概率统计复习题答案
- 格式:doc
- 大小:282.50 KB
- 文档页数:5
★编号:重科院( )考字第( )号 第 1 页复习题一一、选择题1.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。
A .1 B.12 C. -1 D. 322.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。
A .12 B. 23 C. 16 D. 133.设)(~),(~22221221n n χχχχ,2221,χχ独立,则~2221χχ+( )。
A .)(~22221n χχχ+ B. ~2221χχ+)1(2-n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212n n +χ4.若随机变量12Y X X =+,且12,X X 相互独立。
~(0,1)i X N (1,2i =),则( )。
A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N5.设)4,1(~N X ,则{0 1.6}P X <<=( )。
A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。
则()D X Y +=4.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.2P X >=三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0()0,0x Be x f x x -⎧>=⎨≤⎩(1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。
2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。
参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。
参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。
参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。
参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。
参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。
参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= ,P(B)= ,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。
参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为;至少有一人中靶的概率为。
参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。
, 概率论与数理统计习题一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=1 2.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( ) A .P (A ) B .P (AB ) C .P (A|B ) D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( )A .P{3.5<X<4.5}B .P{1.5<X<2.5}C .P{2.5<X<3.5}D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( )A .-1B .21-C .21D .1 5则P{X=Y}=( )A .0.3B .0.5C .0.7D .0.86.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5 D .E (X )=2,D (X )=47.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( ) A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) A .x 2 B .x C .2x D .x211A2.D3.C4.D5.A6.A7.C8.B9.C 10.B二、填空题11.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____________.12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为____________. 13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为____________.15.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=____________.17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x=____________. 18.设随机变量X 的分布律为则D (X )=____________. 19.设随机变量X 服从参数为3的指数分布,则D (2X+1)=____________. 20.设二维随机变量(X ,Y )的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x则P{X ≤21}=____________. 21.设二维随机变量(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x则当y>0时,(X ,Y )关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12.3518 13.0.7 14. 0.9 15. 3 16.3231 17.710 18.1 19.94 20.21 21. ye - 25. 41三、计算题26.设二维随机变量(X 试问:X 与Y因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅==== 所以X ,Y 独立。
《概率统计》复习纲要A一、单项选择题1.对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。
当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于( )。
A 、 B 、 C 、 D 、 2.袋中有5个球(3个新球,2个旧球)。
现每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )。
A 、3/5B 、3/4C 、1/2D 、3/10 3.事件A 与B 相互独立的充要条件为( )。
A 、P(B)P(A)B)P(A +=⋃B 、ΦAB ,ΩB A ==⋃C 、P(A)P(B)P(AB)=D 、P(B)P(A)B)P(A -=- 4.以A 表示事件“零件长度合格且直径不合格”,则A 的对立事件为( )。
A 、零件长度不合格且直径合格B 、零件长度与直径均合格C 、零件长度不合格或直径合格D 、零件长度不合格 5.对于任意两个事件A 与B ,则有P(A-B)为( )。
