钢结构焊接变形分析及控制方法研究
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
钢结构焊接变形控制措施摘要:本文将从钢结构焊接变形的原因入手,介绍钢结构焊接变形的特点和影响,然后探讨钢结构焊接变形的控制措施,包括预制件的设计、焊接工艺的优化、焊接变形的补偿和控制等方面。
通过对这些控制措施的分析和总结,可以为钢结构焊接变形的控制提供一些有益的参考和借鉴,为钢结构的质量和安全性提供保障。
关键词:钢结构;焊接;变形控制;措施焊接过程中由于存在着很多不确定因素,如焊接位置、焊接工艺、焊接顺序以及各种外力的作用等,这些因素会使工件的变形受到抑制和限制,但也会使工件产生变形。
在整个过程中,任何一个环节出了问题,都会使最终的结果偏离设计的要求。
因此,在焊接过程中要采取各种措施来控制焊接变形。
1.反变形法反变形法是利用焊接热过程中工件的局部收缩来抵消或减小焊接件的变形。
这种方法能有效地控制焊接件的变形,是目前最常用的一种控制焊接变形的方法。
(1)反变形法在生产中应用广泛,一般是在钢结构构件上预先留有加工余量,焊接时尽量采用与留有加工余量相同的焊接顺序和焊后反变形的方法来补偿焊后构件的变形。
(2)在结构设计时,充分考虑到结构尺寸与受力情况,尽可能减少结构中过大的不合理尺寸。
例如:为控制梁侧弯,应尽量少设梁高;为控制焊缝收缩变形,应尽量减少焊缝长度和数量;为控制板厚方向产生挠曲,应尽量减少板厚尺寸;为减少角焊缝对整体应力的影响,应尽量缩短角焊缝长度等。
(3)在构件拼装前,用机械方法进行反变形或人工反变形。
例如:在装配前将构件通过调整使其发生一定程度的弯曲或扭转变形,待安装完毕后再恢复到原来的形状。
这种方法适用于尺寸精度要求不高且焊缝数量不多的构件。
(4)采用多道焊接方法。
此法适用于在大厚度上对称焊接要求较高的结构。
2.刚性固定法刚性固定法是指通过合理地安排钢结构构件的焊接顺序和焊接方向,使构件在焊缝上产生的拉应力、压应力和焊后残余变形的方向相反,并通过各种约束措施限制变形的一种方法。
在焊接过程中,我们应该把钢结构构件分为两部分:第一部分是纵向焊缝,第二部分是横向焊缝。
钢结构焊接问题实例分析钢结构焊接是一种常见的连接方式,广泛应用于建筑、桥梁、船舶等领域。
然而,在实际的焊接过程中,常常会出现一些问题,如焊接变形、裂纹、焊接缺陷等。
本文将通过分析几个实例,来深入探讨钢结构焊接中可能会遇到的问题及其解决方案。
一、焊接变形问题焊接变形是钢结构焊接过程中常见的问题之一,特别是在大尺寸钢构件的焊接中更加明显。
在焊接过程中,由于局部加热和冷却引起的热膨胀和收缩,会导致钢构件的形状发生变化。
这种变形不仅影响美观,还可能影响结构的力学性能。
解决焊接变形问题的方法主要包括以下几点:1.合理选择焊接方法:选择合适的焊接方法和参数,如使用低温焊接或预加热等方法可以减少焊接变形的发生。
2.控制热输入:控制焊接的热输入,减少焊接过程中产生的热量,可以降低钢构件的变形。
3.采用防变形措施:在焊接前后采取一些防变形的措施,如设置支撑、预伸杆等,能够有效减少焊接变形的发生。
二、焊接裂纹问题焊接裂纹是另一个常见的焊接问题,在钢结构焊接中经常会遇到。
焊接裂纹的形成主要是由于焊接过程中的应力和热应力引起的,尤其是在高强度钢材的焊接中更容易出现。
针对焊接裂纹问题,我们可以采取以下措施来进行预防和处理:1.合理设计焊缝:合理设计焊缝的形状和尺寸,减少焊接应力的集中和积累,降低产生裂纹的可能性。
