实验3 二叉树
- 格式:doc
- 大小:64.00 KB
- 文档页数:5
二叉树实验报告二叉树实验报告引言:二叉树作为一种常用的数据结构,在计算机科学领域中具有广泛的应用。
本实验旨在通过实际操作和观察,深入理解二叉树的特性和运用。
一、二叉树的基本概念1.1 二叉树的定义二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
树的最顶层节点称为根节点。
1.2 二叉树的特点二叉树具有以下特点:- 每个节点最多有两个子节点,分别称为左子节点和右子节点;- 左子节点的值小于等于父节点的值,右子节点的值大于等于父节点的值;- 二叉树的左子树和右子树也是二叉树。
二、二叉树的遍历方式2.1 先序遍历先序遍历是指先访问根节点,然后按照先序遍历的方式依次访问左子树和右子树。
2.2 中序遍历中序遍历是指按照中序遍历的方式依次访问左子树,根节点和右子树。
2.3 后序遍历后序遍历是指按照后序遍历的方式依次访问左子树,右子树和根节点。
三、二叉树的实验操作3.1 二叉树的创建为了便于实验操作,我们选择使用Python编程语言来实现二叉树的创建和操作。
首先,我们需要定义一个二叉树节点的类,包含节点的值、左子节点和右子节点。
3.2 二叉树的插入在已有的二叉树中插入一个新的节点,需要遵循二叉树的规则。
如果插入的节点值小于当前节点的值,则将节点插入到当前节点的左子树;如果插入的节点值大于当前节点的值,则将节点插入到当前节点的右子树。
3.3 二叉树的查找在二叉树中查找一个特定的节点,需要遍历整个二叉树。
从根节点开始,如果要查找的节点值小于当前节点的值,则继续在左子树中查找;如果要查找的节点值大于当前节点的值,则继续在右子树中查找;如果要查找的节点值等于当前节点的值,则找到了目标节点。
3.4 二叉树的删除在二叉树中删除一个节点,需要考虑多种情况。
如果要删除的节点没有子节点,直接将其删除即可;如果要删除的节点只有一个子节点,将子节点替换为要删除的节点;如果要删除的节点有两个子节点,需要找到其右子树中的最小节点,将其值替换到要删除的节点,然后删除最小节点。
实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。
二叉树作为一种常见的数据结构,广泛应用于各个领域。
本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。
一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。
1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。
二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。
在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。
2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。
2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
后序遍历常用于计算二叉树的表达式或释放二叉树的内存。
三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。
链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。
3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。
二叉搜索树常用于实现查找、插入和删除等操作。
(2)堆:堆是一种特殊的二叉树,它满足堆序性质。
堆常用于实现优先队列,如操作系统中的进程调度。
(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。
四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。
在实践中,我进一步理解了二叉树的定义、性质和应用。
二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。
数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。
具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。
二、实验原理树是一种非线性的数据结构,由结点和边组成。
树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。
树的基本操作包括插入、删除和查找。
在本次实验中,我们采用二叉树作为实现树的数据结构。
二叉树是一种特殊的树,每个结点最多只有两个子结点。
根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。
三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。
然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。
2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。
我们可以通过递归的方式实现插入操作。
具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。
