其左焦点距离的最大值是最小值的3倍,且点P ⎝⎛⎭⎪⎫1,32在椭圆上.(1)求椭圆E 的标准方程;(2)过点G (0,1)作直线l 与曲线交于A ,B 两点,求△ABO 面积的最大值.解析:(1)由题意得,⎩⎪⎨⎪⎧a +c =3(a -c )a 2=b 2+c21a 2+94b2=1,解得a =2,b =3,∴椭圆的标准方程为x 24+y 23=1. (2)易知直线l 的斜率存在.设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1x 24+y23=1,消去y 得(3+4k 2)x 2+8kx -8=0,则x 1+x 2=-8k 3+4k 2,x 1x 2=-83+4k2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=46·1+2k23+4k2d =1k 2+1,∴S △ABO =12×d ×1+k 2|x 1-x 2|=26·1+2k 23+4k 2, 令 1+2k 2=t ,∵k 2≥0,∴t ≥1, ∴S △ABO =26t 2t 2+1=262t +1t,易证y =2t +1t 在[1,+∞)上单调递增,∴2t +1t≥3,∴S △ABO ≤263,∴△ABO 面积的最大值为263.增分强化练考点一 直线的方程1.直线mx +y -m +2=0恒经过定点( ) A .(1,-1) B .(1,2) C .(1,-2)D .(1,1)解析:直线mx +y -m +2=0,化为:m (x -1)+y +2=0,可知直线经过定点(1,-2).故选C. 答案:C2.(2019·南昌模拟)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A.10-1 B .22-1 C .2 2D.10解析:设点A 关于直线x +y =3的对称点A ′(a ,b ),AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2,故⎩⎪⎨⎪⎧ba -2·(-1)=-1a +22+b 2=3,解得⎩⎪⎨⎪⎧a =3b =1,所以A ′(3,1).要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,“将军饮马”的最短总路程为32+12-1=10-1,故选A. 答案:A3.过点(-2,4)且在两坐标轴上的截距互为相反数的直线的一般方程为________. 解析:①当在坐标轴上截距为0时,所求直线方程为:y =-2x ,即2x +y =0; ②当在坐标轴上截距不为0时,∵在坐标轴上截距互为相反数, ∴x -y =a ,将A (-2,4)代入得,a =-6, ∴此时所求的直线方程为x -y +6=0. 答案:2x +y =0或 x -y +6=04.平行线5x +12y -10=0和mx +6y +2=0的距离是________解析:由题意,两直线5x +12y -10=0和mx +6y +2=0平行,可得5m =126,解得m =52,即5x +12y +4=0,由两平行直线之间的距离公式,可得d =|-10-4|52+122=1413. 答案:1413考点二 圆的方程1.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ) A .m >-12B .m <-12C .m ≤-12D .m ≥-12解析:因为方程x 2+y 2+x +y -m =0要表示一个圆,所以2+4m >0 解得:m >-12,故选A.答案:A2.点M ,N 是圆x 2+y 2+kx +2y -4=0上的不同两点,且点M ,N 关于直线x -y +1=0对称,则该圆的半径等于( ) A .2 2 B. 2 C .1D .3解析:圆x 2+y 2+kx +2y -4=0的圆心坐标为⎝ ⎛⎭⎪⎫-k2,-1,因为点M ,N 在圆x 2+y 2+kx +2y -4=0上,且点M ,N 关于直线l :x -y +1=0对称,所以直线l :x -y +1=0经过圆心,所以-k2+1+1=0,k =4. 所以圆的方程为:x 2+y 2+4x +2y -4=0,圆的半径为:12 42+22-4×(-4)=3. 故选D.答案:D3.已知圆C :(x -6)2+(y +8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y +4)2=25 D .(x +3) 2+(y -4)2=25解析:由题意可知:O (0,0),C (6,-8),则圆心坐标为(3,-4),圆的直径为62+(-8)2=10,据此可得圆的方程为(x -3)2+(y +4)2=⎝ ⎛⎭⎪⎫1022,即(x -3)2+(y +4)2=25.故选C.答案:C4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2 D .(x -1)2+y 2=8解析:直线x -y +1=0与x 轴的交点坐标为(-1,0),因为圆C 与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A. 答案:A考点三 直线与圆的位置关系1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数是( ) A .4条 B .3条 C .2条D .1条解析:圆O 1:x 2+y 2-2x =0的圆心(1,0)半径为1;圆O 2:x 2+y 2-4y =0的圆心(0,2)半径为2,O 1O 2=12+22=5,∵1<5<3,∴两个圆相交,所以圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数2.故选C.答案:C2.(2019·南宁模拟)已知直线l :3x -4y -15=0与圆C :x 2+y 2-2x -4y +5-r 2=0(r >0)相交于A ,B 两点,若|AB |=6,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=25 B .(x -1)2+(y -2)2=36 C .(x -1)2+(y -2)2=16 D .(x -1)2+(y -2)2=49解析:圆C :x 2+y 2-2x -4y +5-r 2=0可化为(x -1)2+(y -2)2=r 2,设圆心(1,2)到直线l 的距离为d ,则d =|3-8-15|5=4,又|AB |=6,根据r 2=32+42=25,所以圆C 的标准方程为(x -1)2+(y -2)2=25.故选A. 答案:A3.(2019·汕头模拟)已知直线l 与圆x 2+y 2-4y =0相交于A ,B 两点,且线段AB 的中点P 的坐标为(-1,1),则直线l 的方程为________.解析:因为圆x 2+y 2-4y =0的圆心坐标为C (0,2),又点P 坐标为(-1,1), 所以直线CP 的斜率为k CP =2-10+1=1; 又因为AB 是圆的一条弦,P 为AB 的中点, 所以AB ⊥CP ,故k AB =-1,即直线l 的斜率为-1, 因此,直线l 的方程为y -1=-(x +1),即x +y =0. 答案:x +y =04.直线2x +y -3=0与圆x 2+y 2-2x -2y =0相交于A ,B 两点,O 为坐标原点,则|OA →+OB →|=________.解析:设A (x 1,y 1),B (x 2,y 2),AB 的中点为M ,联立直线方程与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x -2y =0y =-2x +3,整理可得5x 2-10x +3=0,故x 1+x 2=2,y 1+y 2=(-2x 1+3)+(-2x 2+3)=-2(x 1+x 2)+6=2, 据此可得M (1,1),|OM →|=1+1=2,结合平面向量的运算法则有|OA →+OB →| =|2OM →| =2 2. 答案:2 2增分强化练1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 为抛物线y 2=4x 的焦点,P ,Q 是椭圆C 上的两个动点,且线段PQ 长度的最大值为4. (1)求椭圆C 的标准方程;(2)若OP ⊥OQ ,求△OPQ 面积的最小值. 解析:(1)∵y 2=4x 的焦点为(1,0), ∴椭圆C 的右焦点F 为(1,0),即c =1, 又|PQ |的最大值为4,因此|PQ |=2a =4, ∴a 2=4,b 2=a 2-c 2=4-1=3, 所以椭圆C 的标准方程为x 24+y 23=1.(2)①当P ,Q 为椭圆顶点时,易得△OPQ 的面积为12×2×3=3,②当P ,Q 不是椭圆顶点时,设直线OP 的方程为y =kx (k ≠0),由⎩⎪⎨⎪⎧y =kx x 24+y23=1,得x 2=123+4k 2,所以|OP |=k 2+1 123+4k2, 由OP ⊥OQ ,得直线OQ 的方程为:y =-1kx ,所以|OQ |=1k2+1123+41k 2= 1+k 2123k 2+4, 所以S △OPQ =12|OP |·|OQ |=6(k 2+1)2(3+4k 2)(3k 2+4)=6(k 2+1)212k 4+25k 2+12=6 112+k 2(k 2+1)2,(k 2+1)2k2=k 2+1k2+2≥4,当且仅当k 2=1时等号成立,所以0<k 2(k 2+1)2≤14,所以127≤S △OPQ <3,综上,△OPQ 面积的最小值为127.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C 的左、右焦点,点P (263,33)满足PF →1·PF →2=0. (1)求椭圆C 的方程;(2)直线l 经过椭圆C 的右焦点与椭圆相交于M ,N 两点,设O 为坐标原点,直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列,求k 1·k 2的值. 解析:(1)依题意F 1(-c,0), ∴PF →1·PF →2=-c 2+3=0,即c =3, ∵e =c a =32, ∴a =2, ∴b 2=a 2-c 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)设直线l 的方程为y =k (x -3),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -3),得(1+4k 2)x 2-83k 2x +4(3k 2-1)=0,则x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∵k 1,k ,k 2成等比数列,∴k 1·k 2=k 2=y 1y 2x 1x 2=k 2(x 1-3)(x 2-3)x 1x 2,则3(x 1+x 2)=3, 即83k21+4k 2=3, 解得k 2=14,故k 1k 2=14.3.已知抛物线C :y 2=2px (0<p <1)上的点P (m,1)到其焦点F 的距离为54.(1)求C 的方程;(2)已知直线l 不过点P 且与C 相交于A ,B 两点,且直线PA 与直线PB 的斜率之积为1,证明:l 过定点.解析:(1)由题意,得2pm =1,即m =12p.由抛物线的定义,得|PF |=m -(-p 2)=12p +p2.由题意,知12p +p 2=54,解得p =12或p =2(舍去).所以C 的方程为y 2=x . (2)证明:由(1)得P (1,1).设l :x =ny +t ,由于直线l 不过点P (1,1), 所以n +t ≠1.由⎩⎪⎨⎪⎧y 2=x ,x =ny +t消去x 并整理得y 2-ny -t =0.由题意,判别式Δ=n 2+4t >0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=n ,①y 1y 2=-t ,②则k PA k PB =y 1-1x 1-1·y 2-1x 2-1=y 1-1y 21-1·y 2-1y 22-1=1y 1y 2+(y 1+y 2)+1. 由题意,得y 1y 2+(y 1+y 2)+1=1, 即y 1y 2+(y 1+y 2)=0,③将①②代入③得-t +n =0,即t =n .所以l :x =n (y +1).显然l 过定点(0,-1).4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2,长轴的长为4.(1)求椭圆C 的标准方程;(2)设过点F 1的直线l 与椭圆C 交于E ,D 两点,试问:在x 轴上是否存在定点M ,使得直线ME ,MD 的斜率之积为定值?若存在,求出该定值及定点M 的坐标;若不存在,请说明理由.解析:(1)因为椭圆C 的焦距为2,长轴的长为4, 所以2c =2,2a =4,解得c =1,a =2, 所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设E (x 1,y 1),D (x 2,y 2),M (m,0).易知F 1(-1,0),当直线l 的斜率存在时,设直线l 的方程为y =k (x +1).联立方程,得⎩⎪⎨⎪⎧y =k (x +1),x 24+y23=1,得(4k 2+3)x 2+8k 2x +4k 2-12=0, 则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3.又y 1y 2=k 2(x 1+1)(x 2+1)=k 2(x 1x 2+x 1+x 2+1)=k 2(4k 2-124k 2+3-8k 24k 2+3+1)=-9k24k 2+3,直线ME ,MD 的斜率k ME =y 1x 1-m,k MD =y 2x 2-m,则k ME ·k MD =y 1x 1-m ·y 2x 2-m =y 1y 2(x 1-m )(x 2-m )=y 1y 2x 1x 2-m (x 1+x 2)+m 2=-9k 24k 2+34k 2-124k 2+3-m (-8k 24k 2+3)+m 2=-9k24k 2+34k 2-12+8mk 2+4m 2k 2+3m24k 2+3 =-9k2(4m 2+8m +4)k 2+3m 2-12. 要使直线ME ,MD 的斜率之积为定值,需3m 2-12=0, 解得m =±2.当m =2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 236k 2=-14;当m =-2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 24k 2=-94.当直线l 的斜率不存在时, 不妨设E (-1,32),D (-1,-32),此时,当m =2时,M (2,0),k ME ·k MD =-14;当m =-2时,M (-2,0),k ME ·k MD =-94.综上,在x 轴上存在两个定点M ,使得直线ME ,MD 的斜率之积为定值. 当定点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14;当定点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.增分强化练一、选择题1.双曲线x 23-y 29=1的渐近线方程是( )A .y =±3xB .y =±13xC .y =±3xD .y =±33x 解析:因为x 23-y 29=1,所以a =3,b =3,渐近线方程为y =±b ax , 即为y =±3x ,故选C. 答案:C2.已知双曲线my 2-x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13xD .y =±33x 解析:∵抛物线x 2=8y 的焦点为(0,2),∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x , 故选A. 答案:A3.已知双曲线C :x 2m 2-y 23=1的离心率为2,则C 的焦点坐标为( )A .(±2,0)B .(±2,0)C .(0,±2)D .(0,±2)解析:由双曲线C :x 2m 2-y 23=1,离心率为2,可得m 2+3m=2,∴m 2=1, 则c =m 2+3=2,故双曲线C 的焦点坐标是(±2,0).故选A. 答案:A4.(2019·呼和浩特模拟)已知双曲线C 1:x 24-y 2k =1与双曲线C 2:x 2k -y 29=1有相同的离心率,则双曲线C 1的渐近线方程为( ) A .y =±32x B .y =±62x C .y =±34x D .y =±64x 解析:由双曲线方程可知k >0,双曲线C 1:x 24-y 2k =1的离心率为4+k2,双曲线C 2:x 2k -y 29=1的离心率为k +9k,由题意得4+k 2=k +9k ,解得k =6, 双曲线C 1为x 24-y26=1,则渐近线方程为y =±62x , 故选B. 答案:B5.已知双曲线C 的一个焦点坐标为(3,0),渐近线方程为y =±22x ,则C 的方程是( ) A .x 2-y 22=1 B.x 22-y 2=1 C.y 22-x 2=1 D .y 2-x 22=1解析:因为双曲线C 的一个焦点坐标为(3,0),所以c =3,又因为双曲线C 的渐近线方程为y =±22x ,所以有b a =22⇒a =2b ,c =3,而c =a 2+b 2,所以解得a =2,b =1,因此双曲线方程为x 22-y 2=1,故选B.