2.控制焊接工艺:控制焊接的温度和速度,减少焊接过程中产生的应力,防止裂纹的形成。
3.使用适当的焊接材料:选择具有良好韧性和抗裂性能的焊接材料,能够有效减少裂纹的发生。
三、焊接缺陷问题除了焊接变形和焊接裂纹,焊接过程中还可能出现一些焊接缺陷,如气孔、夹渣、焊缝间隙等。
这些焊接缺陷可能会影响焊接接头的强度和密封性,从而影响结构的使用寿命和安全性。
针对焊接缺陷问题,我们可以采取以下方法进行处理和预防:1.加强焊接工艺控制:加强焊接过程中的质量控制,如严格按照焊接工艺规范进行操作,控制焊接参数,减少焊接缺陷的产生。
2.增加检测手段:加强焊接接头的质量检测,如采用超声波检测、X射线检测等方法,能够及时发现和修复焊接缺陷。
《大跨结构钢箱梁焊接变形预测与控制的应用研究》篇一一、引言随着现代建筑技术的不断进步,大跨度钢结构桥梁的建造已成为交通基础设施的重要组成部分。
在桥梁建设中,钢箱梁的焊接工艺是关键环节之一。
然而,由于焊接过程中产生的热应力、材料不均匀性等因素,焊接变形问题成为影响钢箱梁质量的重要问题。
因此,对大跨结构钢箱梁焊接变形的预测与控制进行研究,对于提高桥梁建设质量和安全性具有重要意义。
本文旨在探讨大跨结构钢箱梁焊接变形的预测与控制方法,为实际工程提供理论支持。
二、大跨结构钢箱梁焊接变形概述大跨结构钢箱梁的焊接变形是指在焊接过程中,由于热应力、材料不均匀性等因素导致钢箱梁发生变形。
这种变形可能对桥梁的外观、承载能力和耐久性产生不良影响。
因此,准确预测和控制焊接变形对于保证桥梁质量具有重要意义。
三、焊接变形预测方法为了准确预测大跨结构钢箱梁的焊接变形,本文采用有限元分析方法。
该方法可以通过建立钢箱梁的有限元模型,模拟焊接过程中的热传导、相变、应力应变等过程,从而预测焊接变形。
具体步骤如下:1. 建立钢箱梁的有限元模型,包括材料属性、几何尺寸等;2. 根据实际焊接工艺,设置热源模型和热传导方程;3. 通过有限元分析软件进行热应力分析,得到钢箱梁的应力分布;4. 根据应力分布,预测钢箱梁的焊接变形。
四、焊接变形控制方法针对大跨结构钢箱梁的焊接变形问题,本文提出以下控制方法:1. 优化焊接工艺:通过调整焊接顺序、焊接速度、电流等参数,减小热应力和材料不均匀性对钢箱梁的影响;2. 采用预变形技术:根据有限元分析结果,在焊接前对钢箱梁进行预变形处理,以抵消焊接过程中的变形;3. 加强支撑和固定:在焊接过程中,加强钢箱梁的支撑和固定,以减小其变形;4. 采用先进的检测技术:如激光扫描、三维测量等技术,实时监测钢箱梁的变形情况,及时调整控制措施。
五、应用实例分析以某大跨度钢结构桥梁为例,采用上述预测与控制方法进行实际应用。
浅析钢结构焊接变形与残余应力控制方法摘要:在国内建筑工程中,钢结构作为建筑结构主体结构框架,具有绿色环保、空间大和强度高等特点,在网架结构和塔桅建筑、超高层建筑以及大型工业厂房中等建筑工程中得到广泛应用。
随着建筑结构超高层化和大跨度化,高性能钢材应用增多,分析和讨论建筑钢结构焊接生产效率,对于提高建筑工程质量和效率具有重要意义。
关键词:钢结构; 焊接变形; 残余应力; 控制方法引言在钢结构工程的焊接施工中难免会出现焊接应力和焊接变形的情况,这对于焊接接头的强度以及焊接结构尺寸的精度都会产生一定的影响,严重的话会导致构件报废。
此外,钢结构在日后使用中的承载力也与焊接应力与焊接变形有着很大的关联。
因此相关施工人员要切实把握好焊接技术,加强对焊接重难点的技术控制,采取有效措施提高钢结构的质量。