如果当前结点为空,则将新的结点作为当前结点。
3. 实现删除操作删除操作是将指定的结点从树中移除的过程。
我们同样可以通过递归的方式实现删除操作。
具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。
如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。
- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。
- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。
4. 实现查找操作查找操作是在树中寻找指定值的过程。
同样可以通过递归的方式实现查找操作。
具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。
二叉树的操作实验报告二叉树的操作实验报告引言二叉树是计算机科学中常用的数据结构,它具有良好的搜索性能和灵活的插入和删除操作。
本实验旨在通过实际操作,深入理解二叉树的基本操作和特性。
1. 二叉树的定义和基本概念二叉树是一种特殊的树状结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的节点由数据和指向左右子节点的指针组成。
根据节点的位置,可以将二叉树分为左子树、右子树和根节点。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。
常用的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左子树、右子树的顺序遍历;中序遍历先访问左子树,然后根节点,最后右子树;后序遍历先访问左子树,然后右子树,最后根节点。
3. 二叉树的插入操作插入操作是将一个新节点插入到二叉树中的特定位置。
插入操作需要考虑节点的大小关系,小于当前节点则插入到左子树,大于当前节点则插入到右子树。
插入操作可以保持二叉树的有序性。
4. 二叉树的删除操作删除操作是将指定节点从二叉树中删除。
删除操作需要考虑被删除节点的子节点情况,如果被删除节点没有子节点,则直接删除;如果有一个子节点,则将子节点替代被删除节点的位置;如果有两个子节点,则选择被删除节点的后继节点或前驱节点替代被删除节点。
5. 二叉树的查找操作查找操作是在二叉树中搜索指定的节点。
二叉树的查找操作可以使用递归或迭代的方式实现。
递归方式会自动遍历整个二叉树,直到找到目标节点或遍历完整个树。
迭代方式则需要手动比较节点的值,并根据大小关系选择左子树或右子树进行进一步查找。
6. 二叉树的平衡性二叉树的平衡性是指左子树和右子树的高度差不超过1。
平衡二叉树可以提高搜索效率,避免出现极端情况下的性能下降。
常见的平衡二叉树有AVL树和红黑树。
7. 二叉树应用场景二叉树在计算机科学中有广泛的应用场景。
例如,文件系统的目录结构可以使用二叉树来表示;数据库中的索引结构也可以使用二叉树来实现。
数据结构实验报告二叉树《数据结构与算法》实验报告专业班级姓名学号实验项目实验三二叉树。
实验目的1、掌握用递归方法实现二叉树的遍历。
2、加深对二叉树的理解,逐步培养解决实际问题的编程能力。
题目:(1)编写二叉树的遍历操作函数。
①先序遍历,递归方法re_preOrder(TREE *tree)②中序遍历,递归方法re_midOrder(TREE *tree)③后序遍历,递归方法re_postOrder(TREE *tree)(2)调用上述函数实现先序、中序和后序遍历二叉树操作。
算法设计分析(一)数据结构的定义要求用c语言编写一个演示程序,首先建立一个二叉树,让用户输入一个二叉树,实现该二叉树的便利操作。
二叉树型存储结构定义为:typedef struct TNode{ char data;//字符型数据struct TNode *lchild,*rchild;//左右孩子指针}TNode,* Tree;(二)总体设计程序由主函数、二叉树建立函数、先序遍历函数、中序遍历函数、后序遍历函数五个函数组成。
其功能描述如下:(1)主函数:统筹调用各个函数以实现相应功能。
int main()(2)二叉树建立函数:根据用户意愿运用先序遍历建立一个二叉树。
int CreateBiTree(Tree &T)(3)先序遍历函数:将所建立的二叉树先序遍历输出。
void PreOrder(Tree T)(4)中序遍历函数:将所建立的二叉树中序遍历输出。
void InOrder(Tree T)(5)后序遍历函数:将所建立的二叉树后序遍历输出。
void PostOrder(Tree T)(三)各函数的详细设计:(1)建立一个二叉树,按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树。
对T动态分配存储空间,生成根节点,构造左、右子树(2)编写先序遍历函数,依次访问根节点、左子结点、右子节点(3)编写中序遍历函数,依次访问左子结点、根节点、右子节点(4)编写后序遍历函数,依次访问左子结点、右子节点、根节点(5)编写主函数,调用各个函数,以实现二叉树遍历的基本操作。
数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。
二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。
本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。
