长江科学院研制的“基于虚拟地球的河流水沙水质数值模拟与演示系统”软件取得国家版权局软件著作权
- 格式:pdf
- 大小:357.77 KB
- 文档页数:1
20长江科学院院报2018 年Characteristics of Rock Core Discing under High GeostressHU Wei^WU Ai-qing1,CHEN Sheng-hong2,LIU Yuan-kun^LI Yong-song1 (l.Key Laboratory of Geotechnical Mechanics£in d Engineering of the Ministry of Water Resources,Yangtze River Scientific Research Institute,W uhan430010,China;2.State Key Laboratory of Water Resources and Hydropower Engineering Science,W uhan University,W uhan430072,China) Abstract :The rock drilling core discing in Jinping Hydro-power Station under high geostress environment is investigated.O n the basis of summarizing the existing research results,the macroscopic failure characteristics,discing quantity,thickness and characteristics of borehole were described.The core discing mechanism and the field stress condition of the core discing were summarized through numerical simulation.Results show that: 1) during the drilling process,the tensile stress zone crossing rock core is the dominant factor of core discing crack,and the morphology of rock disk is affected by the tensile stress in the core; 2) sufficient field stress is the primary condition of core discing,and higher tensile stress is induced in the core w ith higher field stress,and also the condition of core discing crack initiation and expansion is more adequate,and the rock diskJ s thickness gets smaller; 3 )the increase of radial field stress of borehole has a positive effect on the tensile stress induced in the drilling core,and the axial field stress is opposite; 4) the average value of the maximum tensile stress cross line in the core is defined by comparing w ith the tensile strength of rock,and the formula of field stress in the presence of drilling core