1焊接变形和残余应力(1)焊接变形是焊接过程中不可避免的,施焊电弧高温引起钢构件在焊接处发生缩短、弯曲及角度等变化,即焊接变形。
焊接变形可分为两种形式,一种是因高温导致的变形,该变形在温度冷却后可恢复,为瞬时变形;第二种是因焊接作业产生的永久性变形。
焊接变形对结构安装的精确度影响较大,产生焊接变形极易导致结构无法安装。
(2)残余应力产生于钢构件的焊接及热影响区域,其对钢构件最直接的影响是降低构件的承载能力和增大开裂的可能性,钢构件的开裂大多发生在焊接区域。
在焊接区域,当构件的残余应力和荷载共同作用效果超过焊缝的承载力时,焊缝处就开始产生裂纹,并逐渐扩大成裂缝,构件也就易从裂缝处产生断裂,而此时构件承受的荷载并未达到其极限承载力,却因焊缝的断裂导致整个构件的失效。
2造成导致钢结构发生焊接变形的原因(1)焊接工艺。
即使是材料相同、设备相同,不同工人在焊接过程中,由于焊接工艺会造成焊接变形的出现。
比如焊接过程中,预热时应该结合当地的实际温度、光照亮度等多种因素进行确定等。
由此可见,钢结构的焊接变形受到焊接工艺的影响比较大。
钢结构工程焊接技术重点难点及控制措施钢结构工程是现代建筑中常见的一种结构形式,其焊接技术是非常重要的一环。
在钢结构工程中,焊接是连接各个构件的主要方法,其质量直接关系到整个工程的安全性和稳定性。
钢结构工程焊接技术中存在着一些重点难点,需要采取相应的控制措施来保障焊接质量。
本文将就钢结构工程焊接技术的重点难点及控制措施进行探讨。
一、焊接技术的重点难点1. 焊接变形控制在钢结构工程中,焊接完成后会产生热变形,尤其是在大型工程项目中,焊接变形会影响到整体结构的精度和稳定性。
焊接变形控制是焊接技术中的重点难点之一。
对于焊接变形的控制,首先需要合理设计焊接件的结构,以降低热影响区的温度梯度,减小热变形的程度;可以采取预应力焊接或者多次小段焊接的方法,来减少焊接产生的变形;还可以使用专门的变形补偿技术,对焊接变形进行补偿,保证结构的整体精度。
2. 焊缝质量控制焊缝质量是决定焊接接头强度和耐久性的关键因素,而焊缝的质量受到多种因素的影响,例如焊接电流、焊接速度、焊接材料等。
对焊缝的质量控制是焊接技术中的又一个重点难点。
在焊缝质量控制方面,首先需要严格按照标准进行工艺操作,确保焊接电流和速度的准确控制;要对焊接材料进行严格的选择和质量检验,确保焊缝的材料质量达标;要加强对焊工的技术培训和质量监控,提高焊接操作的稳定性和一致性。
3. 焊接接头的检测钢结构工程中的焊接接头通常都需要进行非破坏性或破坏性检测,以保证焊接质量。
但由于焊接接头的复杂性和多样性,检测工作存在一定的难度,因此焊接接头的检测也是焊接技术的重点难点之一。
在焊接接头的检测方面,需要结合具体的工程情况选择合适的检测方法,例如超声波检测、X射线检测、磁粉检测等,对不同类型的焊接接头进行全面而有效的检测;还需要引进先进的检测设备和技术,提高检测的准确性和精度;还需要对检测人员进行专业培训,提高其检测能力和水平,确保检测工作的质量和可靠性。
二、焊接技术的控制措施1. 工艺控制在焊接工艺的控制方面,首先需要严格按照焊接工艺规范进行操作,包括选择合适的焊接方法、焊接参数和焊接工艺;要对焊接过程进行严密的监控和记录,及时发现和解决工艺中存在的问题和隐患;要加强对焊接材料和设备的管理,确保其质量和稳定性,为焊接工艺的控制提供保障。
试析钢结构制造中焊接变形的控制方法摘要:本文主要由一些常见的桥梁、建筑物、船以及一些容器中的一些钢结构在制造的方面出现的焊接变形的问题来分析,并且提出一些避免钢结构在焊接过程中出现变形的控制办法。