二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。
三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。
通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。
例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。
2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。
常见的查找方式有深度优先搜索和广度优先搜索。
深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。
四、实验结果通过实验,我们可以观察到二叉树的特性和性能。
在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。
而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。
在遍历二叉树时,不同的遍历方式会得到不同的结果。
前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。
在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。
深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。
二叉树应用实验实验目的(1)掌握二叉树的动态链表存储结构及表示。
(2)掌握二叉树的三种遍历算法(递归和非递归两类)。
(3)运用二叉树三种遍历的方法求解有关问题。
实验运行环境Visual C++实验任务为使实验程序简洁直观,下面的部分实验程序中的一些功能实现仍以调用库函数程序"btrechar.h"中的函数的形式给出,并假设该库函数中定义了二叉树指针和结点类型分别为bitre和bnode,以及部分常用运算,例如构建二叉树、以某种方式显示二叉树等。
各运算的名称较为直观,因而易于理解。
为便于数据的描述,将测试数据结构列出,并以一个文件名的形式给出标注,例如测试数据名为full41.cbt的二叉树,其具体结构形式参见二叉树列表中的标有full41.cbt 的二叉树。
实验内容第一题:求二叉树的高度。
实验测试数据基本要求:第一组数据: full41.cbt第二组数据: cbitre.cbt实验准备:第一步:将指针指向根结点,判断根结点是否为空,如果是则返回0,否则进入第二步。
第二步:判断当前结点是否有子树,如果没有,当前结点的高度为1,否则进入第三步。
第三步:求当前结点左右子树的高度,并将两者中较大的加1作为该结点的高度。
进入下一个结点,返回第二步。
第二题:设计算法按中序次序输出二叉树中各结点的值及其所对应的层次数。
实验测试数据基本要求:第一组数据: full41.cbt第二组数据: cbitre.cbt实验准备:第一步:将根节点的层次赋值为1。
第二步:判断当前结点是否为先序遍历的最后一个结点,是则输出二叉树中各结点的值及其所对应的层次数,并结束;否则,将当前结点的值以及层次输出,并将它的层次加1赋值给左右子树的层次。
移向下一个结点继续进行。
第三题:将按顺序方式存储在数组中的二叉树转换为二叉链表形式。
实验测试数据基本要求:第一组数据: full41.cbt第二组数据: letter.cbt实验准备:第一步:根据数组中的信息判断当前结点是否有左右子树,如果有并且已经建立了连接,就返回上一层,如果有但没建立连接就建立它与子树的连接。
TextFile中。
(4) P:打印代码文件(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrin中。
(5) T:打印哈夫曼树(Tree printing)。
将已在内存中的哈夫曼树以直观的方式显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
3) 实现提示:(1) 文件CodeFile的基类型可以设为字节型。
(2) 用户界面可以设计为“菜单”方式:显示上述功能符号,再加上“Q”,表示退出运行Quit。
请用户键入一个选择功能符。
此功能执行完毕后再显示此菜单,直至某次用户选择了“E”为止。
(3) 在程序的一次执行过程中,第一次执行I、D或C命令之后,哈夫曼树已经在内存了,不必再读入。
每次执行中不一定执行I命令,因为文件hfmTree可能早已建好。
三、实验过程与实验结果实验3-01:以二叉链表为存储结构,实现二叉树的创建、遍历数据结构定义:typedef struct BiTNode{char data;BiTNode *lchild, *rchild;}BiTNode;typedef BiTNode *BiTree;算法设计思路简介:本实验需要实现以下操作:二叉树的初始化、前中后序遍历等基本操作1.利用递归实现前后序遍历,思路简洁,仅需要调整递归体的执行顺序即可实现。
2.利用非递归实现中序遍历,需要利用栈操作,按照中序遍历规则将节点依次入栈后出栈实现。
算法描述:图1 中序遍历(非递归)实现算法的实现和测试结果(参考OJ)实验3-02:编写算法交换二叉树中所有结点的左、右子树数据结构定义:typedef struct BiTNode{char data;BiTNode *lchild, *rchild;}BiTNode;typedef BiTNode *BiTree;算法设计思路简介:本实验需要实现以下操作:二叉树的初始化、前中后序遍历等基本操作1.利用递归实现前后序遍历,思路简洁,仅需要调整递归体的执行顺序即可实现。