答案:B6.(2019·岳阳模拟)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( ) A .5 B .6 C .8D .10解析:x 2=4y 的焦点为(0,1),准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以由抛物线的定义知|P 1P 2|=|P 1F |+|P 2F |=y 1+1+y 2+1=y 1+y 2+2=6+2=8,故选C. 答案:C7.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1 (b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3]D .[3,+∞)解析:双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 答案:A8.(2019·咸阳模拟)已知椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点的曲线,且都过B 点,它们的离心率分别为e 1,e 2,则1e 21+1e 22=( )A.32 B .2 C.52D .4解析:以AC 边所在的直线为x 轴,AC 中垂线所在的直线为y 轴建立直角坐标系(图略),设椭圆方程为x 2a 21+y 2b 21=1,设双曲线方程为x 2a 22-y 2b 22=1,焦距都为2c不妨设|AB |>|BC |,椭圆和双曲线都过点B , 则|AB |+|BC |=2a 1,|AB |-|BC |=2a 2, 所以|AB |=a 1+a 2,|BC |=a 1-a 2, 又因为△ABC 为直角三角形,|AC |=2c ,所以(a 1+a 2)2+(a 1-a 2)2=(2c )2,即a 21+a 22=2c 2,所以a 21c 2+a 22c 2=2,即1e 21+1e 22=2.故选B. 答案:B9.(2019·乌鲁木齐质检)已知抛物线C :y 2=8x 的焦点为F ,直线l 过焦点F 与抛物线C 分别交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点P (10,0),则△AOB 的面积为( ) A .4 3 B .4 6 C .8 2D .8 6解析:设直线l :x =ty +2,A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y 2=8x x =ty +2可以得到y 2-8ty -16=0,所以AB 的中点M (4t 2+2,4t ),线段AB 的垂直平分线与x 轴交于点P (10,0),故t ≠0. 所以AB 的中垂线的方程为y =-1t (x -4t 2-2)+4t =-1t ·x +8t +2t,令y =0可得x =8t 2+2,解方程10=8t 2+2得t =±1. 此时AB = 1+t 2|y 1-y 2|=81+t 2t 2+1=16,O 到AB 的距离为d =21+t2=2,所以S ΔOAB =12×16×2=8 2.故选C. 答案:C10.(2019·滨州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,59 B.⎝ ⎛⎦⎥⎤0,32 C.⎝ ⎛⎦⎥⎤0,53 D.⎝ ⎛⎦⎥⎤13,32 解析:如图所示,设F ′为椭圆的左焦点, 连接AF ′,BF ′,则四边形AFBF ′是平行四边形,∴6=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =3.取P (0,b ),∵点P 到直线l ∶4x +3y =0的距离不小于65,∴|3b |16+9≥65,解得b ≥2. ∴c ≤9-4=5,∴0<c a ≤53. ∴椭圆E 的离心率范围是⎝⎛⎦⎥⎤0,53. 故选C. 答案:C11.(2019·济宁模拟)已知直线l 过抛物线C :y 2=3x 的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF →=FP →,则|AB |=( ) A .3 B .4 C .6D .8解析:如图所示:不妨设A 在第一象限,由抛物线C :y 2=3x 可得F ⎝ ⎛⎭⎪⎫34,0,准线DP :x =-34.因为AF →=FP →,所以F 是AP 的中点,则AD =2CF =3.所以可得A ⎝ ⎛⎭⎪⎫94,332,则k AF =3,所以直线AP 的方程为:y =3⎝ ⎛⎭⎪⎫x -34, 联立方程⎩⎪⎨⎪⎧y =3⎝ ⎛⎭⎪⎫x -34y 2=3x,整理得:x 2-52x +916=0所以x 1+x 2=52,则|AB |=x 1+x 2+p =52+32=4.故选B.答案:B12.(2019·晋城模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A.52 B.62C.233D. 3解析:由题意得直线l 的方程为x =b ay +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3c b 4-1,y 1y 2=b4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎪⎨⎪⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c=b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A. 答案:A 二、填空题13.(2019·合肥质检)抛物线x 2=8y 的焦点坐标为________.解析:由抛物线方程x 2=8y 知,抛物线焦点在y 轴上,由2p =8,得p2=2,所以焦点坐标为(0,2). 答案:(0,2)14.已知过P (1,1)的直线l 与双曲线C :x 2-y 2=1只有一个公共点,则直线l 的条数为________. 解析:双曲线C :x 2-y 2=1的渐近线方程y =±x , 其中一条渐近线y =x 过点P (1,1),所以过点P (1,1)的直线x =1与双曲线右支相切,只有一个公共点,过P (1,1)与y =-x 平行的直线y =-x +2和双曲线右支相交,只有一个公共点, 综上共有2条直线符合要求. 答案:215.(2019·泰安模拟)抛物线C :y 2=4x 的焦点为F ,动点P 在抛物线C 上,点A (-1,0),当|PF ||PA |取得最小值时,直线AP 的方程为________. 解析:设P 点的坐标为(4t 2,4t ), ∵F (1,0),A (-1,0),∴|PF |2=(4t 2-1)2+16t 2=16t 4+8t 2+1, |PA |2=(4t 2+1)2+16t 2=16t 4+24t 2+1, ∴⎝ ⎛⎭⎪⎫|PF ||PA |2=16t 4+8t 2+116t 4+24t 2+1=1-16t 216t 4+24t 2+1=1-1616t 2+1t2+24≥1-16216t 2·1t2+24=1-1632=12,当且仅当16t 2=1t 2,即t =±12时取等号,此时点P 坐标为(1,2)或(1,-2),此时直线AP 的方程为y =±(x +1),即x +y +1=0或x -y +1=0. 答案:x +y +1=0或x -y +1=016.抛物线C :y 2=2px (p >0)的焦点为A ,其准线与x 轴的交点为B ,如果在直线3x +4y +25=0上存在点M ,使得∠AMB =90°,则实数p 的取值范围是________.解析:由题得A ⎝ ⎛⎭⎪⎫p 2,0,B ⎝ ⎛⎭⎪⎫-p2,0, ∵M 在直线3x +4y +25=0上,设点M ⎝ ⎛⎭⎪⎫x ,-3x -254,∴AM →=⎝ ⎛⎭⎪⎫x -p 2,-3x -254, BM →=⎝⎛⎭⎪⎫x +p 2,-3x -254, 又∠AMB =90°,∴AM →·BM →=⎝ ⎛⎭⎪⎫x -p 2⎝ ⎛⎭⎪⎫x +p 2+⎝ ⎛⎭⎪⎫-3x -2542=0,即25x 2+150x +625-4p 2=0, ∴Δ≥0,即1502-4×25×(625-4p 2)≥0, 解得p ≥10或p ≤-10,又p >0,∴p 的取值范围是[10,+∞). 答案:[10,+∞) 三、解答题17.已知椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,并且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |,|F 2B |,|F 2C |成等差数列. (1)求椭圆的方程; (2)求弦AC 中点的横坐标.解析:(1)由题意可知2a =|F 1B |+|F 2B |=10. 所以a =5,又c =4,所以b =a 2-c 2=3, 所以椭圆方程为:x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=95.由|F 2A |,|F 2B |,|F 2C |成等差数列, 得 (x 1-4)2+y 21+ (x 2-4)2+y 22=2×95,①点A (x 1,y 1)在椭圆x 2125+y 219=1上,得y 21=925(25-x 21),所以 (x 1-4)2+y 21 =x 21-8x 1+16+925(25-x 21)= ⎝ ⎛⎭⎪⎫5-45x 12=15(25-4x 1),② 同理可得 (x 2-4)2+y 22=15(25-4x 2),③将②③代入①式,得15(25-4x 1)+15(25-4x 2)=185,所以x 1+x 2=8,设AC 中点坐标为(x 0,y 0),则横坐标x 0=x 1+x 22=4.18.(2019·合肥质检)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,点P ⎝⎛⎭⎪⎫1,22在椭圆C 上,且△PF 1F 2的面积为22. (1)求椭圆C 的方程;(2)设过点F 1的直线l 交椭圆于A ,B 两点,求F 2A →·F 2B →的取值范围. 解析:(1)由椭圆C 经过点P ⎝ ⎛⎭⎪⎫1,22,且△PF 1F 2的面积为22, 得1a 2+12b 2=1,且12×2c ×22=22,即c =1. 又a 2-b 2=c 2=1,解得a 2=2,b 2=1. 所以椭圆C 的方程为x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0).设A (x 1,y 1),B (x 2,y 2). 若直线l 的斜率不存在,可得点A ,B 的坐标为⎝ ⎛⎭⎪⎫-1,22,⎝ ⎛⎭⎪⎫-1,-22, 则F 2A →·F 2B →=72.当直线l 的斜率存在时,设l :y =k (x +1),代入椭圆方程得(1+2k 2)x 2+4k 2x +2(k 2-1)=0. 则Δ=16k 4-8(1+2k 2)(k 2-1)=8k 2+8>0恒成立. 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2.所以F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=7k 2-11+2k 2=72-92(1+2k 2). 又k 2≥0,则F 2A →·F 2B →=72-92(2k 2+1)∈⎣⎢⎡⎭⎪⎫-1,72. 综上可知,F 2A →·F 2B →的取值范围为⎣⎢⎡⎦⎥⎤-1,72.增分强化练(三十一)考点一 范围、最值问题(2019·大连模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,l 1与l 2交于点M . (1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解析:(1)由题意知,抛物线焦点为:⎝ ⎛⎭⎪⎫0,p 2,准线方程为:y =-p2,焦点到准线的距离为2,即p =2. (2)抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设A (x 1,y 1),B (x 2,y 2),l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 方程为y =kx +m ,与抛物线方程联立,得⎩⎪⎨⎪⎧y =kx +m x 2=4y ,所以x 2-4kx -4m =0,Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1.即l :y =kx +1,联立方程⎩⎪⎨⎪⎧y =x 12x -x 214y =x 22x -x224,得⎩⎪⎨⎪⎧x =2k y =-1,即M (2k ,-1),M 点到直线l 的距离d =|k ·2k +1+1|1+k 2=2|k 2+1|1+k 2, |AB |=(1+k 2)[](x 1+x 2)2-4x 1x 2=4(1+k 2),所以S =12×4(1+k 2)×2|k 2+1|1+k 2=4(1+k 2)32≥4, 当k =0时,△MAB 面积取得最小值4. 考点二 定点、定值问题(2019·南昌模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),点M 在C 的长轴上运动,过点M 且斜率大于0的直线l 与C 交于P ,Q 两点,与y 轴交于N 点.当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2. (1)求椭圆C 的方程;(2)当N ,P ,Q ,M 均不重合时,记NP →=λNQ →,MP →=μMQ →,若λμ=1,求证:直线l 的斜率为定值.解析:(1)因为当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2,所以a =|PM |=2,故b c =tan π6=33, 因为a 2=b 2+c 2, 因此c =3,b =1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设l :x =ty +m (m ≠0),所以M (m,0),N ⎝ ⎛⎭⎪⎫0,-m t ,所以k l =1t .因为斜率大于0,所以t >0,设P (x 1,y 1),Q (x 2,y 2),则NP →=⎝ ⎛⎭⎪⎫x 1,y 1+m t ,NQ →=⎝ ⎛⎭⎪⎫x 2,y 2+m t ,由NP →=λNQ →得,x 1=λx 2,①同理可得y 1=μy 2,②①②两式相乘得,x 1y 1=λμx 2y 2,又λμ=1,所以x 1y 1=x 2y 2,所以(ty 1+m )y 1=(ty 2+m )y 2,即t (y 21-y 22)=m (y 2-y 1),即(y 2-y 1)[]m +t (y 1+y 2)=0,由题意k l >0,知y 1-y 2≠0,所以m +t (y 1+y 2)=0.联立方程组⎩⎪⎨⎪⎧ x =ty +m x 24+y 2=1,得(t 2+4)y 2+2tmy +m 2-4=0,依题意,y 1+y 2=-2tmt 2+4,所以m -2t 2mt 2+4=0,又m ≠0,所以t 2=4,因为t >0,故得t =2,所以k l =1t =12,即直线l 的斜率为12.考点三 存在性问题已知抛物线y 2=4x ,过点P (8,-4)的动直线l 交抛物线于A ,B 两点.(1)当P 恰为AB 的中点时,求直线l 的方程;(2)抛物线上是否存在一个定点Q ,使得以弦AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解析:(1)设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),当P 恰为AB 的中点时,显然x 1≠x 2,故k AB =y 1-y 2x 1-x 2=4y 1+y 2,又y 1+y 2=-8,故k AB =-12, 则直线l 的方程为y =-12x . (2)假设存在定点Q ,设Q ⎝ ⎛⎭⎪⎫y 204,y 0,当直线l 斜率存在时,设l :y =k (x -8)-4(k ≠0),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y 2=4x y =k (x -8)-4,整理得ky 2-4y -32k -16=0,Δ>0,y 1+y 2=4k ,y 1y 2=-32-16k, 由以弦AB 为直径的圆恒过点Q 知QA →·QB →=0,即⎝ ⎛⎭⎪⎫x 1-y 204⎝ ⎛⎭⎪⎫x 2-y 204+(y 1-y 0)(y 2-y 0)=0, 即⎝ ⎛⎭⎪⎫y 214-y 204⎝ ⎛⎭⎪⎫y 224-y 204+(y 1-y 0)(y 2-y 0)=⎣⎢⎡⎦⎥⎤(y 1+y 0)(y 2+y 0)16+1(y 1-y 0)(y 2-y 0)=0, 故(y 1+y 0)(y 2+y 0)=-16,即y 1y 2+y 0(y 1+y 2)+y 20+16=0,整理得(y 20-16)k +4(y 0-4)=0,即当y 0=4时,恒有QA →·QB →=0,故存在定点Q (4,4)满足题意;当直线l 斜率不存在时,l :x =8,不妨令A (8,42),B (8,-42),Q (4,4),也满足QA →·QB→=0,综上所述,存在定点Q (4,4),使得以弦AB 为直径的圆恒过点Q .。