关键词:钢结构制造焊接变形控制方法中图分类号:tu37文献标识码: a 文章编号:钢结构的焊接变形主要是因为在焊接时的受热不均而造成的,这在钢结构的制作和生产中是非常常见的问题。
怎样才能够控制住焊接变形在钢结构的制作方面是非常重要的,并且也是十分困难的。
一些单位由于不能够很好地控制钢结构的焊接变形导致了产品的废弃,浪费了材料,如,自行车的车梁、钢平台等,这就会导致大量的资源浪费,还会使企业的信誉和技术下降,延长了工期。
对船舶的甲板和建筑的焊接变形的控制要是船上的甲板和上层的建筑在生产的过程中,焊接的变形太大,就会影响到船舶的表面美观与质量,所以大多数的船舶生产单位都会花费很多的经历来避免焊接变形的过度,提高船舶表面上的质量。
但是因为船上的甲板尤其是上层的建筑通常板子的厚度都很薄,结构又多,部分的位置上进行焊接的热传递频率会很高,焊接的应力就会使得板子出现不稳定的状态,所以会产生波浪的变形。
通过对以往的成功经验的分析,能够应用这样的工艺来控制焊接变形:全部的纵缝一段都必须要先焊接好角钢,主要是为了强化钢板部分的刚性能,并且还需要使用二氧化碳气体来对焊接过程进行保护,在焊接的过程中需要将焊接的人员分散,还要进行分段的退焊,缝口的质量一定要在规定的区域之内,不可以产生非常大的缝口。
全部的围壁板的材料仅仅能将点固定来实施焊接,如果围壁板和甲板以及围壁板和围壁板之间的缝隙都焊接好之后,才能够使用下行的焊条来焊接扶强材和围壁板之间的缝隙,全部需要焊接的缝隙都一定要认真地根据设计的标准来进行,不可以出现随便地改变焊接角度、焊接距离等问题。
通常这样就能够对焊接变形起到有效的控制作用,部分发生变形的地方也能够通过火焰的矫正方式来修正,就能够符合设计的规定。
钢结构施工中焊接变形原因分析及改进措施发布时间:2021-06-28T15:18:18.343Z 来源:《工程管理前沿》2021年2月6期作者:周道昌[导读] 钢结构的广泛应用,使得社会对焊接技术的要求越来越高周道昌32091119700107****摘要:钢结构的广泛应用,使得社会对焊接技术的要求越来越高。
目前,传统的焊接技术仍在使用,焊接技术的创新发展是开发一种高无污染安全的工艺,为工业发展保驾护航。
本文通过对焊接过程的全面分析,分析了焊接变形的影响因素,供相关人员参考。
关键词:焊接工艺简介;运用;创新1、焊接变形概述我国钢材规格、型号、品种等具有多样性和复杂性的特点。
从整体上看,与发达国家相比,我国的综合素质还存在一定的差距。
高钢结构的变形主要分为两类,即整体变形和局部变形。
整体变形是指结构的整体尺寸和结构的变化,局部变形是指钢的局部变形。
在同一种钢中,一种变形方法可以单独发生,也可以采用两种变形方法的组合。
如果出现这种现象,将严重影响钢结构的形状和稳定性,并产生一系列的安全隐患。
2、钢结构焊接变形的种类和起因2.1、材料和温度不同的钢材料具有不同的熔点和不同的热胀冷缩系数。
焊接加热对温度控制有较高的要求。
温度有高有低,尤其是当温度即将超过金属的熔点时。
它的膨胀效果是完全不同的。
这种差异的影响也称为变形。
即使是同一种金属,焊接处的膨胀和周围环境在加热时也会发生变化,从而引起变形。
2.2、焊接方法和顺序即使是相同的钢结构,不同部位的承载能力也是不同的。
焊接时采用不同的方法,焊接顺序也不同。
例如,如果较弱的负荷部分优先焊接,重负荷部分的变形将会被扭曲受到影响。
2.3、选择不同的焊缝位置焊缝的具体位置对钢结构的整体承载性能有很大的影响。
在不同的位置,会产生不同的焊接变形。