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
实验报告课程名称____数据结构上机实验__________实验项目______二叉树的应用 ____________实验仪器________PC机___________________系别____________________________专业_____________________________班级/学号____________________________学生姓名_____________________________实验日期_______________________成绩_______________________指导教师_______________________实验三.二叉树的应用1.实验目的:掌握二叉树的链式存储结构和常用算法。
利用哈夫曼树设计最优压缩编码。
2.实验内容:1)编写函数,实现建立哈夫曼树和显示哈夫曼树的功能。
2)编写函数,实现生成哈夫曼编码的功能。
3)编写主函数,从终端输入一段英文文本;统计各个字符出现的频率,然后构建哈夫曼树并求出对应的哈夫曼编码;显示哈夫曼树和哈夫曼编码。
选做内容:修改程序,选择实现以下功能:4)编码:用哈夫曼编码对一段英文文本进行压缩编码,显示编码后的文本编码序列;5)统计:计算并显示文本的压缩比例;6)解码:将采用哈夫曼编码压缩的文本还原为英文文本。
3.算法说明:1)二叉树和哈夫曼树的相关算法见讲义。
2)编码的方法是:从头开始逐个读取文本字符串中的每个字符,查编码表得到它的编码并输出。
重复处理直至文本结束。
3)解码的方法是:将指针指向哈夫曼树的树根,从头开始逐个读取编码序列中的每位,若该位为1则向右子树走,为0则向左子树走。
当走到叶子节点时,取出节点中的字符并输出。
重新将指针放到树根,继续以上过程直至编码序列处理完毕。
4)压缩比例的计算:编码后的文本长度为编码序列中的0和1,的个数,原文本长度为字符数*8。
两者之比即为压缩比。
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树的基本操作包括创建、遍历、插入和删除等。
本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。
一、创建二叉树创建二叉树是二叉树操作中的第一步。
在本实验中,我们使用了递归算法来创建二叉树。
递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。
在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。
二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。
三、插入节点插入节点是向二叉树中添加新节点的操作。
插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。
在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。
四、删除节点删除节点是从二叉树中移除节点的操作。
删除节点的过程相对复杂,需要考虑多种情况。
如果要删除的节点是叶子节点,直接删除即可。
如果要删除的节点只有一个子节点,将其子节点连接到父节点上。
如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。
实验结果:通过实验,我们成功地实现了二叉树的基本操作。
创建二叉树的递归算法能够正确地创建出符合要求的二叉树。
遍历二叉树的算法能够按照指定的顺序遍历每个节点。
插入节点和删除节点的操作也能够正确地修改二叉树的结构。
讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。
通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。
实验三二叉排序树的建立和查找一、实验目的1.掌握二叉排序树的建立算法2.掌握二叉排序树查找算法。
二、实验环境操作系统和C语言系统三、预习要求复习二叉排序树的生成及查找算法,编写完整的程序。
四、实验内容实现二叉排序树上的查找算法。
具体实现要求:用二叉链表做存储结构,输入键值序列,建立一棵二叉排序树并在二叉排序树上实现查找算法。
五、参考算法#include <stdio.h>#include <stdlib.h>typedef int InfoType;typedef int KeyType; /*假定关键字类型为整数*/typedef struct node /*结点类型*/{KeyType key; /*关键字项*/InfoType otherinfo; /*其它数据域,InfoType视应用情况而定,下面不处理它*/struct node *lchild,*rchild; /*左右孩子指针*/}BSTNode;typedef BSTNode *BSTree; /*BSTree是二叉排序树的类型*/BSTNode *SearchBST(BSTree T,KeyType key){ /*在二叉排序树T上查找关键字为key的结点,成功时返回该结点位置,否则返回NULL*/if(T==NULL||key==T->key) /*递归的终结条件*/return