discing is deduced.According to the calculation,the critical condition of Jinping marble rock(T2b)discing crack is that the radial field stress of borehole should be beyond34.44 MPa.Key words:borehole;rock core discing;high geostress;Jinping deep rock mass;rock strength长江科学院水利部岩土力学与工程重点实验室主编的 《水利水电工程爆破手册》喜获2018年度国家出版基金资助从国家出版基金规划管理办公室获悉,长江科学院水利部岩土力学与工程重点实验室提交的《水利水电工程爆破手册》(以下简称《手册》)项目成功获得2018年度国家出版基金资助。
长江水质评价和预测的数学模型长江水质评价和预测的数学模型摘要:长江是中国最长的河流,其水质对于保护生态环境和人类健康至关重要。
因此,对长江水质进行评价和预测具有重要的研究价值。
本文综述了现有关于长江水质评价和预测的数学模型,并探讨了这些模型的优劣以及未来的发展方向。
通过这些数学模型,我们可以更好地了解长江水质的变化趋势,为水资源管理者提供科学依据,保护和恢复长江的水质。
1. 引言长江是中国最大的河流,流经11个省市,对于中国的经济和生态起到了重要的作用。
然而,由于人类活动、城市化进程和工业化的快速发展,长江的水质受到了严重的污染。
因此,对长江水质进行评价和预测成为了重要的研究课题。
2. 长江水质评价模型2.1 污染指数模型污染指数模型是较早被采用的水质评价模型之一。
该模型通过对水样中各种污染物浓度的测定,并结合环境质量标准,计算出一个综合的污染指数值,从而评价水质好坏。
然而,该模型没有考虑到污染物之间的相互关系和水文地质条件的影响,因此在实际应用中有一定的局限性。
2.2 灰色关联度模型灰色关联度模型是一种能够综合各种因素的水质评价模型。
该模型通过建立灰色关联度函数,将不确定因素纳入考虑,并计算出与水质相关的关联度值。
然后,通过对各因素进行权重分配,得到最终的水质评价结果。
该模型相比于污染指数模型具有更强的综合能力。
3. 长江水质预测模型3.1 神经网络模型神经网络模型是一种通过模拟人脑的神经网络来进行水质预测的模型。
该模型通过对历史数据的学习和分析,建立相应的神经网络结构,并利用该结构对未来的水质进行预测。
神经网络模型具有较强的非线性拟合能力,能够较好地捕捉水质变化的规律。
3.2 支持向量机模型支持向量机模型是一种基于统计学习理论的水质预测模型。
该模型通过建立超平面,并考虑到各个样本点与超平面的距离,确定最佳的超平面划分水质数据。
支持向量机模型具有较强的泛化能力和鲁棒性,可以有效地对长江水质进行预测。
利用MODIS反演长江中游悬浮泥沙含量的初步研究刘灿德1,2,何报寅1,李茂田3,任宪友1(1.中国科学院测量与地球物理研究所,武汉430077;2.中国科学院研究生院,北京100039;3.华东师范大学教育部地理信息开放实验室,上海200062)摘 要:在众多卫星传感器中,中等分辨率成像光谱仪(MODIS)数据因其高的时间分辨率和中等的空间分辨率,对于水质研究具有自身的潜力和优越性。
选取长江中游主河道武汉至宜昌段为例,利用MODIS250m波段数据定量反演了内陆河流悬浮泥沙的质量浓度。
研究结果表明,地面实测的悬浮泥沙质量浓度与MODIS1,2波段的反射率组合(R1-R2)/(R1+R2)有很好的相关关系(相关系数R2=0.72,样品数n=41),基于这种相关性建立了长江中游主河道武汉至宜昌段表层悬浮泥沙的遥感定量反演经验模型。
关键词:MODIS;悬浮泥沙;反演模型;长江中游中图分类号:TV152 文献标识码:A 文章编号:100027849(2006)022******* 传统的泥沙监测和分析方法主要为实地调查和采样分析,易受人力、物力、气候和水文条件的限制,因而不能从更广阔的范围给出水质的空间和时间变化规律。