A 、P(A)-P(B)B 、P(A)-P(B)+P(AB)C 、P(A)-P(AB)D 、P(A)+P(AB) 6.设二维随机变量(X,Y )的分布律为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41a1b 41010,已知事件{X=0}与{X+Y=1}相互独立,则a ,b 的值是( )。
A 、61b ,31a ==B 、31b ,61a ==C 、103b ,51a ==D 、81b ,83a ==7.设函数⎪⎪⎩⎪⎪⎨⎧>≤<≤=1x ,11x 0,2xx ,0(x)F ,则( )。
A 、F(x)是随机变量的分布函数B 、F(x)不是随机变量的分布函数C 、F(x)是离散型随机变量的分布函数D 、F(x)是连续型随机变量的分布函数 8.设随机变量()2,~σμN ξ,且{}{}c ξP c ξP >=≤,则c =( )。
A 、0 B 、μ C 、μ- D 、σ9.设ξ服从[0,1]的均匀分布,12+=ξη则( )。
概率论与数理统计复习题--带答案;第一章一、填空题1.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(A-B)=(0.3 )。
2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为(0.94 )。
3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC++)。
4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为(0.496 )。
5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为(ABC)。
7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为(AB AC BCI I);8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 );10.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(BA-)=(0.5 )11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。
12.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.3 );13.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(B A)=(0.5 )14.A、B为两互斥事件,则A B=U(S )15.A、B、C表示三个事件,则A、B、C恰有一个发生可表示为(ABC ABC ABC++)16.若()0.4P AB A B=UP AB=0.1则(|)P B=,()P A=,()0.2( 0.2 )17.A、B为两互斥事件,则AB=(S )18.保险箱的号码锁定若由四位数字组成,则一次)。
《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。
2.已知A,B互相对立,则A与B的关系是互相对立。
,B为随机事件,则P(AB)?。
P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。
,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。
36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。
7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。
8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。
339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。
5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。
12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。
319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。
15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。
??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。
217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则AB =( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 )17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
概率统计复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)。
答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。
2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望E(X)和方差Var(X)。
答案:E(X) = np = 10 × 0.3 = 3,Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。
3. 某工厂生产的零件寿命服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中λ > 0,求该零件寿命超过1000小时的概率。
答案:P(X > 1000) = ∫(1000, +∞) λe^(-λx) dx = e^(-λ×1000)。
4. 已知随机变量X和Y的联合概率密度函数为f(x, y),求X和Y的协方差Cov(X, Y)。
答案:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = ∫∫(x -E(X))(y - E(Y))f(x, y) dxdy。
5. 某地区连续三天的降雨量分别为X1, X2, X3,若X1, X2, X3相互独立且都服从正态分布N(μ, σ^2),求三天总降雨量X = X1 + X2 + X3的分布。
答案:X = X1 + X2 + X3,由于X1, X2, X3相互独立且都服从正态分布,根据正态分布的性质,X也服从正态分布,即X ~ N(3μ,3σ^2)。
6. 设随机变量X服从泊松分布,其参数为λ,求X的期望E(X)和方差Var(X)。
答案:对于泊松分布,其期望和方差都等于参数λ,即E(X) = λ,V ar(X) = λ。
7. 某工厂生产的零件合格率为0.95,求在100个零件中至少有90个合格的概率。
答案:设Y为100个零件中合格的零件数,则Y服从二项分布B(100, 0.95)。
概率统计复习题1答案
已知:
0.050.0250.050.050.050.051.65 1.96(9) 1.833
(8) 1.860
(2,6) 5.14
(2,7) 4.74