第1讲 直线与圆A 级 基础通关一、选择题1.已知直线l :x cos α+y sin α=1(α∈R)与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值范围是( )A .0<r ≤1B .0<r <1C .r ≥1D .r >1解析:圆心到直线的距离为d =1cos 2α+sin 2α=1,故r >1. 答案:D2.已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1,所以命题p 是命题q 的充分不必要条件. 答案:A3.(2019·广东湛江一模)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2或10B .4或8C .4或6D .2或4解析:圆C :(x -3)2+(y -3)3=72的圆心C 的坐标为(3,3),半径r =62, 因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22,则有d =|6-m |1+1=22,解得m =2或m =10.答案:A4.直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离D .不能确定解析:圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24.所以圆心坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,半径r =a 2+b 22.所以圆心到直线ax -by =0的距离d =⎪⎪⎪⎪⎪⎪a 22+b 22a 2+b 2=a 2+b 22=r .所以直线与圆相切. 答案:B5.(2019·安徽十校联考)过点P (2,1)作直线l 与圆C :x 2+y 2-2x -4y +a =0交于A ,B 两点,若P 为弦AB 中点,则直线l 的方程( )A .y =-x +3B .y =2x -3C .y =-2x +3D .y =x -1解析:圆C 的标准方程(x -1)2+(y -2)2=5-a ,知圆心C (1,2),因为P (2,1)是弦AB 的中点,则PC ⊥l .所以k CP =1-22-1=-1,所以直线l 的斜率k =1.故直线l 的方程为y -1=x -2,即y =x -1. 答案:D6.(2019·广东天河一模)已知圆C 的方程为x 2-2x +y 2=0,直线l :kx -y +2-2k =0与圆C 交于A ,B 两点,则当△ABC 面积最大时,直线l 的斜率k 为( )A .1B .6C .1或7D .2或6解析:由x 2-2x +y 2=0,得(x -1)2+y 2=1,则圆的半径r =1,圆心C (1,0), 直线l :kx -y +2-2k =0与圆C 交于A ,B 两点, 当CA 与CB 垂直时,△ABC 面积最大,此时△ABC 为等腰直角三角形,圆心C 到直线AB 的距离d =22, 则有|2-k |1+k2=22,解得k =1或k =7. 答案:C 二、填空题7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆. 答案:(-2,-4) 58.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.解析:因为圆C 的圆心在x 的正半轴上, 设C (a ,0),且a >0.则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2.所以圆C 的半径r =|CM |= (2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=99.在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为________.解析:直线mx -y -2m -1=0恒过定点P (2,-1),当AP 与直线mx -y -2m -1=0垂直,即点P (2,-1)为切点时,圆的半径最大,此时半径r =(1-2)2+(0+1)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案:(x -1)2+y 2=210.(2019·河北衡水二模)已知直线l 1过点P (3,0),直线l 1与l 2关于x 轴对称,且l 2过圆C :x 2+y 2-2x -2y +1=0的圆心,则圆心C 到直线l 1的距离为________.解析:由题意可知,圆C 的标准方程为(x -1)2+(y -1)2=1, 所以C (1,1),则l 2的斜率k CP =1-01-3=-12,因为l 1与l 2关于x 轴对称,所以直线l 1的斜率k =12,所以l 1:y =12(x -3),即x -2y -3=0,所以圆心C 到直线l 1的距离d =|1-2-3|1+4=455.答案:455B 级 能力提升11.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:设A (a ,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0. 由题意知C (a +52,a ).由⎩⎪⎨⎪⎧(x -5)(x -a )+y (y -2a )=0,y =2x , 解得⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =a ,y =2a .所以D (1,2). 又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=(1-a +52,2-a ),所以(5-a ,-2a )·(1-a +52,2-a )=52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,所以a =3. 答案:312.已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解:圆C 的方程为(x +1)2+(y -2)2=2, 所以圆心C (-1,2),半径r = 2.由|PM |=|PO |,得|PO |2=|PM |2=|PC |2-|CM |2, 所以x 21+y 21=(x 1+1)2+(y 1-2)2-2.整理,得2x 1-4y 1+3=0,即点P 在直线2x -4y +3=0上, 要使|PM |取最小值时,只要|PO |取最小值即可.当直线PO 垂直于直线2x -4y +3=0时,即直线PO 的方程为2x +y =0时,|PM |最小. 解方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,得⎩⎪⎨⎪⎧x =-310,y =35.故使|PM |取得最小值时,点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.第2讲 椭圆、双曲线、抛物线A 级 基础通关一、选择题1.(2019·北京卷)已知双曲线x 2a2-y 2=1(a >0)的离心率是5,则a =( )A. 6B .4C .2D.12解析:由双曲线方程x 2a2-y 2=1,得b 2=1,所以c 2=a 2+1.所以5=e 2=c 2a 2=a 2+1a 2=1+1a2.结合a >0,解得a =12.答案:D2.抛物线y 2=2px (p >0)经过点M (x 0,22),若点M 到焦点F 的距离|MF |=3,则抛物线的方程为( )A .y 2=4x B .y 2=2x 或y 2=4x C .y 2=8xD .y 2=4x 或y 2=8x解析:因为点M (x 0,22)在y 2=2px 上, 所以8=2px 0,得x 0=4p.又|MF |=3,得4p +p2=3,解得p =2或p =4.所以抛物线方程为y 2=4x 或y 2=8x . 答案:D3.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.223解析:不妨设a >0,由焦点F (2,0),知c =2. 所以a 2=4+c 2=8,则a =2 2.因此离心率e =c a =222=22.答案:C4.(2019·长郡中学模拟)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线与(x -2)2+(y -1)2=1相切,则b a=( )A.43B.34C.169D.916解析:易知双曲线C 的一条渐近线方程为ax -by =0. 又渐近线与圆(x -2)2+(y -1)2=1相切, 所以|2a -b |a 2+b2=1,则(2a -b )2=a 2+b 2. 所以3a =4b ,因此b a =34.答案:B5.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3C .2D. 5解析:设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0).由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设PQ 与OF 交于点M ,连接OP ,如图所示. 则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得2·⎝ ⎛⎭⎪⎫c 22=a 2,故c a=2,离心率e = 2. 答案:A 二、填空题6.(2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.解析:因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则9-16b2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,因此双曲线的渐近线方程为y =±2x . 答案:y =±2x7.(2019·珠海调研)已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F ,且与直线l 相切,则抛物线的方程为________.解析:由已知圆心在OF 的中垂线上,故圆心到准线的距离为34p ,所以34p =3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x8.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析:设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心,焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案:(3,15) 三、解答题9.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 证明:(1)设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P (1,-32),|FP →|=32,于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3(1-x 214)=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|.B 级 能力提升11.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1 解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.如图.不妨设A (0,-b ),由F 2(1,0),AF 2→=2F 2B →,得B ⎝ ⎛⎭⎪⎫32,b 2. 由点B 在椭圆上,得94a 2+b 24b 2=1,得a 2=3,b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1.答案:B12.(2019·天津卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知3|OA |=2|OB |(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程.解:(1)设椭圆的半焦距为c ,依题意3a =2b . 又a 2=b 2+c 2,消去b ,得a 2=⎝ ⎛⎭⎪⎫32a 2+c 2,解得c a =12.所以,椭圆的离心率为12.(2)由(1)知,a =2c ,b =3c ,故椭圆方程为x 24c 2+y 23c2=1.由题意,F (-c ,0),则直线l 的方程为y =34(x +c ).点P 的坐标满足⎩⎪⎨⎪⎧x 24c 2+y 23c2=1,y =34(x +c ),消去y 并化简,得到7x 2+6cx -13c 2=0, 解得x 1=c ,x 2=-13c7.代入到l 的方程,解得y 1=32c ,y 2=-914c .因为点P 在x 轴上方,所以P ⎝ ⎛⎭⎪⎫c ,32c . 由圆心C 在直线x =4上,可设C (4,t ). 因为OC ∥AP ,且由(1)知A (-2c ,0), 故t4=32c c +2c,解得t =2. 因为圆C 与x 轴相切,所以圆C 的半径为2.又由圆C 与l 相切,得⎪⎪⎪⎪⎪⎪34(4+c )-21+⎝ ⎛⎭⎪⎫342=2,可得c =2.所以,椭圆的方程为x 216+y 212=1.第3讲 圆锥曲线中的热点问题A 级 基础通关一、选择题1.(2017·全国卷Ⅰ改编)椭圆C :x 23+y 2m=1的焦点在x 轴上,点A ,B 是长轴的两端点,若曲线C 上存在点M 满足∠AMB =120°,则实数m 的取值范围是( )A .(3,+∞)B .[1,3)C .(0,3)D .(0,1]解析:依题意,当0<m <3时,焦点在x 轴上, 要在曲线C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°,即3m≥3,解得0<m ≤1.答案:D2.(2019·全国卷Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40°C.1sin 50°D.1cos 50°解析:由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130°=1+sin 2130°cos 2130°= 1|cos 130°|=1cos 50°.答案:D3.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2B.12C.14D.18解析:根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,所以当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18. 答案:D4.(2019·天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a>0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2B. 3C .2 D. 5解析:由已知易得,抛物线y 2=4x 的焦点为F (1,0),准线l :x =-1,所以|OF |=1. 又双曲线的两条渐近线的方程为y =±b ax ,不妨设点A ⎝⎛⎭⎪⎫-1,b a ,B ⎝⎛⎭⎪⎫-1,-b a ,所以|AB |=2b a =4|OF |=4,所以b a=2,即b =2a ,所以b 2=4a 2.又因为c 2=a 2+b 2,所以c 2=5a 2,所以e =c a= 5. 答案:D5.(2019·安徽六安一中模拟)点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F 2,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF 2|的最小值为( )A .42-4B .4-4 2C .6-2 5D .25-6解析:设椭圆的左焦点为F 1(-1,0).则|PQ |-|PF 2|=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF 2|的最小值.即求|PQ |+|PF 1|的最小值. 又圆C 2的半径r =2,圆心C 2(-3,4),所以(|PQ |+|PF 1|)min =|C 2F 1|-r =22+(-4)2-2=25-2. 故|PQ |-|PF 2|的最小值为25-6. 答案:D 二、填空题6.已知点(1,2)是双曲线x 2a 2-y 2b2=1(a >0,b >0)上一点,则双曲线离心率的取值范围是________.解析:由已知得1a 2-4b 2=1,所以b 2a2=b 2+4,则e 2=⎝ ⎛⎭⎪⎫c a 2=1+b 2a 2=5+b 2,故e > 5.答案:(5,+∞)7.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4,所以|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x ,g ′(x )=x 3+82x2,令g ′(x )<0,得x <-2, 令g ′(x )>0,得-2<x <0.