采用遥感定量技术能迅速获得大面积水域的含沙量资料,其瞬间同步性好,重复获取数据的周期短,能有效地监测含沙量的分布和动态变化。
1 含沙水体的光谱特征悬浮泥沙水体的光谱反射特征是利用遥感数据提取含沙量信息、建立遥感信息2悬浮泥沙质量浓度定量模型的重要基础。
含有泥沙浑浊水体的反射波谱曲线一般整体高于清水,由于泥沙的散射,在可见光及近红外波段范围内,随着泥沙质量浓度的增大,水体的反射率增大,且反射峰位置向长波方向移动。
悬浮泥沙质量浓度不同的含沙样本均在波长为0.58~0.68μm的可见光波段出现辐射峰值[1],即该可见光波段对水中泥沙反映最敏感,是遥感监测水体悬浮泥沙的最佳波段。
在此波段范围内水体的光谱反射率与水体的混浊度等级(悬浮泥沙质量浓度差异的程度)呈线性相关关系。
第33卷㊀第11期2020年11月环㊀境㊀科㊀学㊀研㊀究ResearchofEnvironmentalSciencesVol.33ꎬNo.11Nov.ꎬ2020收稿日期:2020 ̄06 ̄26㊀㊀㊀修订日期:2020 ̄09 ̄21作者简介:徐斌(1988 ̄)ꎬ男ꎬ江苏南京人ꎬ助理研究员ꎬ博士ꎬ主要从事水污染治理与生态修复㊁环境信息化技术研究ꎬxubinnies@163.com.∗责任作者ꎬ李维新(1966 ̄)ꎬ男ꎬ江苏徐州人ꎬ研究员ꎬ博士ꎬ主要从事水环境风险评估与预警研究ꎬlwx@nies.org基金项目:国家水体污染控制与治理科技重大专项(No.2017ZX07301006)ꎻ江苏省自然科学基金项目(No.BK20170111)ꎻ国家自然科学基金项目(No.51808251)SupportedbyNationalMajorScienceandTechnologyProgramforWaterPollutionControlandTreatmentꎬChina(No.2017ZX07301006)ꎻNaturalScienceFoundationofJiangsuProvinceofChina(No.BK20170111)ꎻNationalNaturalScienceFoundationofChina(No.51808251)长江经济带水质目标管理平台总体设计徐㊀斌ꎬ庄㊀巍ꎬ晁建颖ꎬ何㊀斐ꎬ刘㊀庄ꎬ解宇峰ꎬ李㊀建ꎬ杜涵蓓ꎬ李维新∗生态环境部南京环境科学研究所ꎬ江苏南京㊀210042摘要:为强化长江经济带资源整合与共享ꎬ集成统一规范的大数据平台ꎬ基于 十一五 十二五 国家水体污染控制与治理科技重大专项数据和模型库资源ꎬ以面向服务的架构(SOA)和模块化设计为支撑ꎬ遵循 五横两纵四统一 的平台架构设计思路ꎬ应用大数据挖掘㊁云计算等现代信息技术ꎬ构建长江经济带水质目标管理平台.平台基于长江经济带水生态环境功能分区ꎬ兼顾不同类别水质目标管理技术的协调性㊁衔接性和适应性ꎬ对水质目标管理相关信息进行跟踪㊁模拟㊁分析和三维可视化表达ꎬ在水生态环境功能分区管理㊁数据汇交与信息共享㊁容量总量管理㊁风险评估与预警等方面实现业务化运行ꎬ实现全景式水质达标形势研判㊁一体化风险联防联控.平台已在国家长江生态环境保护修复联合研究中心进行业务化运行ꎬ将有效提升长江经济带水环境综合管理能力ꎬ同时可为其他重要流域水质目标管理提供信息化工作参考.关键词:长江经济带ꎻ水质目标管理ꎻ容量总量ꎻ风险预警中图分类号:X52㊀㊀㊀㊀㊀文章编号:1001 ̄6929(2020)11 ̄2581 ̄07文献标志码:ADOI:10 13198∕j issn 1001 ̄6929 2020 10 07OverallDesignofWaterQualityTargetManagementPlatformoftheYangtzeRiverEconomicBeltXUBinꎬZHUANGWeiꎬCHAOJianyingꎬHEFeiꎬLIUZhuangꎬXIEYufengꎬLIJianꎬDUHanbeiꎬLIWeixin∗NanjingInstituteofEnvironmentalScienceꎬMinistryofEcologyandEnvironmentalꎬNanjing210042ꎬChinaAbstract:InordertoimprovetheintegrationandsharingofresourcesꎬaunifiedandstandardizedbigdataplatformꎬmoderninformativetechnologiesꎬsuchasbigdataminingandcloudcomputingꎬwereappliedtobuildawaterqualitytargetmanagementplatformfortheYangtzeRiverEconomicBelt.DatafromtheMajorScienceandTechnologyProgramforWaterPollutionControlandTreatmentduringthe11thand12thFiveYearPlanperiodswerealsousedtoprovideresourcesforthiswaterqualitytargetmanagementplatform.Inadditionꎬservice ̄orientedarchitecture(SOA)andmodulardesignwereemployedinthisplatform.Theideaof fivehorizontalꎬtwoverticalandfourunified wasalsoappliedinthisplatformarchitecturedesign.Consideringthecoordinationꎬcohesionandadaptabilityofdifferenttypesofwaterqualitytargetmanagementtechnologiesꎬthefunctionalzoningstrategyofwaterecologicalenvironmentwasadopted.Thiswaterqualitymanagementplatformcantrackꎬsimulateꎬanalyzeꎬandthree ̄dimensionalvisualizethewaterqualitytargetmanagementinformationoftheYangtzeRiverEconomicBelt.Thisplatformwasimplementedoperationallyintheareasofmanagementoffunctionalzoningofwaterecologicalenvironmentꎬdatacollectionandsharingꎬtotalcapacitymanagementꎬriskassessmentandearlywarning.ThepanoramicwaterqualitystandardsituationstudyandjudgmentꎬintegratedriskpreventionandcontrolwerealsoachievedꎬwhichcaneffectivelyimprovethecomprehensivemanagementcapacityofwaterenvironmentintheYangtzeRiverEconomicBelt.TheplatformoperatedintheYangtzeRiverCenterandprovidedareferenceforotherimportantwatersheds.Keywords:YangtzeRiverEconomicBeltꎻwaterqualitytargetmanagementꎻtotalcapacityꎻriskearlywarning㊀㊀随着全球范围内水环境污染问题的日益突出ꎬ水资源稀缺进一步加剧ꎬ水污染控制受到高度重视[1 ̄2]ꎻ水质监管技术得到了创新和突破ꎬ取得了一定效果.重视水质监管ꎬ尤其是加强重点区域的水质监管ꎬ对于改善我国水环境质量及推进生态文明建设都将产生深远影响[3 ̄4].基于污染源与水环境质量间的响应㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷关系ꎬ将容量总量控制和水污染控制管理目标与水质目标联系起来ꎬ是目前较为科学合理的水质目标管理技术[5 ̄6].