因此,在具体的焊接操作中,焊接人员必须具有丰富的焊接经验,首先分析整体的承载能力,选择合适的位置完成焊接,并有效避免各种变形的发生。
钢结构焊接变形的控制及矫正标签:钢结构;矫正技术;焊接变形随着我国市场式经济制度逐渐成熟和完善,钢结构的焊接技术有了很大的进步和发展。
在实际的推广应用上,钢结构的焊接工作得到了更加广泛的应用。
同时,在焊接钢结构的过程中受外在因素和环境的影响过于的敏感,使得整个钢结构控制和矫正工作的推进有着一定的困难。
为了更好地解决这一类的问题,将钢结构焊接、矫正和变形深入的结合先进技术是当今社会提出的新要求。
一、钢结构焊接概述钢结构的施工主要的类型包括钢柱、钢梁、钢材等,施工过程中需要各个工作人员和部门进行密切的配合。
一旦发现问题或者是异常情况及时的沟通、解决。
在钢结构的施工中主要的特点分为三个方面:第一种,施工测量的精度。
在施工建设的过程中,前期的规划设计是整个工程建设的核心思想。
一旦钢结构在前期造成偏差就会影响钢结构整体的施工效果,进而造成施工偏差的出现。
第二种,和施工条件相符。
在实际的钢结构安装和矫正控制的过程中极易受到各种外在环境影响,如:空气、温度、湿度等等。
种种的外在因素都会对整个钢结构的矫正、控制造成影响,进而延误工程和项目的工期。
第三种,器械性能标准高。
钢结构的焊接和安装对器械、设备的要求有着很高的标准。
正是由于其本身的形状和重量都是非常庞大的,使得钢结构的安装、运输很难满足钢材承载力的要求和标准。
二、钢结构焊接变形的控制方法(一)设计合理的焊接技术钢结构中,各个结构组成之间进行合理、科学的焊接是非常重要的。
焊接技术在结构之间的缝接处理就是考验连载力和承重力的关键,焊接缝隙的强度直接影响整个钢结构的重力承受力。
在对钢结构进行焊缝处理时,规划设计的焊缝尺寸和长度应该控制在一定的范围内,不应过长。
过长的焊接缝操作可能对后期的强度承受力有着极大的考验,无形中增加了焊缝技术的实际工作量和难度。
在焊接的过程中,焊接人员应该根据实际的钢结构的情况进行着重分析,就以T型接头为例。
针对这种钢结构的焊接技术时,首先要采取的就是设计开坡口双面焊的模式,从基本结构中保障其内在的构造强度。
钢结构焊接变形分析及控制方法研究
摘要:钢结构在焊接过程中出现变形是不可避免的,但可以通过合理的施工措施来予以控制。
本文对钢结构经过焊接加工后变形种类进行分析,然后分析焊接变形的成因,最后指出预防和减少焊接变形的方法,并对焊接变形矫正给出方法。
关键词:钢结构;焊接变形;控制方法
Abstract: the steel structures in welding process in deformation is inevitable, but can be by reasonable construction measures to control. In this paper, the steel structure after welding deformation processing of analysis, and then analyzes the causes of the welding deformation, and finally it points out that prevention and decrease the welding deformation of the method, and the welding deformation correction methods are given.