T; /*若T为空,查找失败;否则成功,返回找到的结点位置*/if(key<T->key)return SearchBST(T->lchild,key);elsereturn SearchBST(T->rchild,key); /*继续在右子树中查找*/}void InsertBST(BSTree *T,int key){ /*插入一个值为key的节点到二叉排序树中*/BSTNode *p,*q;if((*T)==NULL){ /*树为空树*/(*T)=(BSTree)malloc(sizeof(BSTNode));(*T)->key=key;(*T)->lchild=(*T)->rchild=NULL;}else{p=(*T);while(p){q=p;if(p->key>key)p=q->lchild;else if(p->key<key)p=q->rchild;else{printf("\n 该二叉排序树中含有关键字为%d的节点!\n",key);return;}}p=(BSTree)malloc(sizeof(BSTNode));p->key=key;p->lchild=p->rchild=NULL;if(q->key>key)q->lchild=p;elseq->rchild=p;}}BSTree CreateBST(void){ /*输入一个结点序列,建立一棵二叉排序树,将根结点指针返回*/BSTree T=NULL; /*初始时T为空树*/KeyType key;scanf("%d",&key); /*读入一个关键字*/while(key){ /*假设key=0是输入结束标志*/ InsertBST(&T,key); /*将key插入二叉排序树T*/scanf("%d",&key); /*读入下一关键字*/}return T; /*返回建立的二叉排序树的根指针*/ }void ListBinTree(BSTree T) /*用广义表示二叉树*/{if(T!=NULL){printf("%d",T->key);if(T->lchild!=NULL||T->rchild!=NULL){printf("(");ListBinTree(T->lchild);if(T->rchild!=NULL)printf(",");ListBinTree(T->rchild);printf(")");}}}void main(){BSTNode *SearchBST(BSTree T,KeyType key);void InsertBST(BSTree *Tptr,KeyType key);BSTree CreateBST();void ListBinTree(BSTree T);BSTree T;BSTNode *p;int key;printf("请输入关键字(输入0为结束标志):\n");T=CreateBST();ListBinTree(T);printf("\n");printf("请输入欲查找关键字:");scanf("%d",&key);p=SearchBST(T,key);if(p==NULL)printf("没有找到%d!\n",key);elseprintf("找到%d!\n",key);ListBinTree(p);printf("\n");}实验中出现的问题及对问题的解决方案输入数据时,总是不能得到结果,原因是在建立二叉树函数定义中,是对指针的值进行了修改。
实验三二叉树的遍历一、实验目的1、熟悉二叉树的结点类型和二叉树的基本操作。
2、掌握二叉树的前序、中序和后序遍历的算法。
3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。
二、实验环境运行C或VC++的微机。
三、实验内容1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。
2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。
四、设计思路1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求2.二叉树采用动态数组3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点五、程序代码#include <stdio.h>#include <stdlib.h>#include <malloc.h>#define OK 1#define ERROR 0typedef struct TNode//结构体定义{-int data; //数据域struct TNode *lchild,*rchild; // 指针域包括左右孩子指针}TNode,*Tree;void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值{int a;scanf("%d",&a);if(a==00) // 结点的值为空*T=NULL;else // 结点的值不为空{*T=(Tree)malloc(sizeof(TNode));if(!T){printf("分配空间失败!!TAT");exit(ERROR);}(*T)->data=a;CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树}}void InitT(Tree *T)//构建空二叉树{T=NULL;}void DestroyT(Tree *T)//销毁二叉树{if(*T) // 二叉树非空{DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树free(T);T=NULL;}}void visit(int e)//访问结点{printf("%d ",e);}-void PreOrderT(Tree *T,void(*visit)(int))//先序遍历T{if(*T) // 二叉树非空{visit((*T)->data); // 先访问根结点PreOrderT(&((*T)->lchild),visit); // 递归调用函数,先序遍历左子树PreOrderT(&((*T)->rchild),visit); // 递归调用函数,先序遍历右子树}}void InOrderT(Tree *T,void(*visit)(int)){if(*T){InOrderT(&((*T)->lchild),visit); // 递归调用函数,中序遍历左子树visit((*T)->data); // 访问根结点InOrderT(&((*T)->rchild),visit); // 递归调用函数,中序遍历右子树}}void PostOrderT(Tree *T,void(*visit)(int)){if(*T){PostOrderT(&((*T)->lchild),visit); // 递归调用函数,后序遍历左子树PostOrderT(&((*T)->rchild),visit); // 递归调用函数,序遍历右子树visit((*T)->data); // 访问根结点}}void example(){int i;printf("如果你想建立如图所示的二叉树\n");printf("\n");printf(" 1 \n");printf(" / \\ \n");printf(" 3 3 \n");printf(" / \\ \\ \n");printf(" 4 5 7 \n");printf("\n");printf("请输入:1 3 4 00 00 5 00 00 3 00 7 00 00\n");printf("\n按先序次序输入二叉树中结点的值(输入00表示节点为空)\n");for(i=0;i<71;i++)printf("*");printf("\n");}int main (){Tree T;printf("**************欢迎使用!**************潘俊达\n"); example();printf("\n请输入所要建立的二叉树:\n");CreateT(&T);InitT(&T);int i;printf("先序遍历二叉树:\n");PreOrderT(&T,visit);printf("\n");printf("\n中序遍历二叉树:\n");InOrderT(&T,visit);printf("\n");printf("\n后序遍历二叉树:\n");PostOrderT(&T,visit);printf("\n");system("PAUSE");return 0;}六、程序截图1.范例函数显示,并输入先序二叉树节点值2.先序遍历二叉树3.中序遍历二叉树3.后序遍历二叉树。
实验三:二叉树
学时:2学时
实验目的:掌握树形结构的特点,二叉树的存储方式以及相应操作。
实验内容:
按先序遍历序列建立二叉树的二叉链表,已知先序序列为(F表示空格):ABCFFDEFGFFFFFF。
并写一个函数treenodes()统计该二叉树的节点个数。
如果有可能,写一个输出函数treeprint()用树形结构打印出该二叉树。
提示:
1,统计结点数也是一种遍历操作,要首先理解遍历,递归程序。
2,由于printf打印是一行行按顺序的,要打印出树形结构,必须按层次遍历,并且利用空格。
关键是控制每一层次打印的空格的数量,以及子树为空的情形。
可参考如下代码:
树的遍历:ch6_traverse.c
/*
树的遍历
author: kk.h
date: 2006.10
*/
#include "stdio.h"
typedef char ElemType;
typedef struct BiTNode{
ElemType data;
struct BiTNode *lchild,*rchild;
}BiTNode;
/* 先根遍历*/
void preorder(BiTNode *bt)
{ if(bt!=NULL)
{ printf("%c ",bt->data);
preorder(bt->lchild);
preorder(bt->rchild);
}
}
/* 中根遍历*/
void inorder(BiTNode *bt)
{ if(bt!=NULL)
{ inorder(bt->lchild);
printf("%c ",bt->data);
inorder(bt->rchild);
}
}
/* 后根遍历*/
void postorder(BiTNode *bt)
{ if(bt!=NULL)
{ postorder(bt->lchild);
postorder(bt->rchild);
printf("%c ",bt->data);
}
}
/* 非递归算法的中根遍历(后进先出,用了栈的思想)*/ void inorder_fdg(BiTNode *bt)
{ int i=0;
BiTNode *p,*s[20];
p=bt;
do
{ while(p!=NULL)
{ s[i++]=p;
p=p->lchild;
}
if(i>0)
{ p=s[--i];