所以g (x )在(-∞,-2)上递减,在(-2,0)上递增. 所以当x =-2,即y 2=-2时,|AC |+|BD |取最小值为3. 答案:38.(2019·浙江卷)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.解析:如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6, 所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,故直线PF 的斜率是15. 答案:15 三、解答题9.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB →=-4,求证:直线l 恒过定点;(2)若直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. (1)证明:设l :x =my +n ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0. 所以y 1+y 2=4m ,y 1y 2=-4n . 所以x 1+x 2=4m 2+2n ,x 1x 2=n 2. 由OA →·OB →=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. 所以直线l 方程为x =my +2, 所以直线l 恒过定点(2,0).(2)解:因为直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, 所以|1-n |1+m2=2,且n ≥3,整理得4m 2=n 2-2n -3(n ≥3).①又点P 坐标为(1,0),所以由已知及①,得 PA →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,所以当n =3时,y =4-4n 取得最大值-8. 故PA →·PB →的最大值为-8.10.(2019·惠州调研)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为12,短轴长为2 3.(1)求椭圆C 的方程;(2)设过点A (0,4)的直线l 与椭圆C 交于M 、N 两点,F 是椭圆C 的上焦点.问:是否存在直线l ,使得S △MAF =S △MNF ?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由题意知c a =12,b =3,且a 2=b 2+c 2,解之得a 2=4,b 2=3.所以椭圆C 的方程为y 24+x 23=1.(2)存在.理由如下:由题意可知l 的斜率一定存在,设l 为y =kx +4,M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +4,y 24+x 23=1,⇒(3k 2+4)x 2+24kx +36=0,所以⎩⎪⎨⎪⎧Δ=(24k )2-144(3k 2+4)>0, ①x 1+x 2=-24k 3k 2+4, ②x 1x 2=363k 2+4, ③由S MAF =S △MNF ,知M 为线段AN 的中点, 所以x 2=2x 1,④ 将④代入②得x 1=-8k 3k 2+4;④代入③得x 21=183k 2+4. 从而可得k 2=365,且满足①式,所以k =±655.因此存在直线l 为6x -5y +45=0或6x +5y -45=0满足题意.B 级 能力提升11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b ≥1)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 面积的最大值.解:(1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2.又4a 2+1b2=1,所以a 2=8,b 2=2.故所求椭圆C 的方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14× (x 1+x 2)2-4x 1x 2= 5(4-m 2), 点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △PAB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+(4-m 2)2=2.当且仅当m 2=2即m =±2时上式等号成立, 故△PAB 面积的最大值为2.12.设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解:(1)在△ABC 中,由余弦定理得AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,所以CA ·CB =43,代入上式得CA +CB =22,所以椭圆长轴2a =22,焦距2c =AB =2,所以b =1.所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k2.假设x 轴上存在定点D (x 0,0)使得DE →·DF →为定值. 所以DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=(2x 20-4x 0+1)k 2+(x 20-2)1+2k2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, 所以2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.满分示范课——解析几何解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【典例】 (满分12分)(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .[规范解答] (1)由已知得F (1,0),l 的方程为x =1. 把x =1代入椭圆方程x 22+y 2=1,得点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. (2)当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=k (x 1-1),y 2=k (x 2-1)得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0,故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .高考状元满分心得1.得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问求出点A 的坐标,第(2)问求k MA +k MB =0,判定MA ,MB 的倾斜角互补. 2.得关键分:解题过程中不可忽视关键点,有则给分,无则没分.如第(1)问中求出直线AM 的方程,第(2)问讨论直线与坐标轴是否垂直,将直线y =k (x -1)与x 22+y 2=1联立得(2k2+1)x 2-4k 2x +2k 2-2=0.3.得计算分:解题过程中计算准确是满分的根本保证.如第(1)问求对点M 坐标与直线AM 的方程;第(2)问中正确运算出x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,求出k MA +k MB =0,否则将导致失分.[解题程序] 第一步:由椭圆方程,求焦点F 及直线l . 第二步:求点A 的坐标,进而得直线AM 的方程. 第三步:讨论直线的斜率为0或不存在时,验证∠OMA = ∠OMB .第四步:联立方程,用k 表示x 1+x 2与x 1x 2. 第五步:计算k MA +k MB =0,进而得∠OMA =∠OMB . 第六步:反思总结,规范解题步骤. [跟踪训练]1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于23,椭圆上的点到右焦点F 最远距离为3.(1)求椭圆C 的方程;(2)设O 为坐标原点,过F 的直线与C 交于A 、B 两点(A 、B 不在x 轴上),若OE →=OA →+OB →,且E 在椭圆上,求四边形AOBE 面积.解:(1)由题意,2b =23,知b = 3. 又a +c =3,a 2=b 2+c 2=3+c 2, 所以可得a =2,且c =1. 因此椭圆C 的方程为x 24+y 23=1.(2)F (1,0).直线AB 的斜率不为0,设直线AB 的方程:x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0.由根与系数的关系,得⎩⎪⎨⎪⎧Δ>0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.故AB 的中点为N ⎝⎛⎭⎪⎫43m 2+4,-3m 3m 2+4.又OA →+OB →=2ON →=OE →,故E 的坐标为⎝⎛⎭⎪⎫83m 2+4,-6m3m 2+4.因为E 点在椭圆上,所以14×⎝ ⎛⎭⎪⎫83m 2+42+13×⎝ ⎛⎭⎪⎫-6m 3m 2+42=1,化简得9m 4+12m 2=0,故m 2=0, 此时直线AB :x =1,S 四边形AOBE =2S △AOE =2×⎝ ⎛⎭⎪⎫12×2×32=3.2.(2019·长沙模拟一中)设椭圆C :y 2a 2+x 2b 2=1(a >b >0),定义椭圆C 的“相关圆”E的方程为x 2+y 2=a 2b 2a 2+b2.若抛物线x 2=4y 的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 的直线l :y =kx +m 与椭圆C 交于A ,B 两点.O 为坐标原点,若OA ⊥OB ,证明原点O 到直线AB 的距离是定值,并求m 的取值范围.解:(1)因为抛物线x 2=4y 的焦点为(0,1). 依题意椭圆C 的一个焦点为(0,1),知c =1,又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,则b =c =1. 故椭圆C 的方程为y 22+x 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =kx +m ,y 22+x 2=1,得(2+k 2)x 2+2kmx +m 2-2=0, Δ=4k 2m 2-4(2+k 2)(m 2-2)=8(k 2-m 2+2)>0, 即k 2-m 2+2>0, ⎩⎪⎨⎪⎧x 1+x 2=-2kmk 2+2,x 1x 2=m 2-2k 2+2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(m 2-2)k 2+2-2k 2m 2k 2+2+m 2=2m 2-2k 2k 2+2.由条件OA ⊥OB 得,OA →·OB →=0,即3m 2-2k 2-2=0,- 21 - 所以原点O 到直线l 的距离d =|m |1+k 2=m 21+k 2, 由3m 2-2k 2-2=0得d =63为定值.由Δ>0,即k 2-m 2+2>0,所以3m 2-22-m 2+2>0,即m 2+2>0,恒成立. 又k 2=3m 2-22≥0,即3m 2≥2,所以m 2≥23,即m ≥63或m ≤-63,综上,m ≥63或m ≤-63.。
2020年高考数学二轮专题复习解析几何习题精选一、选择题:1、直线3y 3x =+的倾斜角是______。
A .6πB .3πC .32πD .65π2、直线m 、l 关于直线x = y 对称,若l 的方程为1x 2y +=,则m 的方程为_____。
A .21x 21y +-= B .21x 21y --= C .21x 21y +=D .21x 21y -=3、已知平面内有一长为4的定线段AB ,动点P 满足|PA|—|PB|=3,O 为AB 中点,则|OP|的最小值为______。
A .1B .23C .2D .34、点P 分有向线段21P P 成定比λ,若λ∈()1,-∞-,则λ所对应的点P 的集合是___。
A .线段21P PB .线段21P P 的延长线C .射线21P PD .线段21P P 的反向延长线5、已知直线L 经过点A ()0,2-与点B ()3,5-,则该直线的倾斜角为______。
A .150°B .135°C .75°D .45°6、经过点A ()1,2且与直线04y x 3=+-垂直的直线为______。
A .05y 3x =++B .05y 3x =-+C .05y 3x =+-D .05y 3x =--7、经过点()0,1且与直线x 3y =所成角为30°的直线方程为______。
A .01y 3x =-+ B .01y 3x =--或1y =C .1x =D . 01y 3x =--或1x =8、已知点A ()3,2-和点B ()2,3--,直线m 过点P ()1,1且与线段AB 相交,则直线m 的斜率k的取值范围是______。
A .4k 43k -≤≥或 B .43k 4≤≤- C .51k -< D .4k 43≤≤- 9、两不重合直线0n y mx =-+和01my x =++相互平行的条件是______。
解析几何A组基础通关(2019安徽蚌埠高三第三次教学质检)已知点E(-2,0),F(2,0),P(x,y)是平面内一动点,P可以与点1.重合.当F不与重合时,直线FE与PF的斜率之积为(1)求动点P的轨迹方程;(2)一个矩形的四条边与动点P的轨迹均相切,求该矩形面积的取值范围.厕(1)当P与点不重合时,由kpE・kpF=-=,得去.即§+)2=1(:#。
),当F与点氏尸重合时,P(-2,0)或P(2,0).v2综上,动点P的轨迹方程为彳+y2=l.(2)记矩形面积为5,当矩形一边与坐标轴平行时,易知S=8.当矩形各边均不与坐标轴平行时,根据对称性,设其中一边所在直线方程为y=kx+m,则对边方程为y=kx-m,另一边所在的直线为、=-金+〃,则对边方程为y=-yx-n,K K联立:—%得(1+4^2)x2+8fcmx+4(m2-l)=0,\.y=KX+771,则1=0,即4砂+1=初2.矩形的一边长为Jk2+1同理:4+i=«2,矩形的另一边长为/=牛业,k F\2m\\2n\_\4mnk\_. ----------=―n---—4-/c z+l(4好+1)仇2+4)J~*+1)2~二4・4/c4+17/c2+4,L,9k2(炉+1)2=4.4+e综上:SC[8,10].2.(2019山东烟台一模)已知F为抛物线C:y2=2px(p>0)^]焦点,过F的动直线交抛物线C于A,3两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线"目交于点抛物线C上存在点F使得直线PA,PM,PB 的斜率成等差数列,求点P的坐标.照⑴因为F(§0),在抛物线方程y2=2px中,令*=|,可得y=±p.于是当直线与尤轴垂直时,|A8|=2p=4,解得p=2.所以抛物线的方程为y2=4x.(2)因为抛物线寸二4工的准线方程为工=-1,所以设直线AB的方程为y=x-l,联立=4X,消去x,得)2_4北4=0,ly=x-1'设A(xi,yi),B(X2,y2),则yi+y2=4,yiy2=-4.若点P3o,yo)满足条件,则2kpM=kpA+kpB,即2.些=冬+心,Xo+l X O-X1X O-X29因为点PAB均在抛物线上,所以xo=4,xi=#,X2=空.444代入化简可得软m=诟+42、0+、1+、2场+(yi+y2)yo+viy2‘将yi+y2=4,y)2=-4代入,解得yo=±2.将,o=±2代入抛物线方程,可得xo-1-于是点P(l,±2)为满足题意的点.3.已知椭圆4+#=1(*>。
5 解析几何时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2015·郑州市质检)“a=1”是“直线ax+y+1=0与直线(a +2)x-3y-2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[答案] B[解析] 两直线垂直的充要条件为a(a+2)-3=0,解得a=-3或a=1,故选B.2.(文)已知圆O的方程是x2+y2-8x-2y+10=0,则过点M(3,0)的最短弦所在的直线方程是( )A.x+y-3=0 B.x-y-3=0C.2x-y-6=0 D.2x+y-6=0[答案] A[解析] 圆O的方程是x2+y2-8x-2y+10=0,即(x-4)2+(y-1)2=7,圆心O(4,1),设过点M(3,0)的最短弦所在的直线为l,∵k OM =1,∴k l=-1,∴l的方程为:y=-1·(x-3),即x+y-3=0.(理)已知动圆C经过点F(0,1)并且与直线y=-1相切,若直线3x-4y+20=0与圆C有公共点,则圆C的面积( )A .有最大值为πB .有最小值为πC .有最大值为4πD .有最小值为4π[答案] D[解析] 如图所示,由圆C 经过点F(0,1),并且与直线y =-1相切,可得点C 的轨迹为抛物线x 2=4y ,显然以抛物线x 2=4y 上任一点为圆心可作出任意大的圆与直线3x -4y +20=0相交,且此圆可无限大,即圆C 的面积不存在最大值,设圆C 与3x -4y +20=0相切于点A ,其圆心为(x 0,y 0),则由AC =PC 可得d =3x 0-4y 0+205=y 0+1(点C 在直线3x -4y +20=0的右方),即3x 0-x 20+205=14x 20+1,解得x 0=-2或x 0=103(舍去),当x 0=-2时,圆心C 坐标为(-2,1),此时圆C 的半径为2,即可得圆C 的面积的最小值为4π,故应选D .3.(文)(2015·江西上饶三模)已知点M(-6,5)在双曲线C :x2a 2-y2b 2=1(a>0,b>0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y =±52xB .y =±255xC .y =±23xD .y =±32x[答案] A[解析]由条件知⎩⎪⎨⎪⎧36a 2-25b2=1,a 2+b 2=c 2,c =6,∴⎩⎪⎨⎪⎧a =4,b =25,c =6.∴渐近线方程为y =±52x.(理)(2015·新课标Ⅱ理,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°, 则E 的离心率为( )A. 5 B .2 C. 3 D . 2[答案] D[解析] 考查双曲线的标准方程和简单几何性质.设双曲线方程为x 2a 2-y2b 2=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM =120°,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中,|BN|=a ,|MN|=3a ,故点M 的坐标为M(2a ,3a),代入双曲线方程得a 2=b 2=c 2-a 2,即c 2=2a 2,所以e =2,故选D .4.抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A 、B 两点,若P(1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2x C .x 2=2y D .y 2=-2x[答案] B[解析] 设A(x 1,y 1),B(x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x ,故应选B .5.(文)(2015·新课标Ⅰ文,5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B是C 的准线与E 的两个交点,则|AB|=( )A .3B .6C .9D .12[答案] B[解析] 抛物线y 2=8x 的焦点坐标为(2,0).因为E 的右焦点与抛物线焦点重合,所以椭圆中c =2,离心率e =c a =12,所以a=4,所以b 2=a 2-c 2=16-4,则椭圆方程为x 216+y 212=1,因为抛物线的准线方程为x =-2,当x =-2时,y =±3,则|AB|=2×3=6.故本题正确答案为B .(理)过原点O 作直线l 交椭圆x 2a 2+y2b 2=1(a>b>0)于点A 、B ,椭圆的右焦点为F 2,离心率为e.若以AB 为直径的圆过点F 2,且sin ∠ABF 2=e ,则e =( )A.12 B .22C.23 D .32[答案] B[解析] 记椭圆的左焦点为F 1,依题意得|AB|=2c ,四边形AF 1BF 2为矩形,sin ∠ABF 2=|AF 2||AB|=|AF 2|2c =e ,|AF 2|=2ce ,|AF 1|2=(2a-|AF 2|)2=(2a -2ce)2,|AF 1|2+|AF 2|2=|F 1F 2|2,(2a -2ce)2+(2ce)2=(2c)2,由此解得e =22,选B .6.半径不等的两定圆O 1、O 2没有公共点,且圆心不重合,动圆O 与定圆O 1和定圆O 2都内切,则圆心O 的轨迹是( )A .双曲线的一支B .椭圆C .双曲线的一支或椭圆D .双曲线或椭圆[答案] C[解析] 设⊙O 1、⊙O 2、⊙O 的半径分别为r 1、r 2、R ,且r 1>r 2>0,当⊙O 1与⊙O 2外离时,由条件知⊙O 1与⊙O 2都内切于⊙O ,∴|OO 1|=R -r 1,|OO 2|=R -r 2,∴|OO 2|-|OO 1|=r 1-r 2,0<r 1-r 2<|O 1O 2|,∴点O 的轨迹是以O 1、O 2为焦点的双曲线靠近O 1点的一支;当⊙O 2内含于⊙O 1时,应有⊙O 内切于⊙O 1,⊙O 2内切于⊙O ,∴|OO 1|=r 1-R ,|OO 2|=R -r 2,∴|OO 1|+|OO 2|=r 1-r 2,∵O 1与O 2不重合,且r 1>r 2,∴r 1-r 2>|O 1O 2|,∴点O 的轨迹为以O 1、O 2为焦点的椭圆,故选C.7.(文)已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2) B .(1,+∞)C .(1,2)D .(12,1)[答案] C[解析] 由题意可得,2k -1>2-k>0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k>0,解得1<k<2,故选C.(理)(2014·广东文,8)若实数k 满足0<k<5,则曲线x 216-y25-k =1与曲线x 216-k -y25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等[答案] D[解析] ∵0<k<5,∴两方程都表示双曲线,由双曲线中c 2=a 2+b 2得其焦距相等,选D .8.(2014·大纲全国理,6)已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y22=1 B .x 23+y 2=1C.x 212+y28=1 D .x 212+y24=1[答案] A[解析] 根据条件可知c a =33,且4a =43,∴a =3,c =1,b 2=2,椭圆的方程为x 23+y 22=1.9.(文)已知P 点是x 2+y 2=a 2+b 2与双曲线C :x 2a 2-y 2b2=1(a>0,b>0)在第一象限内的交点,F1、F2分别是C的左、右焦点,且满足|PF1|=3|PF2|,则双曲线的离心率e为( )A.2 B.6 2C.102D.52[答案] C[解析] 设|PF2|=x,则|PF1|=3x,∴|F1F2|2=|PF1|2+|PF2|2=10x2=4c2,∴c=102x,由双曲线的定义知,2a=|PF1|-|PF2|=2x,∴a=x,∴e=ca =102,故选C.(理)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点A在双曲线上,且AF2⊥x轴,若|AF1||AF2|=53,则双曲线的离心率等于( )A.2 B.3C. 2 D. 3[答案] A[解析] 设|AF2|=3x,则|AF1|=5x,∴|F1F2|=4x,∴c=2x,由双曲线的定义知,2a =|AF 1|-|AF 2|=2x , ∴a =x ,∴e =ca=2.10.(文)过抛物线y 2=2px(p>0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,直线l 与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=36,则抛物线的方程为( )A .y 2=6x B .y 2=3x C .y 2=12x D .y 2=23x[答案] D[解析] ∵F(p 2,0),设A(x 0,y 0),y 0>0,则C(-p2,y 0),B(p-x 0,-y 0),由条件知p -x 0=-p 2,∴x 0=3p2,∴y 20=2p ·3p 2=3p 2,∴y 0=3p ,∴B(-p 2,-3p),A(3p 2,3p),C(-p 2,3p),∴BA →·BC →=(2p,23p)·(0,23p)=12p 2=36,∴p =3,∴抛物线方程为y 2=23x.(理)过双曲线M :x 2-y 2b 2=1的左顶点A 作斜率为2的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BC →=2AB →,则双曲线M 的离心率是( )A. 5 B .10 C.17 D .37[答案] C[解析] 由条件知A(-1,0),∴l :y =2(x +1),双曲线渐近线方程为y =±bx ,∵BC→=2AB →,∴B 在A ,C 之间,∴由⎩⎪⎨⎪⎧y =2(x +1),y =-bx ,得B(-2b +2,2bb +2),由⎩⎪⎨⎪⎧y =2(x +1),y =bx ,得C(2b -2,2bb -2),再由BC→=2AB →得b =4,∴e =17. 11.若抛物线y 2=2px 上恒有关于直线x +y -1=0对称的两点A 、B ,则p 的取值范围是( )A .(-23,0)B .(0,32)C .(0,23)D .(-∞,0)∪(23,+∞)[答案] C[解析] 设直线AB :y =x +b ,代入y 2=2px 中消去x 得,y2-2py +2pb =0,∴y 1+y 2=2p ,x 1+x 2=y 1+y 2-2b =2p -2b ,由条件知线段AB 的中点(x 1+x 22,y 1+y 22),即(p -b ,p)在直线x +y -1=0上,∴b =2p -1,Δ=4p 2-8pb =4p 2-8p(2p -1)=-12p 2+8p>0,∴0<p<23.12.(2015·郑州市质检)已知椭圆x 2a 2+y2b 2=1(a>b>0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( )A.35 B .45C.34 D .325[答案] A[解析] 由已知得|PF 2|=|F 1F 2|=2c , ∴|PF 1|=2a -|PF 2|=2a -2c ,|QF 1|=23|PF 1|=43(a -c),|QF 2|=2a -|QF 1|=2a -23(2a -2c)=23a+43c |PQ|=103(a -c)在△PF 1F 2和△PF 2Q 中,由余弦定理得: cos ∠F 2PQ =|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=|PQ|2+|PF 2|2-|QF 2|22|PQ|·|PF 2|即(2a -2c )2+(2c )2-(2c )22(2a -2c )·2c=⎝ ⎛⎭⎪⎪⎫103a -103c 2+(2c )2-⎝ ⎛⎭⎪⎪⎫23a +4c 322(103a -103c )·2c整理得5c 2-8ac +3a 2=0,即5e 2-8e +3=0, ∴e =35或e =1(舍).二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.(文)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)与抛物线y 2=8x 有公共焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的离心率为________.[答案] 2[解析] ∵抛物线y 2=8x 的焦点为(2,0),∴双曲线x 2a 2-y 2b 2=1(a>0,b>0)中c =2,又a =1,∴e =ca=2.(理)过双曲线x 2a 2-y2b 2=1(a>0,b>0)的一个焦点作一条渐近线的垂线,垂足恰好落在曲线x 2b 2+y2a 2=1上,则双曲线的离心率为________.[答案]2[解析] 不妨设双曲线的一个焦点为(c,0),(c>0),一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y -0=-ab(x -c )y =bax 得垂足的坐标为(a2c,ab c ),把此点坐标代入方程x 2b 2+y 2a 2=1,得a 4b 2c 2+a 2b2a 2c 2=1,化简,并由c 2=a 2+b 2得a =b ,∴e =ca= 2.14.(文)设抛物线x 2=4y 的焦点为F ,经过点P(1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.[答案] 10[解析] 设A(x 1,y 1),B(x 2,y 2),由题意知x 1+x 2=2,且x 21=4y 1,x 22=4y 2,两式相减整理得,y 1-y 2x 1-x 2=x 1+x 24=12,所以直线AB的方程为x -2y +7=0,将x =2y -7代入x 2=4y 整理得4y 2-32y +49=0,所以y 1+y 2=8,又由抛物线定义得|AF →|+|BF →|=y 1+y 2+2=10.(理)椭圆Γ:x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c ,若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.[答案]3-1[解析] 本题考查了椭圆离心率的求解.如图,由题意易知F 1M ⊥F 2M 且|MF 1|=c ,|MF 2|=3c ,∴2a =(3+1)c ,∴c a =23+1=3-1.15.(2015·潍坊市模拟)抛物线C :y 2=2px(p>0)的焦点为F ,点O 是坐标原点,过点O 、F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线方程为________.[答案] y 2=16x[解析] 由圆的面积为36π,得圆的半径r =6,圆心到准线的距离为p 2+p 4=6,得p =8,所以抛物线方程为y 2=16x.16.(文)(2015·兰州市诊断)椭圆C 的中心在原点,焦点在x 轴上,若椭圆C 的离心率等于12,且它的一个顶点恰好是抛物线x 2=83y 的焦点,则椭圆C 的标准方程为________.[答案] x216+y212=1[解析] 由题设知抛物线的焦点为(0,23),所以椭圆中b=2 3.因为e=ca=12,所以a=2c,又因为a2-b2=c2,联立解得c=2,a=4,所以椭圆C的标准方程为x216+y212=1.(理)(2014·安徽理,14)若F1、F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.[答案] x2+32y2=1[解析] 如图,由题意,A点横坐标为c,∴c2+y2b2=1,又b2+c2=1,∴y2=b4,∴|AF2|=b2,又∵|AF 1|=3|BF 1|,∴B 点坐标为(-53c ,-13b 2),代入椭圆方程得,⎩⎪⎨⎪⎧(-53c )2+(-13b 2)2b 2=1,b 2=1-c 2,∴⎩⎪⎨⎪⎧c 2=13,b 2=23方程为x 2+32y 2=1.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)(2015·唐山市二模)已知抛物线E :x 2=4y ,m ,n 是过点A(a ,-1)且倾斜角互补的两条直线,其中m 与E 有唯一公共点B ,n 与E 相交于不同的两点C ,D .(1)求m 的斜率k 的取值范围;(2)当n 过E 的焦点时,求B 到n 的距离.[解析] (1)m :y +1=k(x -a),n :y +1=-k(x -a),分别代入x 2=4y ,得x 2-4kx +4ka +4=0 ①, x 2+4kx -4ka +4=0 ②, 由Δ1=0得k 2-ka -1=0,由Δ2>0得k 2+ka -1>0,故有2k 2-2>0,得k 2>1,即k <-1或k >1. (2)E 的焦点F(0,1),k AF =-2a =-k ,所以ak =2.∴k 2=ka +1=3,B(2k ,k 2), 所以B 到n 的距离d =|3k 2-ak +1|1+k2=|3k 2-1|1+k2=4.18.(本题满分12分)(2015·石家庄市一模)在平面直角坐标系xOy 中,一动圆经过点(1,0)且与直线x =-1相切,设该动圆圆心的轨迹为曲线E.(1)求曲线E 的方程;(2)已知点A(5,0),倾斜角为π4的直线l 与线段OA 相交(不经过点O 或点A)且与曲线E 交于M 、N 两点,求△AMN 面积的最大值,及此时直线l 的方程.[解析] (1)由题意可知圆心到点(1,0)的距离等于到直线x =-1的距离,由抛物线的定义可知,圆心的轨迹方程:y 2=4x.(2)解法一 :由题意,可设l 的方程为y =x -m ,其中0<m <5由方程组⎩⎪⎨⎪⎧y =x -my 2=4x,消去y ,得x 2-(2m +4)x +m 2=0①当0<m <5时,方程①的判别式Δ=(2m +4)2-4m 2=16(1+m)>0成立.设M(x 1,y 1),N(x 2,y 2)则x 1+x 2=4+2m ,x 1·x 2=m 2, ∴|MN|=2|x 1-x 2|= 42+2m 又因为点A 到直线l 的距离为d =5-m 2∴S △AMN =2(5-m)1+m =2m 3-9m 2+15m +25. 令f(m)=m 3-9m 2+15m +25,(0<m<5), f ′(m)=3m 2-18m +15=3(m -1)(m -5),(0<m<5) 所以函数f(m)在(0,1)上单调递增,在(1,5)上单调递减. 当m =1时,f(m)有最大值32,故当直线l 的方程为y =x -1时,△AMN 的最大面积为8 2. 