Keywords: steel structure; The welding deformation; Control method
焊接对钢结构来说是一把双刃剑,它成就了钢结构建设的高速度,但是钢结构在焊接时产生的变形问题,也会极大地影响钢结构的施工质量。
钢结构在焊接过程中出现变形是不可避免的,但可以通过合理的施工措施来予以控制。
1、变形的种类
钢结构经过焊接加工后,都会发生一定的形状改变,这就是焊接变形。
钢结构焊接变形的几种基本形式主要有以下几种:
①线性变形
1)纵向变形:是焊缝纵向收缩引起的;
2)横向变形:是焊缝横向收缩引起的。
②角变形
贴角焊缝上层焊量大,收缩量也大,因此角变形主要是焊缝在其高度方向横向收缩不均匀引起的。
③弯曲变形
对丁字型截面,焊缝收缩对重心有偏心距,因而使截面向上弯曲,所以弯曲变形是偏心焊缝的纵向收缩引起的。
④扭转变形
钢结构焊接过程中,有些特殊的结构形式会出现波浪线型或螺线型变形即为扭转变形,其成因较为复杂。
2、焊接变形的成因
焊接变形产生的主要原因是由于焊接过程中对焊件进行了局部的不均匀加热,以及随后的不均匀冷却作用和结构本身或外加的刚性拘束作用,通过力、温度和组织等因素,从而在焊接接头区产生不均匀的收缩变形。
①结构刚度刚度就是结构抵抗拉伸和弯曲变形的能力,它主要取决于结构的截面形状及其尺寸大小。
如桁架的纵向变形,主要取决于横截面面积和弦杆截面的尺寸;再如工字型、丁字型或其它形状截面的弯曲变形,主要取决于截面的抗弯刚度。
②焊缝位置和数量
在钢结构刚性不大时,焊缝在结构中对称布置,施焊程序合理,则只产生线性缩短;当焊缝布置不对称时,则还会产生弯曲变形;焊缝截面重心与接头截面重心在同一位置上时,只要施焊程序合理,则只产生线性缩短;当焊缝截面重心偏离接头截面重心时,则还会产生角变形。
③焊接工艺
焊接电流大,焊条直径粗,焊接速度慢,都会造成焊接变形大;自动焊接的变形较小,但焊接厚钢板时,自动焊比手工焊的焊接变形稍大;多层焊时,第一层焊缝收缩量最大,第二、三层焊缝的收缩量则分别为第一层的20%和5%~10%,层数越多焊接变形也越大;断续焊缝比连续焊缝的收缩量小;对接焊缝的横向收缩比纵向收缩大2倍~4倍;焊接次序不当或未先焊好分部构件,然后总拼装焊接,都易产生较大的焊接变形。
3、预防和减少焊接变形的方法
①放样和下料措施
为了补偿施焊后焊缝的线性收缩,梁、桁架等受弯构件放样时要起拱,放样下料时要留出收缩余量。
放拼装台时要放出收缩量,一般受弯构件长度不大于24m 时放5mm,长度大于24m时放8mm。
②装配和焊接顺序
钢结构制作拼装的平台应具备标准的水平面,平台的钢度应保证构件在自重压力下,不失稳、不下沉,以保证构件的平直。
小型结构可一次装配,用定位焊固定后,以合适的焊接顺序一次完成。
如截面对称的构件,装配焊接顺序是先整体装配后焊接,焊接时应采用对角焊接法的顺序以平衡变形,同时应采用翻转架或转动胎具,以便形成船形位置焊缝,否则可由两个或四个焊工分别采用平焊和仰焊,由中间向两端焊接。
大型钢结构如大型桁架,尽可能先用小件组焊,再总体装配和焊接。
桁架和屋架端部的基座、屋架的天窗架支承板应预先拼焊成部件,以矫正后再拼装到屋架和桁架上,屋架和桁架的焊接顺序是:先焊上、下弦连接板外侧焊缝,后焊上、下弦连接板内侧焊缝,再焊接连板与腹杆焊缝,最后焊腹杆、上弦、下弦之间的垫板。
桁架一面全部焊完后翻转,进行另一面焊接,其焊接顺序相同。
手工焊时,应采用四个焊工同时从上、下弦中间向两端对称焊接。