近年来ꎬ我国在太湖和辽河流域等重点流域开展了针对水质目标管理的信息化建设工作ꎬ初步实现了水环境监测标准㊁排污许可管理㊁污染源监控及风险评估预警等关键技术的突破[7 ̄9].然而ꎬ在大区域范围内ꎬ水环境数据尚未得到系统集成[10]ꎬ各类水环境管理手段(如流域核查㊁总量核查等)缺乏现代化信息管理与服务系统支撑[11]ꎬ流域管理模型及参数的规范化㊁本地化不够ꎬ层级数据有待进一步共享和印证ꎬ与整体业务化运行要求尚有较大差距. 十三五 以来ꎬ中共中央㊁国务院高度重视长江经济带生态环境保护工作ꎬ多次对长江经济带生态环境保护工作做出重要指示ꎬ强调推动长江经济带发展ꎬ理念要先进ꎬ坚持生态优先㊁绿色发展ꎬ把生态环境保护摆上优先地位ꎬ涉及长江的一切经济活动都要以不破坏生态环境为前提ꎬ共抓大保护ꎬ不搞大开发.生态环境部也指出ꎬ要强化资源整合与共享ꎬ制定统一的信息管理与共享平台ꎬ集成规范统一的 大数据 ꎬ形成 大平台 大共享 大协作 ꎬ构建支撑长江 共抓大保护 的科技格局.针对上述问题及现实需求ꎬ该文以长江经济带为研究对象ꎬ充分利用 十一五 十二五 国家水体污染控制与治理科技重大专项成果数据资源ꎬ结合国内外成熟先进的大型面向互联网服务云平台的先进经验ꎬ提出 五横两纵四统一 的平台架构理念ꎬ采用面向服务的架构(SOA)构建水质目标综合管理平台.该平台对既有管理技术成果进行规范化㊁标准化㊁集成化ꎬ建立不同任务单元的数据交换㊁共享与信息化机制ꎬ从而全面促进水环境管理技术体系的衔接与融合ꎬ以期有效提升长江经济带水环境综合管理能力.1㊀需求分析和平台总体构架1 1㊀需求分析长江经济带覆盖9省2直辖市ꎬ面积约205ˑ104km2ꎬ横跨我国东㊁中㊁西三大区域ꎬ依托长三角城市群㊁长江中游城市群和成渝城市群ꎬ人口和生产总值占比超过全国的40%ꎬ是我国的经济重心所在ꎬ也是我国重要的工农业基地.当前长江经济带局部重点区域面临着水资源量短缺㊁饮用水水源风险㊁湖泊富营养化等方面的压力[12 ̄15]ꎬ水质目标管理是长江经济带水环境管理的重要环节ꎬ同时«长江经济带生态环境保护规划»明确了加强跨部门㊁跨区域㊁跨流域监管与应急协调联动机制建设ꎬ建立流域突发环境事件监控预警与应急平台ꎻ针对沿江取水的城市开展水源水质生物毒性监控预警建设ꎻ建立省际间统一的危险品运输信息系统ꎻ建设长江经济带环境风险与应急大数据综合应用与工作平台等任务.提高流域水质目标管理水平ꎬ需要进一步提升水环境管理综合决策技术手段ꎻ推进向 以流域为管理单元 的管理方式转变ꎬ需要提高区域∕流域水环境风险联防联控.因此ꎬ该研究将科研与地方业务需求相结合ꎬ构建业务化运行的长江经济带水质目标管理平台.1 2㊀平台构建目标应用大数据挖掘㊁云计算等现代信息技术ꎬ构建对长江经济带水质目标相关信息进行跟踪㊁模拟㊁结果分析和三维可视化处理的水质目标大数据综合管理平台ꎬ以长江经济带水环境综合管理的数据流为中心ꎬ通过统一开放式接口的方式ꎬ实现水质目标管理数据共享 一张图 ꎬ在水生态环境功能分区管理㊁数据汇交与信息共享㊁容量总量控制管理㊁风险评估与预警等方面实现业务化运行ꎬ能够有效规范整合平台与各子系统成果ꎬ实现全景式水质达标形势研判㊁一体化风险联防联控ꎬ有效提升长江经济带水环境综合管理能力.1 3㊀平台总体架构该平台以面向服务架构(SOA)和模块化设计为支撑ꎬ遵循 五横两纵四统一 的设计思路ꎬ 五横 自底向上依次为基础设施层㊁云数据中心层㊁服务层㊁应用层和表现层ꎬ各层均通过统一的服务接口为上一层提供服务ꎻ 两纵 分别为数据标准规范体系和信息安全保障体系ꎬ主要面向 五横 提供数据标准和安全保障ꎻ 四统一 即从设施㊁数据㊁服务资源的统一调度与管控㊁平台的统一搭建到门户网站的统一身份管理ꎬ最后依托统一门户网站为用户提供 一站式 服务.该平台架构(见图1)可有效提高设施资源㊁数据资源㊁平台资源的共享㊁重用㊁集成和扩展性.基础设施层采用云计算服务器ꎬ通过Spark实现分布式并行计算ꎬ并通过YARN进行集群统一的资源管理㊁调度与分配ꎬ提供海量大数据的存储与大规模运算ꎬ支撑水质目标管理平台的软硬件运行.