解法二:由题意,可设l 与x 轴相交于B(m,0), l 的方程为x = y +m ,其中0<m <5由方程组⎩⎪⎨⎪⎧x =y +m y 2=4x,消去x ,得y 2-4y -4m =0 ①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(-4)2+16m =16(1+m)>0必成立, 设M(x 1,y 1),N(x 2,y 2)则y 1+y 2=4,y 1·y 2=-4m. ∴S △=12(5-m) |y 1-y 2|=12(5-m)(y 1+y 2)2-4y 1y 2=2(5-m)1+m =2m 3-9m 2+15m +25. 令f(m)=m 3-9m 2+15m +25,(0<m<5), f ′(m)=3m 2-18m +15=3(m -1)(m -5),(0<m<5) 所以函数f(m)在(0,1)上单调递增,在(1,5)上单调递减. 当m =1时, f(m)有最大值32,故当直线l 的方程为y =x -1时,△AMN 的最大面积为8 2. 19.(本题满分12分)(文)设点P 是曲线C :x 2=2py(p>0)上的动点,点P 到点(0,1)的距离和它到焦点F 的距离之和的最小值为54. (1)求曲线C 的方程;(2)若点P 的横坐标为1,过P 作斜率为k(k ≠0)的直线交C 于点Q ,交x 轴于点M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出k 的值;若不存在,请说明理由.[解析] (1)依题意知1+p 2=54,解得p =12.所以曲线C 的方程为x 2=y.(2)由题意直线PQ 的方程为:y =k(x -1)+1,则点M(1-1k ,0).联立方程组⎩⎪⎨⎪⎧y =k (x -1)+1y =x 2,消去y 得x 2-kx +k -1=0,得Q(k-1,(k-1)2).所以得直线QN的方程为y-(k-1)2=-1k(x-k+1).代入曲线方程y=x2中,得x2+1kx-1+1k-(1-k)2=0.解得N(1-1k-k,(1-k-1k)2).所以直线MN的斜率k MN=(1-k-1k)2 (1-1k-k)-(1-1k)=-(1-k-1k)2k.过点N的切线的斜率k′=2(1-k-1k ).由题意有-(1-k-1k)2k=2(1-k-1k).解得k=-1±52.故存在实数k=-1±52使命题成立.(理)(2015·郑州市质检)设椭圆C:x2a2+y2b2=1(a>b>0),F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为22,O为坐标原点.(1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恰有两个交点M 、N ,且满足|OM →+ON →|=|OM →-ON →|?若存在,求出该圆的方程;若不存在,说明理由.[解析] (1)因为椭圆C :x 2a 2+y2b2=1(a>0,b>0),由题意得S△BF 1F 2=12×2c ×b =4,e =c a =22,a 2=b 2+c 2,所以解得⎩⎪⎨⎪⎧a 2=8,b 2=4.所以椭圆C 的方程为x 28+y24=1.(2)假设存在圆心在原点的圆x 2+y 2=r 2,使得该圆的任意一条切线与椭圆C 恒有两个交点M ,N ,因为|OM →+ON →|=|OM →-ON →|,所以有OM→·ON →=0, 设M(x 1,y 1),N(x 2,y 2),当切线斜率存在时,设该圆的切线方程为y =kx +m ,由方程组⎩⎪⎨⎪⎧y =kx +m x 28+y24=1得x 2+2(kx +m)2=8,即(1+2k 2)x 2+4kmx +2m 2-8=0, 则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0, 即8k 2-m 2+4>0,x 1,2=-4km ±16k 2m 2-4(1+2k 2)(2m 2-8)2(1+2k 2)∴x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k2;y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k2, 要使OM →·ON →=0,需x 1x 2+y 1y 2=0,即2m 2-81+2k 2+m 2-8k 21+2k 2=0,所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0,又8k 2-m 2+4>0,所以⎩⎪⎨⎪⎧m 2>23m 2≥8,所以m 2≥83,即m ≥263或m ≤-263,因为直线y =kx +m为圆的一条切线,所以圆的半径为r =|m|1+k 2,r 2=m 21+k 2=m 21+3m 2-88=83,r =263,所求的圆为x 2+y 2=83,此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时,切线为x =±263与椭圆x 28+y24=1的两个交点为⎝ ⎛⎭⎪⎪⎫263,±263或⎝ ⎛⎭⎪⎪⎫-263,±263满足OM →·ON →=0,综上,存在圆心在原点的圆x2+y2=83满足条件.20.(本题满分12分)(2015·北京文,20)已知椭圆C:x2+3y2=3.过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.[分析] 本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a,b,c的值,再利用e=ca计算离心率;第二问,由直线AB的特殊位置,设出A,B点坐标和直线AE的方程,由直线AE与x=3相交于M点,得到M点坐标,利用点B、点M的坐标,求直线BM的斜率;第三问,分直线AB的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB和直线AE的方程,将椭圆方程与直线AB的方程联立,消参,得到x1+x2和x1x2,代入到k BM=1中,只需计算出等于0即可证明k BM=k DE,即两直线平行.[解析] (1)椭圆C的标准方程为x23+y2=1.所以a=3,b=1,c= 2.所以椭圆C 的离心率e =c a =63.(2)因为AB 过点D(1,0)且垂直于x 轴,所以可设A(1,y 1),B(1,-y 1).直线AE 的方程为y -1=(1-y 1)(x -2). 令x =3,得M(3,2-y 1).所以直线BM 的斜率k BM =2-y 1+y 13-1=1.(3)直线BM 与直线DE 平行.证明如下: 当直线AB 的斜率不存在时,由(2)可知k BM =1. 又因为直线DE 的斜率k DE =1-02-1=1,所以BM ∥DE.当直线AB 的斜率存在时,设其方程为y =k(x -1)(k ≠1). 设A(x 1,y 1),B(x 2,y 2),则直线AE 的方程为y -1=y 1-1x 1-2(x -2).令x =3,得点M(3,y 1+x 1-3x 1-2).由⎩⎪⎨⎪⎧x 2+3y 2=3,y =k (x -1)得(1+3k 2)x 2-6k 2x +3k 2-3=0. 所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k2.直线BM的斜率k BM=y1+x1-3 x1-2-y23-x2.因为k BM-1=k(x1-1)+x1-3-k(x2-1)(x1-2)-(3-x2)(x1-2)(3-x2)(x1-2)=(k-1)[-x1x2+2(x1+x2)-3](3-x2)(x1-2)=(k-1)[-3k2+31+3k2+12k21+3k2-3](3-x2)(x1-2)=0,所以k BM=1=k DE.所以BM∥DE.综上可知,直线BM与直线DE平行.21.(本题满分12分)(文)(2015·南昌市一模)已知圆E:x2+⎝⎛⎭⎪⎪⎫y-122=94经过椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且MN→=λOA→(λ≠0).(1)求椭圆C的方程;(2)当三角形AMN的面积取到最大值时,求直线l的方程.[解析] (1)如图,圆E 经过椭圆C 的左、右焦点F 1,F 2,∵F 1,E ,A 三点共线,∴F 1A 为圆E 的直径,∴AF 2⊥F 1F 2,∴F 2(c,0)在圆上, ∴c2+⎝ ⎛⎭⎪⎪⎫0-122=94, ∵c>0,∴c =2,|AF 2|2=|AF 1|2-|F 1F 2|2=9-8=1,∴|AF 2|=1,2a =|AF 1|+|AF 2|=3+1=4,∴a =2,∵a 2=b 2+c 2,解得b =2, ∴椭圆C 的方程x 24+y22=1.(2)点A 的坐标(2,1),∵MN→=λOA →(λ≠0), 所以直线l 的斜率为22,故设直线l 的方程为y =22x +m由⎩⎪⎨⎪⎧y =22x +m ,x 24+y22=1,消去y 得,x 2+2mx +m 2-2=0,设M(x 1,y 1),N(x 2,y 2)∴x 1+x 2=-2m ,x 1x 2=m 2-2,Δ=2m 2-4m 2+8>0,∴-2<m<2, |MN|=1+k 2|x 2-x 1|=1+12(x 1+x 2)2-4x 1x 2=12-3m 2,点A 到直线l 的距离d =6|m|3,S △AMN =12|MN|· d =1212-3m 2×63|m|=22(4-m 2)m 2≤22×4-m 2+m 22=2, 当且仅当4-m 2=m 2,即m =±2时,S △AMN 取到最大值2,直线l 的方程为y =22x ± 2.(理)(2014·上海八校调研)已知点F 1、F 2为双曲线C :x 2-y 2b 2=1(b>0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且∠MF 1F 2=30°.圆O 的方程是x 2+y 2=b 2.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1、P 2,求PP1→·PP 2→的值; (3)过圆O 上任意一点Q(x 0,y 0)作圆O 的切线l 交双曲线C 于A 、B 两点,AB 的中点为M ,求证:|AB→|=2|OM →|. [解析] (1)设F 2、M 的坐标分别为(1+b 2,0),(1+b 2,y 0),因为点M 在双曲线C 上,所以1+b 2-y 20b 2=1,即y 0=±b 2,所以|MF 2|=b 2,在Rt △MF 2F 1中,∠MF 1F 2=30°,|MF 2|=b 2, 所以|MF 1|=2b 2,由双曲线的定义可知|MF 1|-|MF 2|=b 2=2, 故双曲线C 的方程为x 2-y 22=1.(2)由条件可知两条渐近线方程为l 1:2x -y =0,l 2:2x +y =0.设双曲线C 上的点P(x 0,y 0),两渐近线的夹角为θ, y =2x 的倾斜角为α,则cos θ=cos(π-2α)=sin 2α-cos 2αsin 2α+cos 2α=2-12+1=13. 点P 到两条渐近线的距离分别为 |PP 1|=|2x 0-y 0|3,|PP 2|=|2x 0+y 0|3,因为P(x 0,y 0)在双曲线C :x 2-y 22=1上,所以2x 20-y 20=2,所以PP 1→·PP 2→=|2x 0-y 0|3·|2x 0+y 0|3cos(π-θ)=|2x 20-y 20|3·(-13)=-29.(3)证明:由题意,要证|AB→|=2|OM →|,即证OA ⊥OB .设A(x 1,y 1),B(x 2,y 2),切线l 的方程为x 0x +y 0y =2. ①当y 0≠0时,切线l 的方程代入双曲线C 的方程中, 化简得(2y 20-x 20)x 2+4x 0x -(2y 20+4)=0, 所以x 1+x 2=-4x 02y 20-x 20,x 1x 2=-2y 20+42y 20-x 20,又y 1y 2=2-x 0x 1y 0·2-x 0x 2y 0=1y 20[4-x 0(x 1+x 2)+x 20x 1x 2]=8-2x 22y 20-x 20, 所以OA →·OB →=x 1x 2+y 1y 2=-2y 20+42y 20-x 20+8-2x 22y 20-x 20=4-2(x 20+y 20)2y 20-x 2=0; ②当y 0=0时,易知上述结论也成立, 即OA→·OB →=x 1x 2+y 1y 2=0. 综上所述,OA ⊥OB ,所以|AB→|=2|OM →|. 22.(本题满分12分)(文)已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的短轴长为2,且与抛物线y 2=43x 有共同的一个焦点,椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆C 上位于x 轴上方的动点,直线AP 、BP 与直线y =3分别交于G 、H 两点.(1)求椭圆C 的方程;(2)求线段GH 的长度的最小值;(3)在线段GH 的长度取得最小值时,椭圆C 上是否存在一点T ,使得△TPA 的面积为1,若存在求出点T 的坐标,若不存在,说明理由.[解析] (1)由已知得,抛物线的焦点为(3,0),则 c =3,又b =1,由a 2-b 2=c 2,可得a 2=4. 故椭圆C 的方程为x 24+y 2=1.(2)直线AP 的斜率k 显然存在,且k>0,故可设直线AP 的方程为y =k(x +2),从而G(3k-2,3).由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1.得(1+4k 2)x 2+16k 2x +16k 2-4=0.设P(x 1,y 1),则(-2)x 1=16k 2-41+4k2,所以x 1=2-8k 21+4k 2,从而y 1=4k 1+4k 2.即P(2-8k 21+4k 2,4k1+4k 2),又B(2,0),则直线PB 的斜率为-14k .由⎩⎪⎨⎪⎧y =-14k (x -2),y =3.得⎩⎪⎨⎪⎧x =-12k +2,y =3.所以H(-12k +2,3).故|GH|=|3k -2+12k -2|=|3k+12k -4|.又k>0,3k +12k ≥23k·12k =12. 当且仅当3k =12k ,即k =12时等号成立.所以当k =12时,线段GH 的长度取最小值8.(3)由(2)可知,当GH 的长度取最小值时,k =12.则直线AP 的方程为x -2y +2=0,此时P(0,1),|AP|= 5. 若椭圆C 上存在点T ,使得△TPA 的面积等于1,则点T 到直线AP 的距离等于255,所以T 在平行于AP 且与AP 距离等于255的直线l 上.设直线l :y =12x +t.则由⎩⎪⎨⎪⎧y =12x +t ,x24+y 2=1.得x 2+2tx +2t 2-2=0.Δ=4t 2-8(t 2-1)≥0.即t 2≤2.由平行线间的距离公式,得|2-2t|5=255,解得t =0或t =2(舍去).可求得T(2,22)或T(-2,-22).(理)设椭圆C 1:x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别是F 1、F 2,下顶点为A ,线段OA 的中点为B(O 为坐标原点),如图.若抛物线C 2:y =x 2-1与y 轴的交点为B ,且经过F 1、F 2点.(1)求椭圆C 1的方程;(2)设M(0,-45),N 为抛物线C 2上的一动点,过点N 作抛物线C 2的切线交椭圆C 1于P 、Q 两点,求△MPQ 面积的最大值.[解析] (1)由题意可知B(0,-1),则A(0,-2),故b =2. 令y =0得x 2-1=0即x =±1,则F 1(-1,0),F 2(1,0),故c =1.所以a 2=b 2+c 2=5,于是椭圆C 1的方程为:x 25+y24=1.(2)设N(t,t2-1),由于y′=2x知直线PQ的方程为:y-(t2-1)=2t(x-t).即y=2tx-t2-1.代入椭圆方程整理得:4(1+5t2)x2-20t(t2+1)x+5(t2+1)2-20=0,Δ=400t2(t2+1)2-80(1+5t2)[(t2+1)2-4]=80(-t4+18t2+3),x1+x2=5t(t2+1)1+5t2,x1x2=5(t2+1)2-204(1+5t2),故|PQ|=1+4t2|x1-x2|=1+4t2·(x1+x2)2-4x1x2=5·1+4t2·-t4+18t2+31+5t2.设点M到直线PQ的距离为d,则d=|45-t2-1|1+4t2=|t2+15|1+4t2.所以,△MPQ的面积S=12|PQ|·d=125·1+4t2·-t4+18t2+31+5t2·t2+151+4t2=510-t4+18t2+3=510-(t2-9)2+84≤51084=1055.当t=±3时取到“=”,经检验此时Δ>0,满足题意.综上可知,△MPQ的面积的最大值为105 5.[方法点拨] 1.涉及直线与二次曲线有两个交点时,一般方法是设出直线的方程与曲线方程联立,用根与系数的关系“整体代入设而不求”和用判别式处理,中点弦问题还可用点差法解决.2.涉及圆锥曲线的焦点弦、焦点三角形问题,常结合定义,正余弦定理等知识解决.3.涉及垂直问题可结合向量的数量积解决.反馈练习一、选择题1.(文)“a=2”是“直线ax+2y=0平行于直线x+y=1”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] C[解析] 若a=2,则直线ax+2y=0平行于直线x+y=1,反之也成立,即“a=2”是“直线ax+2y=0平行于直线x+y=1”的充要条件,故应选C.