printf("%c ",p->data);
p=p->rchild;
}
}while(i>0||p!=NULL);
}
/* 用队列实现层次遍历*/
void lev_traverse(BiTNode* T)
{
BiTNode *q[100],*p;
int head,tail, i;
q[0]=T;head=0;tail=1;
while(head<tail) { /* 当队列不空*/
p=q[head++];
printf("%c ",p->data);
if(p->lchild!=NULL)
q[tail++]=p->lchild;
if(p->rchild!=NULL)
q[tail++]=p->rchild;
}
}
/* 利用先根序列建立二叉树,空的子树也要输入,用空格表示*/ BiTNode *crt_bt_pre()
{ char ch;
BiTNode *bt;
scanf("%c",&ch);
if(ch==' ') bt=NULL;
else
{ bt=(BiTNode *)malloc(sizeof(BiTNode));
bt->data=ch;
bt->lchild=crt_bt_pre();
bt->rchild=crt_bt_pre();
}
return(bt);
}
/* 二叉树的释放*/
void freetree(BiTNode *bt)
{ if(bt!=NULL)
{ freetree(bt->lchild);
freetree(bt->rchild);
free(bt);
bt=NULL;
}
}
main()
{
BiTNode *T,*temp[20];
/* 笨方法建立二叉树*/
temp[0]=(BiTNode*)malloc(sizeof(BiTNode));
temp[0]->data = '-';
temp[1]=(BiTNode*)malloc(sizeof(BiTNode));
temp[1]->data = '+';
temp[0]->lchild = temp[1];
temp[2]=(BiTNode*)malloc(sizeof(BiTNode)); temp[2]->data = '/';
temp[0]->rchild = temp[2];
temp[3]=(BiTNode*)malloc(sizeof(BiTNode)); temp[3]->data = 'a';
temp[3]->lchild=NULL; temp[3]->rchild=NULL; temp[1]->lchild = temp[3];
temp[4]=(BiTNode*)malloc(sizeof(BiTNode)); temp[4]->data = '*';
temp[1]->rchild = temp[4];
temp[5]=(BiTNode*)malloc(sizeof(BiTNode)); temp[5]->data = 'e';
temp[5]->lchild=NULL; temp[5]->rchild=NULL; temp[2]->lchild = temp[5];
temp[6]=(BiTNode*)malloc(sizeof(BiTNode)); temp[6]->data = 'f';
temp[6]->lchild=NULL; temp[6]->rchild=NULL; temp[2]->rchild = temp[6];
temp[7]=(BiTNode*)malloc(sizeof(BiTNode)); temp[7]->data = 'b';
temp[7]->lchild=NULL; temp[7]->rchild=NULL; temp[4]->lchild = temp[7];
temp[8]=(BiTNode*)malloc(sizeof(BiTNode)); temp[8]->data = '-';
temp[4]->rchild = temp[8];
temp[9]=(BiTNode*)malloc(sizeof(BiTNode)); temp[9]->data = 'c';
temp[9]->lchild=NULL; temp[9]->rchild=NULL; temp[8]->lchild = temp[9];
temp[10]=(BiTNode*)malloc(sizeof(BiTNode)); temp[10]->data = 'd';
temp[10]->lchild=NULL; temp[10]->rchild=NULL; temp[8]->rchild = temp[10];
T=temp[0];
printf("\n\nPreOrder:\n");
preorder(T);
printf("\n\nInOrder:\n");
inorder(T);
printf("\n\nPostOrder:\n");
postorder(T);
printf("\n\ninorder_fdg:\n");
inorder_fdg(T);
printf("\n\nlev_traverse:\n");
lev_traverse(T);
freetree(T);
/*
printf("\n\nplease input inorder:such as 'abc de g f '\n"); T = crt_bt_pre();
printf("\n\nPreOrder:\n");
preorder(T);
printf("\n\nInOrder:\n");
inorder(T);
freetree(T);
*/
getch();
}。