云数据中心层搭建大数据管理平台ꎬ主要实现数据传输交换㊁管理监控㊁共享开放㊁分析挖掘等基本功能ꎬ支撑分布式计算㊁流式数据处理㊁大数据关联分析㊁趋势分析㊁空间分析等.服务层以服务的形式为水质目标管理业务化应用的开发提供支持ꎬ包括一系列服务组件的模块化集成调用.应用层由数据汇交与信息共享系统㊁水生态环境功能分区管理系统㊁容量总量控制2852第11期徐㊀斌等:长江经济带水质目标管理平台总体设计㊀㊀㊀图1㊀平台总体架构Fig.1Theoveralldesignoftheplatform管理系统㊁风险评估与预警系统四大系统组成ꎬ各系统独立设计ꎬ可供用户独立使用ꎬ用户可根据需要进行自主订阅.表现层即系统的展示形式ꎬ该系统设计为B∕S结构ꎬ针对不同的用户提供内网㊁外网访问门户ꎬ给予不同的用户权限.平台通过统一调度㊁统一搭建㊁统一管控㊁统一身份认证系统ꎬ从平台的基础搭建到整体资源的使用与分配情况的监控与调度㊁性能监管㊁安全监管方面全面保证系统的通用性㊁高弹性㊁扩展性㊁安全性等.数据标准规范体系是保障整个系统建设实施成功的软性因素ꎬ包括技术㊁管理等各方面的标准和规范.在整个项目建设过程中严格遵循国际㊁国家及行业相关标准规范.信息安全保障体系涉及系统各个层面的安全技术和措施ꎬ为整个系统提供鉴别㊁访问控制㊁抗抵赖和数据的机密性㊁完整性㊁可用性㊁可控性等安全服务ꎬ形成集防护㊁检测㊁响应㊁恢复于一体的安全防护体系.平台网络包括外网与内网ꎬ考虑到数据安全性ꎬ内网设计为涉密网络ꎻ外网服务器通过防火墙连接互联网ꎬ对互联网信息进行爬取过滤后ꎬ通过单向网闸单向传输到涉密网络中.涉密网络服务器包括Web服务器㊁数据库服务器㊁文件服务器等ꎬ各个主机通过内网连接至内网服务器.2㊀长江经济带水质目标管理平台总体设计基于长江经济带水生态环境功能分区ꎬ兼顾不同类别水质目标管理技术的协调性㊁衔接性和适应性ꎬ应用大数据挖掘㊁云计算等现代信息技术ꎬ将水质目标管理技术模块化及数字化ꎬ建立不同类别的数据库㊁模型库和知识库ꎬ构建水生态环境功能分区管理系统㊁容量总量控制管理系统㊁风险评估与预警系统㊁数据汇交与信息共享系统ꎬ形成长江经济带水质目标管理平台.2 1㊀数据资源体系2 1 1㊀数据库资源长江经济带水质目标管理平台通过HDFS+Hbase实现数据的分布式数据管理ꎬ通过Spark实现分布式并行计算ꎬ通过YARN进行集群统一的资源管理㊁调度与分配ꎬ整体上实现数据存储节点与计算节点的动态添加ꎬ同时保证计算效率与数据安全.平台通过整合多来源数据信息ꎬ依据标准化规范对数据进行汇集㊁整合㊁处理ꎬ建立结构化及非结构化数据存储模式ꎬ对各类基础地理数据㊁业务数据㊁模型数据㊁系统配置文件等进行统一㊁规范化的管理.平台集成的主要数据包括基础地理数据库㊁水环境数据库㊁知识库㊁元数据库㊁系统管理数据库等ꎬ囊括长江经济带58个驻点城市593个控制单元㊁长江干流㊁3852㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷105条一级支流和重点湖库㊁284个国控断面.基础地理数据库包括长江经济带重点区域精度为2m的高清遥感影像㊁空间分辨率为30m的高精度DEM㊁行政区划㊁道路㊁地名㊁长江干流㊁一级支流㊁重点湖库等地理信息数据ꎬ以及流域水生态环境功能分区的发展规划㊁土地利用㊁土壤构成分布㊁人口㊁经济及产业结构㊁工业总产值等社会经济资料ꎻ水环境数据库包括水环境质量数据㊁污染源数据㊁水生态环境功能分区数据㊁水文气象数据等ꎻ知识库包括专利㊁标准㊁政策法规㊁文献资源㊁科技成果㊁专家库等ꎻ元数据库描述基础地理数据㊁水环境数据㊁外部数据等的属性ꎻ系统管理数据库用于存储系统用户㊁权限㊁身份认证㊁日志等和系统运行维护有关的信息.长江经济带水质目标管理平台数据库资源实现了跨系统㊁跨数据库㊁跨业务的数据汇集及交换共享ꎬ解决了长江经济带海量㊁异构的大数据存储与管理.通过对多源采集手段获取的数据进行处理ꎬ以及有效性㊁完整性㊁一致性等方面的数据审核ꎬ保障数据符合统一标准ꎬ可被业务系统应用.经数据分析㊁处理㊁再加工后形成核心业务专题数据ꎬ然后发布到平台ꎬ最终提供长江经济带水质目标管理应用.2 1 2㊀模型库资源模型库是将众多模型按一定的结构形式组织起来ꎬ通过模型库管理系统对各个模型进行有效地管理和使用[16].