(理)若直线2tx+3y+2=0与直线x+6ty-2=0平行,则实数t等于( )A.12或-12 B .12 C .-12D .14[答案] B[解析] 由条件知,2t 1=36t ≠2-2,∴t =12.2.(文)若直线l 1:x -ay +1=0与直线l 2:(a +4)x +(2a -1)y -5=0互相垂直(a<0),则直线l 1的倾斜角为( )A .45°B .135°C .60°D .30°或135°[答案] B[解析] ∵l 1⊥l 2,∴1×(a +4)-a(2a -1)=0, ∴a =-1或2,∵a<0,∴a =1, ∴l 1的方程为x +y +1=0, ∴l 1的倾斜角为135°.(理)若曲线y =2x 2的一条切线l 与直线x +4y -8=0垂直,则切线l 的方程为( )A .x +4y +3=0B .x +4y -9=0C .4x -y +3=0D .4x -y -2=0[答案] D[解析] y ′=4x ,直线x +4y -8=0的斜率k =-14,令4x =4得x =1,∴切点(1,2),∴切线l :y -2=4(x -1), 即4x -y -2=0,故选D .3.(2015·东北三省四市第二次联考)已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M(-1,m),若MA→·MB →=0,则m =( )A. 2 B .22C.12 D .0[答案] B[解析] 求出点A ,B 的坐标,利用数量积的坐标运算建立方程求解.联立直线y =22(x -1)和抛物线C :y 2=4x ,解得A(2,22),B(12,-2),所以MA →·MB →=(3,22-m)·(32,-2-m)=92+(22-m)(-2-m)=0,化简得m 2-2m +12=0,∴m =22,故选B .[点评] 当A 、B 坐标互换时,求得m 的另一个值,但结合选项知只能选B .4.(2015·广东理,7)已知双曲线C :x 2a 2-y2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y23=1 B .x 29-y216=1C.x 216-y29=1 D .x 23-y24=1[答案] C[解析] 本题考查双曲线的标准方程及其简单几何性质,属于容易题.因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.5.(文)(2014·天津理,5)已知双曲线x 2a 2-y2b 2=1(a>0,b>0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y220=1 B .x 220-y25=1C.3x 225-3y 2100=1 D .3x 2100-3y 225=1[答案] A[解析] 由于一个焦点在直线y =2x +10上,则一个焦点为(-5,0),又由渐近线平行于直线y =2x +10.则b a =2,结合a 2+b2=c 2,c =5得,∴a 2=5,b 2=20,双曲线标准方程为x 25-y 220=1,选A.(理)(2014·江西文,9)过双曲线C :x 2a 2-y2b 2=1的右顶点作x轴的垂线,与C 的一条渐近线相交于A.若以C 的右焦点为圆心、半径为4的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y212=1 B .x 27-y29=1C.x 28-y28=1 D .x 212-y24=1[答案] A[解析] 如图设双曲线的右焦点F ,右顶点B ,设渐近线OA 方程为y =bax ,由题意知,以F 为圆心,4为半径的圆过点O ,A , ∴|FA|=|FO|=r =4.∵AB⊥x轴,A为AB与渐近线y=bax的交点,∴可求得A点坐标为A(a,b).∴在Rt△ABO中,|OA|=OB2+AB2=a2+b2=c=|OF|=4,∴△OAF为等边三角形且边长为4,B为OF的中点,从而解得|OB|=a=2,|AB|=b=23,∴双曲线的方程为x24-y212=1,故选A.6.(文)已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=( )A.1 B.3 2C.2 D.3 [答案] C[解析] ∵e=ca=2,∴b2=c2-a2=3a2,∴ba=3,双曲线的两条渐近线方程为y=±3x,不妨设A(-p2,3p2),B(-p2,-3p2),则AB=3p,又三角形的高为p2,则S△AOB=12×p2×3p=3,∴p2=4,又p>0,∴p=2.(理)已知点F 1、F 2分别为双曲线x 2a 2-y2b 2=1(a>0,b>0)的左、右焦点,P 为双曲线左支上的任意一点,若|PF 2|2|PF 1|的最小值为9a ,则双曲线的离心率为( )A .2B .5C .3D .2或5[答案] B[解析] 由双曲线定义得|PF 2|=2a +|PF 1|,∴|PF 2|2|PF 1|=(2a +|PF 1|)2|PF 1|=|PF 1|+4a 2|PF 1|+4a ,其中|PF 1|≥c -a.当c -a ≤2a 时,y =x +4a2x 在[c -a ,+∞)上为减函数,没有最小值,故c -a>2a ,即c>3a ⇒e>3,y =x +4a2x 在[c -a ,+∞)上为增函数,故f(x)min =f(c -a)=c -a +4a 2c -a +4a =9a ,化简得10a 2-7ac+c 2=0,两边同除以a 2可得e 2-7e +10=0,解得e =5或e =2(舍去).7.(2015·邯郸市二模)已知点P 为椭圆x 24+y23=1上一点,点F 1,F 2分别为椭圆的左、右焦点,点I 为△PF 1F 2的内心,若△PIF 1和△PIF 2的面积和为1,则△IF 1F 2的面积为( )A.14B .12C .1D .2[答案] B[解析] 由椭圆方程知,a =2,c =1,设内心到三边距离为d ,则由椭圆定义及条件知,S △PIF 1+S △PIF 2=12|PF 1|·d +12|PF 2|·d=12(|PF 1|+|PF 2|)·d =2d =1,∴d =12,∴S △IF 1F 2=12|F 1F 2|·d =cd =12. 8.抛物线y =x 2(-2≤x ≤2)绕y 轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是( )A .1B .2C .2 2D .4[答案] B[解析] 当x =2时,y =4,设正方体的棱长为a ,由题意知(22a,4-a)在抛物线y =x 2上,∴4-a =12a 2,∴a =2.9.(文)已知双曲线x 2a 2-y2b 2=1(a>0,b>0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线的一条渐近线相交于O ,A 两点,若△AOF 的面积为b 2,则双曲线的离心率等于( )A. 3 B . 5 C.32 D .52[答案] D[解析] ∵A 在以OF 为直径的圆上,∴AO ⊥AF ,∴AF :y =-a b (x -c)与y =b a x 联立解得x =a 2c a 2+b 2,y =abca 2+b 2,∵△AOF 的面积为b 2,∴12·c ·abc a 2+b 2=b 2,∴e =52. (理)过双曲线x 2a 2-y2b 2=1(a>0,b>0)的一个焦点作实轴的垂线,交双曲线于A 、B 两点,若线段AB 的长度恰等于焦距,则双曲线的离心率为( )A.5+12B .102C.17+14D .224[答案] A[解析] 依题意得2b 2a =2c ,c 2-ac -a 2=0,即e 2-e -1=0,(e -12)2=54,又e>1,因此e -12=52,e =5+12,故选A.10.(2015·洛阳市期末)若直线l :ax +by +1=0(a ≥0,b ≥0)始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则a 2+b 2-2a -2b +3的最小值为( )A.45 B .95C .2D .94[答案] B[解析] 由题意知直线经过圆心(-2,-1),∴2a +b -1=0,∴(a -1)2+(b -1)2的最小值为(1,1)到直线2a +b -1=0的距离的平方,即⎝⎛⎭⎪⎪⎫252=45,∴a 2+b 2-2a -2b +3的最小值为45+1=95.11.(2014·唐山市二模)已知椭圆C 1:x 2a 2+y2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( )A .[12,1)B .[22,32]C .[22,1)D .[32,1)[答案] C[解析] 如图,设切点为A 、B ,则OA ⊥PA ,OB ⊥PB ,∵∠APB =90°,连接OP ,则∠APO =45°,∴AO =PA =b ,OP =2b ,∴a ≥2b ,∴a 2≤2c 2,∴c 2a 2≥12,∴e ≥22,又∵e<1,∴22≤e<1.12.(2015·河南八市质量监测)已知抛物线y 2=2px(p>0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,若A(3,y 0)且AF =4,则△OAB 的面积为( )A.233B . 3 C.433D .533[答案] C[解析] 由条件及抛物线的定义知,4=3+p2,∴p =2,∴抛物线方程为y 2=4x ,∴A(3,23),k AF =3,∴l AB :y =3(x -1),由⎩⎪⎨⎪⎧y 2=4xy =3(x -1)可得3(x -1)2-4x =0,解得x 1=3,x 2=13,所以y 1=23,y 2=-233,∴S △AOB =12|OF|·|y 1-y 2|=12×1×⎝ ⎛⎭⎪⎪⎫23+233=433. 二、填空题13.已知圆C :(x +1)2+y 2=8.若点Q(x ,y)是圆C 上一点,则x +y 的取值范围为________.[答案] [-5,3][分析] 设x +y =t ,则Q 是⊙C 与直线x +y =t 的公共点,则问题转化为直线与⊙C 有公共点时,求参数t 的取值范围问题.[解析] 设x +y =t ,∵Q(x ,y)是⊙C 上任意一点,∴直线与圆相交或相切,∴|-1+0-t|2≤22,∴-5≤t ≤3.14.已知圆C 的圆心与抛物线y 2=4x 的焦点F 关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A 、B 两点,且|AB|=6,则圆C 的方程为________.[答案] x 2+(y -1)2=10[分析] 由圆心C 与F 关于直线y =x 对称可求得C 点坐标,再由弦长|AB|=6可求得圆的半径,进而可得圆的方程.[解析] 抛物线y 2=4x 的焦点F(1,0)关于直线y =x 的对称点C(0,1)是圆心,C 到直线4x -3y -2=0的距离d =|4×0-3×1-2|5=1,又圆截直线4x -3y -2=0的弦长为6, ∴圆的半径r =12+32=10. ∴圆方程为x 2+(y -1)2=10.15.(文)已知直线2ax +by =1(其中a 、b 为非零实数)与圆x 2+y 2=1相交于A 、B 两点,O 为坐标原点,且△AOB 为直角三角形,则1a 2+2b2的最小值为________.[答案] 4[解析] ∵△AOB 为等腰直角三角形,⊙O 的半径为1,∴O 到直线2ax +by -1=0的距离为22,即12a 2+b 2=22,∴2a 2+b 2=2,∴1a 2+2b 2=(1a 2+2b 2)(2a 2+b 22)=2+2a 2b 2+b 22a 2≥4,等号在2a 2b 2=b22a2, 即b 2=2a 2=1时成立,∴所求最小值为4.(理)过抛物线y 2=4x 的焦点F 作一条倾斜角为α,长度不超过8的弦,弦所在的直线与圆x2+y2=34有公共点,则α的取值范围是________.[答案] [π4,π3]∪[2π3,3π4][解析] F(1,0),直线AB:y=tanα(x-1),由条件知,圆心(0,0)到直线AB的距离d=|tanα|1+tan2α≤32,∴-3≤tanα≤ 3.(1)将y=k(x-1)代入y2=4x中消去y得,k2x2-(2k2+4)x+k2=0,∴x1+x2=2k2+4k2,y1+y2=k(x1+x2-2)=4k,∴AB的中点坐标为P(k2+2k2,2k),∵|AB|≤8,∴P到准线的距离k2+2k2+1≤4,∴|k|≥1,∴|tanα|≥1,(2)由(1)(2)得π4≤α≤π3或2π3≤α≤3π4.16.(文)(2014·吉林市质检)已知点F为抛物线y2=-8x的焦点,O为原点,点P是抛物线准线上一动点,A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值是________.[答案] 213[分析] 设O关于直线x=2的对称点为O′,则|PA|+|PO|=|PA|+|PO′|,故当P、A、O′三点共线时取到最小值.。
专题强化训练(十九) 解析几何1.[2019·长沙一模]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于B ,|AB |=|F 2B |,|OB |=43(O 为坐标原点).(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)分别与l 1,l 2交于点M ,N ,求证:∠MF 1N =∠MF 2N .解:(1)如图,连接AF 2,由题意得|AB |=|F 2B |=|F 1B |,所以BO 为△F 1AF 2的中位线,又BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |=b 2a =83,又e =c a =13,a 2=b 2+c 2,所以a 2=9,b 2=8,故所求椭圆C 的方程为x 29+y 28=1.(2)由(1)可得,F 1(-1,0),F 2(1,0),l 1的方程为x =-3,l 2的方程为x =3.由⎩⎪⎨⎪⎧x =-3,y =kx +m 得⎩⎪⎨⎪⎧x =-3,y =-3k +m ,由⎩⎪⎨⎪⎧x =3,y =kx +m ,得⎩⎪⎨⎪⎧x =3,y =3k +m ,所以M (-3,-3k +m ),N (3,3k +m ),所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ), 所以F 1M →·F 1N →=-8+m 2-9k 2.联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m得(9k 2+8)x 2+18kmx +9m 2-72=0.因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0, 化简得m 2=9k 2+8.所以F 1M →·F 1N →=-8+m 2-9k 2=0, 所以F 1M →⊥F 1N →,故∠MF 1N =π2.同理可得F 2M →⊥F 2N →,∠MF 2N =π2.故∠MF 1N =∠MF 2N .2.[2019·合肥质检二]已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程.解:(1)依题意,设直线l 1的方程为y =x +p2,因为直线l 1与圆C 2相切,所以圆心C 2(-1,0)到直线l 1:y =x +p2的距离d =|-1+p212+(-1)2= 2.即|-1+p22=2,解得p =6或p =-2(舍去).所以p =6.(2)解法一:依题意设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,所以y =x 212,所以y ′=x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+y 1.令x =0,则y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即B 点的坐标为(0,-y 1),所以MA →=(x 1-m ,y 1+3), MB →=(-m ,-y 1+3),所以MN →=MA →+MB →=(x 1-2m,6), 所以ON →=OM →+MN →=(x 1-m,3). 设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上. 解法二:设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ①,设l 2的斜率为k ,A ⎝ ⎛⎭⎪⎫x 1,112x 21,则以A 为切点的切线l 2的方程为y =k (x -x 1)+112x 21 ②, 联立①②得,x 2=12⎝ ⎛⎭⎪⎫k (x -x 1)+112x 21,因为Δ=144k 2-48kx 1+4x 21=0,所以k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+112x 21.令x =0,得B 点坐标为⎝ ⎛⎭⎪⎫0,-112x 21,所以MA →=⎝ ⎛⎭⎪⎫x 1-m ,112x 21+3,MB →=⎝⎛⎭⎪⎫-m ,-112x 21+3,所以MN →=MA →+MB →=(x 1-2m,6), 所以ON →=OM →+MN →=(x 1-m,3), 所以点N 在定直线y =3上.3.