高考数学答题策略与技巧
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时间。
5.先点后面。
高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步准确。
假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。
对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。
对不能全面完成的题目有两种常用方法: 1.缺步解答。
将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。
2.跳步解答。
若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。
四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。
对一个问题正面思考受阻时,就逆推,直接证有困难就反证。
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。
高考数学答题策略与答题技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
高考数学答题技巧(最全)高考数学答题技巧1、函数与方程思想函数思想是指使用运动改变的观点,分析和讨论数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想实行函数与方程间的互相转化。
2、数形结合思想中学数学讨论的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是查找问题解决切入点的“法宝”,又是优化解题途径的“良方,所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于精确地理解题意、快速地解决问题。
3、特别与一般的思想用这种思想解选择题有时特殊有效,这是由于一个命题在普遍意义上成立时,在其特别状况下也必定成立,依据这个点,同学们能够直接确定选择题中的精确选项。
不但如此,用这种思想〔方法〕去探求主观题的求解策略,也同样有用。
数学怎么答题得分高1、审题要慢,答题要快有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会圆满终生,所以审题肯定要慢,有了这个“慢”,才能形成完好的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持究竟,或许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持究竟并不意味着钻牛角尖,一旦发觉自己走进死胡同,还是要立即迷途知返。
提高理科成果有什么窍门让教材滚瓜烂熟我在高三找到的一个看书的〔学习方法〕是回想法。
对于需要我背诵或者特殊娴熟的内容,光看是没用的,记不住。
我会在每看完一段之后合上书,自己把这一段写下来,或者用自己的话说出来,或者自己把这一段的学问结构整理写出来。
高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高考考试高分技巧与方法有哪些总结高考数学得高分的五大考试技巧一、构建知识脉络要学会构建知识脉络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题。
二、夯实数学基础在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。
三、建立病例档案准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。
我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
四、常用公式技巧准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。
对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。
例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的.效果。
五、强化题组训练除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
高考数学答题技巧一览高考数学答题技巧一览数学是高考的一门必修科目,也是许多学生心中最头疼的一门科目。
数学的题目类型繁多,而且不同年份的高考试题难度也不尽相同,但是在高考数学答题中,有些技巧和方法是通用的,运用好这些技巧和方法可以在短时间内提升答题效率,达到更好的成绩。
本文将介绍一些常见的高考数学答题技巧,供读者参考。
一、抓住重点、短平快考试时间有限,抓住重点、短平快是解题的重要策略。
在考场上遇到一道数学题目,一定要仔细阅读题目要求,找出数学问题的重难点,确定所求解题目的关键信息,然后思考正确的解题方向和方法。
如果你对某些知识点掌握比较困难,不要一味地死磕,可以优先解决一些熟悉掌握的、能够快速解决的题目,顺便提高一下心理素质和答题速度,留下更多的时间去攻克难题。
二、题目分类,常识分析高考数学题目类型各不相同,但是归纳总结起来,主要包括以下几类:函数题、几何题、概率与统计题、数列与数学归纳法题、解方程题等等。
虽然每种题型又各自存在多种解题方法,但是在解题之前我们可以先对题目进行分类,因为各类题目都有对应的解题模式和方法,依此进行解题可以大大提高解题效率。
同时在解题过程中对一些常识的使用也很重要,比如数学符号的意义,正确的数学计算规则等等,这些很基础的知识点不但可以提高解题效率,还可以减少错误率。
三、化繁为简,化式方便高考数学中有很多与数学符号、公式、单位走向有关的题目,这些题目看上去相对比较复杂,但是只要我们懂得化繁为简、化式方便的方法,就能够迎刃而解。
在这种类型的题目中,我们可以先根据已知的数学关系式化简式子,或者进行通分、通约、抵消、转移项等步骤,有时候会得到更为简单的式子,这样我们就可以迅速找出解题思路、使用求解方法、求取答案。
当然在化繁为简的过程中,切勿草率从事,忽略一些非常重要的细节。
四、多利用图形,准确无误数学几何中,图形是解题离不开的工具。
所以,要善于利用图形,在解题的时候画出对应图形,并掌握好几何构造的基本原理,以便更准确无误地解题。
高考数学答题技巧总结高考数学对于很多考生来说是一场挑战,掌握一些有效的答题技巧可以帮助我们在考试中更加从容应对,提高答题的准确性和效率。
以下是为大家总结的一些高考数学答题技巧。
一、考前准备1、知识梳理在临近高考的复习阶段,要对数学的各个知识点进行系统的梳理,建立清晰的知识框架。
重点复习常考的知识点和自己掌握不够扎实的部分,通过做一些综合性的练习题来加深对知识的理解和运用。
2、错题回顾整理和回顾之前做过的错题,分析出错的原因,总结解题的思路和方法。
通过反复研究错题,可以避免在高考中犯同样的错误。
3、模拟考试按照高考的时间和要求进行模拟考试,熟悉考试的节奏和氛围,锻炼自己在规定时间内完成试卷的能力。
同时,通过模拟考试还可以发现自己在答题过程中存在的问题,及时进行调整和改进。
二、答题策略1、认真审题拿到试卷后,不要急于答题,先仔细阅读题目,理解题意。
注意题目中的关键词、条件和限制,明确题目所考查的知识点和要求。
对于复杂的题目,可以多读几遍,将题目中的信息进行梳理和分析,避免因为粗心大意而误解题意。
2、先易后难答题时,要遵循先易后难的原则。
先完成自己有把握的题目,这样可以增强自信心,提高答题的效率。
遇到难题不要慌张,可以先跳过,等完成其他题目后再回头思考。
有时候,在做后面的题目时可能会突然想到前面难题的解题思路。
3、答题规范书写要工整,步骤要清晰。
在解答计算题和证明题时,要按照规定的格式和步骤进行书写,避免因为书写不规范而扣分。
同时,要注意单位和符号的使用,保持答题的准确性。
4、合理分配时间高考数学考试时间有限,要合理分配时间。
一般来说,选择题和填空题的答题时间不宜过长,要控制在 40 分钟左右,留出足够的时间来解答后面的大题。
对于每一道大题,也要根据其分值和难度合理安排时间,确保能够在规定时间内完成试卷。
三、选择题答题技巧1、直接法直接从题目的条件出发,运用所学的定义、定理、公式等进行计算和推理,得出答案。
高考数学答题策略与技巧
一、近年高考数学命题的中心是数学思想方法,考试命题的四个基本点
1.在基础中考能力,这主要体现在选择题和填空题。
2.在综合中考能力,主要体现在后三道大题。
3.在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题(一般为概率应用题)。
4.在新型题中考能力。
尤其是新课改地区,理科命题表面上看起来更加简单,并且做题的时候会发现计算量没有以往的题型大,但是多以创新题为主。
这“四考能力”,围绕的中心就是考查数学思想方法。
二、如何获取高分
由于,基础中考能力,所以要注重解题的快法和巧法,能在40分钟左右,完成全部的选择填空题,这是夺取高分的关键。
第二段是解答题的前三题,分值为30多分。
这样前两个阶段的总分在110多分左右。
第三段是最后“三难”题,分值不到40分。
“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。
首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。
这是根据试卷的深层结构做出的最佳解题策略。
所以,要重视选择填空题、确保前三题。
在备考前一定要首先训练这类题型。
这是与其他同学拉开分数与否的关键部分。
但是只做选择,填空和前三道大题是不够全面的。
因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。
在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。
然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。
这样,你的总分就可以超过130分,向145分冲刺。