拼装时,为防止构件在拼装过程中产生过大的应力和变形,应使不同型号零件的规格或形状符合规定的尺寸和样板要求,在拼装时不宜采用较大的外力强制组对,以防构件焊后产生过大的拘束应力而发生变形。
③焊接工艺措施
焊接施工时,应选择合适的焊接电流、速度、方向、顺序,以减少变形。
焊接金属构件时,应先焊短,后焊长;先焊立,后焊平;先焊对接缝,再焊搭接缝,应从中间到两边,从里到外焊接。
集中的焊缝应采用跳焊法,长焊缝采用分段退步焊和对称焊接法。
④反变形法
拼装时,根据工艺试验和施工经验,使构件向焊接变形相反方向作适量的预变形,以控制焊接变形。
这种方法需要预先进行试验,根据焊缝的设计要求,调整好焊接规范,选用材质和规格相同的钢板预先做一个试件进行焊接,使焊缝形式、焊角高度符合设计要求,焊完冷却到环境温度后测量翼板的变形量,把所测量的数值作为压制反变形的参数,压力机在翼板中心线上压出变形量的数值,使翼板的两端预先呈上翘状态,抵消焊接变形量,焊后正好持平。
采用这种方法需要一台相应吨位的液压压力机。
⑤刚性固定法
焊接时在平台上或在重叠的构件上设置夹具固定构件,增加刚性后,再进行焊接,这样焊接中的加热和冷却的收缩变形,被固定夹具等外力所限制,但这种方法只适应塑性较好的低碳结构钢和低合金结构钢,不适应中碳钢和可焊性更差的钢材。
4、焊接变形矫正方法
构件发生弯曲和扭曲变形的程度超过现行钢结构规范和设计要求时,必须进
行矫正,方法有:机械矫正法、火焰矫正法和混合矫正法。
施工时,可以根据实际情况合理选用,矫正时要遵守以下原则:先总体,后局部;先主要,后次要;先下部,后上部;先主件,后副件。
①机械矫正法
机械矫正法是利用机械力的作用,以矫正焊接变形,常采用撑直机、压力机、千斤顶及各种小型机具顶压矫正构件变形。
矫正时,将构件变形部位放在两支撑之间,对准构件凸出部位缓慢施力,即可矫正。
②火焰矫正法
采用火焰矫正的原理与焊接变形的原理相同,只是反其道而用之,通过给金属输入热量,使金属达到塑性状态,从而产生变形,构件被局部加热后,依靠加热区的膨胀与收缩差,使构件按照预定的方向发生变形,从而达到矫正的目的。
用火焰加热矫正构件时,一定要让构件处于自由状态,一些自重较大的构件加热后要用吊具提起离开平台,以免自重产生的摩擦力阻碍变形,影响矫正效果。
采用火焰矫正法,20m长的钢柱其侧向弯曲和起拱量可以矫正在6mm之内,翼板下挠度可控制在2mm内,远远低于规范要求。
但用火焰矫正,在实际施工中很难定量地确定加热部位、加热温度、时间、区域长度等,主要靠积累经验。
利用火焰矫正方便快捷,但必须注意几项基本要领。
首先加热温度要掌握好,一般控制在650℃~850℃之间;要掌握在不同环境和不同气温情况下的加热温度;变形量较大的构件一次加热不能完全清除变形时,应错开原来的加热点进行第二次加热矫正;采取合理的矫正顺序,先矫正翼板的不平、倾斜,再矫正侧向弯曲和起拱;矫正过程中要经常用靠弯尺、细钢线、水准仪等检查矫正情况,防止矫枉过正,产生新的变形量。
5、结束语
上述方法都是钢结构焊接施工中对变形预防控制和矫正的一些常用方法,但何时应用何种方法并无明确的规定,通常要根据结构形式和施工方案,并结合丰富的施工经验才能取到事半功倍的效果。
参考文献:
[1]田锡唐.焊接结构[M].北京:机械工业出版社,2004.
[2]中华人民共和国国家标准[S].钢结构工程施工质量验收规范.GB50205-2001
[3]周浩森等编.焊接结构设计手册[M].北京:机械工业出版社,2007
注:文章内所有公式及图表请用PDF形式查看。