U U t t F F ======
一.填空题1. 随机抛4枚硬币,恰好出现3个正面的概率为__________________
Bernulii 定理或者二项分布的应用: 334111()224p C ==
2. 若随机变量(3),X
E 则()______,()________E X D X ==。
认符号,背公式: (3),X
E 指数分布, 11
(),()39
E X D X ==
3. 设每次试验成功的概率为(01)p p <<,则在三次重复试验中至少失败1次的概率为 ________________________________________________。
二项分布加对立事件的概率关系,所求概率为33
033
1(1)1C p p p --=- 4. 设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧
是θ的无偏估计。
无偏估计的定义: ()E θθ= 5. 设1(0,1),,
,n X
N X X
__________分布。
三大统计分布的定义:上面看见正态分布下面看见卡方分,想到什么啊:当然是
t(2)
6. 若12,A A 满足________________________,则称12,A A 为完备事件组。
完备事件组的定义: 1212,A A A A φ=⋃=Ω
二.选择题
1. 设A,B 是两个事件,则以下关系中正确的是 ( ) (A) ()A B B A -= (B) ()A B B -=∅ (C) ()A B B A = (D) ()A B B AB -= 这种题画图既快又准:选(B)
2. 设()0.6,()0.84,(|)0.4,P A P A B P B A ===则()P B = ( ) (A) 0.60 (B) 0.36 (C) 0.24 (D) 0.48
看到这种题想什么呢, (),()P A P A B 已知,求()P B ,可千万别选(C),那是俺最不耻
的错误哦,知道该怎么做了吧:
()()(|)0.40.60.24,P AB P A P B A ==⨯=()()()0.60.240.36P AB P A P AB =-=-=
由加法定理可得: ()()()()0.840.60.360.6P B P A B P A P AB =-+=-+= 选(A) 3. 若(1,3),(0,4),X
N Y
N 则(3)D X Y -= ( )
(A) 5 (B)13 (C)31 (D)23 这道题少了一个条件:X 与Y 相互独!!,加了条件以后:
(3)9()()93431D X Y D X D Y -=+=⨯+=,选(C)
4. 下列统计量中哪个是回归统计检验的统计量 ( )
(A) u α (B) t α (C) (1,)F r n r α-- (D) (1,2)F n α- 没有答案,因为四个选项都不是统计量,就理解一下出题人的意思吧:选(D) 其实还是不对,多元回归分析还不是它,只能无语,好在胡你们比较容易. 5. 设总体2(0,2),X
N 而1215,,
,X X X 是来自总体X 的简单随机样本,则随机
变量222
1210
222
1112152()
X X X Y X X X ++=++服从 ( ) (A )(10,5)F (B ) (8,4)F (C )(10)t (D )(9)t 这个选(A),没啥好说的吧
6. 设123,,X X X 是来自总体X 的一组样本,则总体均值μ的最小方差的无偏估计量是 ( ) (A )123343ˆ10X X X μ++= (B )123243ˆ10X X X μ++=
(C )123226ˆ10X X X μ++= (D )123255ˆ10
X X X μ++=
看清楚7个字:” 最小方差的无偏”,先找无偏的(A)(C),再找方差最小的(A) 三、把4个小球随机投入3个盒子中,求没有空盒的概率。
(假设小球与盒都是
可区别的)。
此题答案没有问题 三.解:设A=没有空盒
,则A 共包含234336C A =个样本点(基本事件)
而样本空间共包含4381=个样本点(基本事件)
故P(A)=234344
39
C A =
答:没有空盒的概率为4/9。
四、某地区成年人患某种癌症的概率为0.02,若医生能正确诊断某一癌症病人具有癌症的概率是0.78,而将健康人误诊为癌症病人的概率是0.06,求 (1)医生误诊的概率;
(2)某人经诊断患有癌症的概率。
解:设A=某人患有癌症
B=医生诊断某人患有癌症 C=医生误诊
由已知条件知: ()0.02,(|)0.78,(|)0.06P A P B A P B A ===
正确答案如下:
()()()()()()()0.02(10.78)(10.02)0.060.0632
P C P BA P B A P A P B A P A P B A =+=+=⨯-+-⨯=
(2)这里答案没有问题: 由于与构成完备事件组,由全概率公式知
()()(/)()(/)
0.020.780.980.060.0744
P B P A P B A P A P B A =+=⨯+⨯=
答:医生误诊的概率为0.28。
某人经诊断患有癌症的概率为0.0744。
五、已知某随机变量X 的概率密度为
102
()20
ax
x f x ⎧+≤≤⎪=⎨⎪⎩其它
求(1)未知常数a ;
(2)()F x ,(),()E X D X ;
(3)21Y X =+的概率密度。
五
. 解:(1)20()(1)112
ax
f x dx dx a +∞-∞=+=⇒=-⎰⎰
(2) 2000()()(1)022412x x
x x
x F x x f x dx dx x x x -∞<⎧
⎪-⎪==+=-≤≤⎨⎪
>⎪⎩
⎰⎰
202()(1)23
x EX xf x dx x dx +∞-∞-==+=⎰⎰
22
242()99
DX EX E X x f x dx +∞-∞=-=-=⎰
(3)'11
21,22
115(
)15()228
0X Y y y x x x y y f y f y other -=+∴==
⎧--=<<⎪=⎨⎪⎩
为单调线性函数存在反函数
六、已知某炼铁厂铁水含碳量服从正态分布2(4.55,0.108)N 。
现在测定了9炉铁水,其平均含碳量为4.484。
如果估计方差没有变化,可否认为现在生产之
铁水平均含碳量仍为4.55(0.05α=)? 六.
解:本问题是在0.05α=下检验假设 01: 4.55,: 4.55,H H μμ=≠
由于220.108σ=
已知,所以可选择统计量X U =
0H 成立的条件下,
(0,1)U N
且此问题的拒绝域为U u α=
>
这里 1.833, 1.96U u α=
=-=显然 1.833 1.96U u α=<=说明没有落在
拒绝域U 中,从而接受0H ,即认为现在生产之铁水平均含碳量仍为4.55。
七、为了检验A,B,C 三种不同肥料对水稻产量的影响,现作试验得数据如下,
七.解:
112233182474307,39,
5123,12,936
A E T n T T n n T n r df r df n r ==⎫⎫
⎪⎪
=⇒==⇒=⎬⎬⎪⎪==⎭⎭
==-==-=-=
222222
3
11827451307934.72
4329i A i i T T SS n n ==-=++-=∑2
3
3
2
22111512811406.8390.17
1149711472.111024.89
i
n i E ij i j i i
T A E T SS x n SS SS SS ====-=+
+-==+=-=∑∑∑
0,0.05F F H αα>∴=拒绝原假设,即认为不同肥料对水稻产量的影响在下有统计意义。