[2019·武汉4月调研]已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,1),且右焦点F (3,0).(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =MA →·MB →,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值.解:(1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a 2+y 2a 2-3=1,a 2>3.又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1y =k (x -1)得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0, ∵点N (1,0)在椭圆内部,∴Δ>0,∴⎩⎪⎨⎪⎧x 1+x 2=4k 21+2k2 ①x 1x 2=2k 2-62k 2+1 ②,则t =MA →·MB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③, 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1, ∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.4.[2019·石家庄一模]已知抛物线C :y 2=2px (p >0)上一点P (x 0,2)到焦点F 的距离|PF |=2x 0.(1)求抛物线C 的方程;(2)过点P 引圆M :(x -3)2+y 2=r 2(0<r ≤2)的两条切线PA 、PB ,切线PA 、PB 与抛物线C 的另一交点分别为A 、B ,线段AB 中点的横坐标记为t ,求t 的取值范围.解:(1)由抛物线定义,得|PF |=x 0+p2,由题意得:⎩⎪⎨⎪⎧2x 0=x 0+p2,2px 0=4,p >0,解得⎩⎪⎨⎪⎧p =2,x 0=1,所以抛物线的方程为y 2=4x .(2)由题意知,过P 引圆(x -3)2+y 2=r 2(0<r ≤2)的切线斜率存在, 设切线PA 的方程为y =k 1(x -1)+2, 则圆心M 到切线PA 的距离d =|2k 1+2|k 21+1=r , 整理得,(r 2-4)k 21-8k 1+r 2-4=0. 设切线PB 的方程为y =k 2(x -1)+2, 同理可得(r 2-4)k 22-8k 2+r 2-4=0,所以k 1,k 2是方程(r 2-4)k 2-8k +r 2-4=0的两根,k 1+k 2=8r 2-4,k 1k 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k 1(x -1)+2,y 2=4x 得k 1y 2-4y -4k 1+8=0,由韦达定理知y 1+y 2=4k 1,y 1y 2=8-4k 1k 1,所以y 1=4-2k 1k 1=4k 1-2=4k 2-2,同理可得y 2=4k 1-2.设点D 的横坐标为x 0,则x 0=x 1+x 22=y 21+y 228=(4k 2-2)2+(4k 1-2)28=2(k 21+k 22)-2(k 1+k 2)+1=2(k 1+k 2)2-2(k 1+k 2)-3. 设m =k 1+k 2,则m =8r 2-4∈[-4,-2), 所以x 0=2m 2-2m -3,对称轴m =12>-2,所以9<x 0≤37,即t ∈(9,37].5.[2019·太原模拟]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,A ,B 分别是其左右顶点,点P 是椭圆C 上任一点,且△PF 1F 2的周长为6,若△PF 1F 2面积的最大值为 3.(1)求椭圆C 的方程;(2)若过点F 2且斜率不为0的直线交椭圆C 于M ,N 两个不同点,证明:直线AM 与BN的交点在一条定直线上.解:(1)由题意,得⎩⎪⎨⎪⎧2a +2c =6,12×2bc =3,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =3,c =1,所以椭圆C 的方程为x 24+y 23=1.(2)由(1)得A (-2,0),B (2,0),F 2(1,0).设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1,得(4+3m 2)y 2+6my -9=0∴y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,∴my 1y 2=32(y 1+y 2).∵直线AM 的方程为y =y 1x 1+2(x +2),直线BN 的方程为y =y 2x 2-2(x -2),∴y 1x 1+2(x +2)=y 2x 2-2(x -2), ∴x +2x -2=y 2(x 1+2)y 1(x 2-2)=my 1y 2+3y 2my 1y 2-y 1=3, ∴x =4,∴直线AM 与BN 的交点在直线x =4上.6.[2019·北京卷]已知抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两个定点.解:(1)由抛物线C :x 2=-2py 经过点(2,-1),得p =2. 所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y 得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1. 同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n ,DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2=16x 1x 2+(n +1)2=-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).7.[2019·洛阳统考]已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点.(1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,试问:2|MN |2|FN |是否为定值?若为定值,试求出此定值;否则,说明理由.解:(1)由题意知直线l 的斜率存在且不为0,故设直线l 的方程为x -1=t (y -1),即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t y 2=4x,得y 2-4ty -4+4t =0,∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0. (2)2|MN |2|FN |为定值2p ,证明如下.∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝ ⎛⎭⎪⎫p2,0.由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0), 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0,∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝ ⎛⎭⎪⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝ ⎛⎭⎪⎫x -pt 2-p 2.令y =0,解得x =pt 2+3p 2,N ⎝ ⎛⎭⎪⎫pt 2+3p 2,0,∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p 2=pt 2+p ,∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p . 8.[2019·浙江卷]如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 的坐标. 解:(1)由题意得p2=1,即p =2.所以,抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过点F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得y 2-2(t 2-1)ty -4=0,故2ty B =-4,即y B =-2t,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0. 所以,直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0). 由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C |=|2t 4-2t 2+23t 2-1·|2t ||t 2-1-2t 4-2t 2+23t 2·|2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12m ·3m+4=1+32.当m =3即t 2=3+2时,S 1S 2取得最小值1+32,此时G (2,0).。
过关检测(十九)1.(2020届高三·唐山联考)已知F 为抛物线E :y 2=4x 的焦点,过点P (0,2)作两条互相垂直的直线m ,n ,直线m 交E 于不同的两点A ,B ,直线n 交E 于不同的两点C ,D ,记直线m 的斜率为k .
(1)求k 的取值范围;
(2)设线段AB ,CD 的中点分别为点M ,N ,证明:直线MN 过定点Q (2,0).
解:(1)由题设可知k ≠0,
所以直线m 的方程为y =kx +2,
与y 2=4x 联立,整理得ky 2-4y +8=0.①
由Δ1=16-32k >0,解得k <.
12直线n 的方程为y =-x +2,与y 2=4x 联立,
1k 整理得y 2+4ky -8k =0,
由Δ2=16k 2+32k >0,解得k >0或k <-2.
所以k <-2或0<k <,
12故k 的取值范围为(-∞,-2)∪.
(0,12)(2)证明:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).
由①得,y 1+y 2=,则y 0=,x 0=-,
4k 2k 2k 22k 所以M
.(2k 2-2k ,2k )
同理可得N (2k 2+2k ,-2k ).
直线MQ 的斜率k MQ ==-,
2k
2k 2-2k -2k k 2+k -1直线NQ 的斜率k NQ ==-=k MQ ,
-2k 2k 2+2k -2k
k 2+k -1所以直线MN 过定点Q (2,0).
2.(2019·兰州模拟)已知椭圆C :+=1(a >b >0)短轴的一个端点与其两个焦点构x 2a 2y 2
b 2成面积为3的直角三角形.
(1)求椭圆C 的方程;
(2)过圆E :x 2+y 2=2上任意一点P 作圆E 的切线l ,l 与椭圆C 交于A ,B 两点,以AB 为直径的圆是否过定点,若过定点,求出该定点;若不过定点,请说明理由.
解:(1)因为椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以
b =
c ,·2c ·b =b 2=3,
12又因为a 2=b 2+c 2,所以a 2=6,b 2=3.
故椭圆C 的方程为+=1.
x 26y 23(2)圆E 的方程为x 2+y 2=2,设O 为坐标原点,
①当直线l 的斜率不存在时,不妨设直线AB 的方程为x =,A (,),B (,-2222),
2所以∠AOB =90°,
所以以AB 为直径的圆过坐标原点O (0,0).
②当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).
因为直线与相关圆相切,
所以d ===,所以m 2=2+2k 2.|m |
1+k 2m 2
1+k 22联立方程组Error!消去y ,得(1+2k 2)x 2+4kmx +2m 2-6=0,
则Δ=16k 2m 2-4(1+2k 2)(2m 2-6)=8(6k 2-m 2+3)=8(4k 2+1)>0,且x 1+x 2=-,x 1x 2=,
4km 1+2k 22m 2-6
1+2k 2所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2
=-+m 2==0,
(1+k 2)(2m 2-6)1+2k 2
4k 2m 21+2k 23m 2-6k 2-61+2k 2所以⊥,OA → OB →
所以以AB 为直径的圆恒过坐标原点O (0,0).
综合①②可知,以AB 为直径的圆恒过坐标原点O (0,0).
3.(2019·柳州联考)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为5.
(1)求该抛物线C 的方程;
(2)已知抛物线上一点M (t,4),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.
解:(1)由题意知抛物线C 的焦点在x 轴的正半轴上,可设抛物线的方程为
y 2=2px (p >0),
其准线方程为x =-,
p 2∵P (4,m )到焦点的距离等于点P 到准线的距离,
∴4+=5,∴p =2.
p 2∴抛物线C 的方程为y 2=4x .
(2)把M (t,4)代入抛物线C 的方程,得16=4t ,
∴t =4,∴M (4,4).
由题易知直线DE 的斜率不为0,
设直线DE 的方程为x =ky +n ,
联立Error!消去x ,得y 2-4ky -4n =0,
Δ=16k 2+16n >0,①
设D (x 1,y 1),E (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4n .
∵MD ⊥ME ,
∴·=(x 1-4,y 1-4)·(x 2-4,y 2-4)
MD → ME → =x 1x 2-4(x 1+x 2)+16+y 1y 2-4(y 1+y 2)+16
=·-4+16+y 1y 2-4(y 1+y 2)+16y 214y 2
4(y 214+y 24)=-(y 1+y 2)2+3y 1y 2-4(y 1+y 2)+32
(y 1y 2)216=n 2-16k 2-12n +32-16k =0,
即n 2-12n +32=16k 2+16k ,得(n -6)2=4(2k +1)2,
∴n -6=±2(2k +1),得n =4k +8或n =-4k +4,
当n =4k +8时,
代入①式满足Δ>0,
∴直线DE 的方程为x =ky +4k +8=k (y +4)+8,直线过定点(8,-4).
当n =-4k +4时,代入①式,当k ≠2时,Δ>0,此时直线DE 的方程为x =k (y -4)+4,直线过定点(4,4),不合题意,舍去.
∴直线过定点(8,-4).
4.已知椭圆C :+=1(a >b >0)经过点P
,且两焦点与短轴的一个端点的连x 2a 2y 2b 2(1,22)
线构成等腰直角三角形.
(1)求椭圆的方程.
(2)动直线l :mx +ny +n =0(m ,n ∈R )交椭圆C 于A ,B 两点,试问:在坐标平面上1
3是否存在一个定点T ,使得以AB 为直径的圆恒过点T .若存在.求出点T 的坐标;若不存在,请说明理由.解:(1)∵椭圆C :+=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角x 2a 2y 2
b 2三角形,
∴a =b ,∴+=1.
2x 22b 2y 2
b 2又∵椭圆经过点P ,将点P 的坐标代入椭圆方程得b 2=1,∴a 2=2,故椭圆方(1,2
2)
程为+y 2=1.
x 2
2(2)由题意动直线l 过点.(0,-1
3)
当l 与x 轴平行时,以AB 为直径的圆的方程为
x 2+2=2;
(y +13)(4
3)当l 与y 轴平行时,以AB 为直径的圆的方程为x 2+y 2=1.
由Error!解得Error!
即两圆相切于点(0,1),因此,如果所求的点T 存在,只能是(0,1),下证点T (0,1)就是所求的点.
证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (0,1).
当直线l 不垂直于x 轴,可设直线l :y =kx -.
1
3由Error!消去y 并整理,得(18k 2+9)x 2-12kx -16=0.
设点A (x 1,y 1),B (x 2,y 2),
则x 1+x 2=,x 1x 2=.12k 18k 2+9-16
18k 2+9又∵=(x 1,y 1-1),=(x 2,y 2-1),
TA → TB →
∴·=x 1x 2+(y 1-1)(y 2-1)
TA → TB → =x 1x 2+(kx 1-43)(kx 2-43)
=(1+k 2)x 1x 2-k (x 1+x 2)+43169
=(1+k 2)·-k ·+=0.-1618k 2+94312k 18k 2+9169∴TA ⊥TB ,即以AB 为直径的圆恒过点T (0,1),∴在坐标平面上存在一个定点T (0,1)满足条件.。