在 十一五 十二五 国家水体污染控制与治理科技重大专项已有模型基础上进一步优化提升ꎬ根据上㊁中㊁下游不同的区域特征及水质目标管理需求ꎬ筛选适用于长江经济带复杂水系特征的水环境数学模型库[17]ꎬ包括流域面源污染模型㊁河流水质模型㊁湖库水质模型㊁流域生态流量模型等ꎬ通过建立统一的模型库实现适用于长江经济带计算方案和计算模型的统一管理.模型库以长江流域干流和一级支流为主ꎬ对不同尺度模型进行嵌套ꎬ对污染源㊁模型边界条件进行更新ꎬ优化模型参数.2 2㊀模块化的系统功能集成水质目标管理技术是对水污染物总量控制技术的进一步发展ꎬ强调以 分区㊁分级㊁分类㊁分期 理念为指导ꎬ是以流域水生态功能保护为核心㊁以水环境质量改善为目标㊁以容量总量控制为主线的管理技术体系[16].长江经济带水质目标管理平台系统围绕水生态环境功能分区管理㊁容量总量控制管理㊁风险评估与预警和数据汇交与信息共享集成流域水质目标管理技术体系[18 ̄21]ꎬ通过对各管理技术的分析ꎬ以排污许可证管理为主要目标实现各技术间的有机衔接ꎬ以水生态环境功能分区技术为基础ꎬ通过容量总量控制技术确定长江流域各地区指标ꎬ以此作为排污许可证的发放标准ꎬ在排污许可证发放过程中以风险评估与预警技术作为监督ꎬ同时与水污染治理技术进行相互支撑(见图2).图2㊀长江经济带水质目标管理技术衔接关系Fig.2TheconnectionofwaterqualitytargetmanagementtechnologiesoftheYangtzeRiverEconomicBelt2 2 1㊀水生态环境功能分区管理系统长江流域范围辽阔ꎬ地形地貌气候复杂多变ꎬ从西往东跨越我国大陆地势三级阶地和4个气候带ꎬ流域内具有高原㊁山地㊁丘陵㊁盆地㊁河谷㊁平原等各种地貌ꎻ长江上㊁中㊁下游不同的区域特征决定了不同的区域发展和生态问题.为全面反映水生态系统结构和功能的形成机制ꎬ从陆域驱动要素和水域结构功能两个方面开展分区ꎬ其中陆域驱动要素是水域生态功能的形成基础ꎬ根据陆域对水生态功能的驱动机制划分一级区和二级区ꎬ根据水域内的生态功能特征划分三级区.为更好地评估水生态环境功能分区水质的达标情况ꎬ水生态环境功能分区管理系统选取长江干流及一级支流的国控监测点位ꎬ包括国控水质断面(284个)㊁跨省界水质监控断面㊁重点饮用水源地取水口断面ꎬ完成了面向长江经济带593个控制单元水生态环境功能分区水质达标的评估工作ꎬ并基于GIS平台实现了水生态环境功能分区的管理和查询[22 ̄23]ꎬ包括分区管理㊁分区统计㊁空间关联分析㊁水质目标管理业务流程分析等模块.2 2 2㊀容量总量控制管理系统容量总量控制管理是以达到控制单元的水质标准为目标ꎬ以水环境问题诊断㊁污染源评价㊁水质目标确定㊁污染源 ̄水质响应关系分析㊁容量总量分配㊁排污许可管理㊁治理绩效评估为核心的全过程管理.污4852第11期徐㊀斌等:长江经济带水质目标管理平台总体设计㊀㊀㊀染物总量控制和减排是长江水环境污染治理的核心任务之一[24 ̄25].容量总量控制管理系统功能包括水环境数学模型构建㊁水环境数据交换㊁水环境总量核算及排污许可管理㊁系统配置管理等.在水环境数学模型构建方面ꎬ系统以氨氮㊁总磷和高锰酸盐指数为主要计算指标ꎬ并综合考虑湖泊型㊁山区水库型㊁平原河网型㊁感潮河段型等控制单元水环境特征ꎬ围绕数学模型管理㊁模型输入输出设置㊁水动力水质水生态耦合模型运行㊁模型结果后处理㊁水环境容量结果查询展示等方面开展工作ꎻ在水环境数据交换方面ꎬ系统主要集成区域环境自动在线监测数据和污染源普查数据ꎻ在水环境总量核算及排污许可管理方面ꎬ系统集成通量测算及监控体系ꎬ集成基于容量总量核算的排污许可ꎬ实现流域重点控制断面污染物通量尤其是入长江污染物通量和断面通量地准确核算ꎻ在系统配置管理方面ꎬ系统配备数据更新编辑维护工具㊁系统发布管理工具等.2 2 3㊀风险评估与预警系统风险预测预警技术是针对环境污染事件的风险场时空特征ꎬ集成可反映风险事件对长江经济带水质㊁水源地㊁敏感水生生物影响的水环境风险预警模型ꎬ实现水环境风险等级评价并直观展示区域风险分布.风险评估与预警系统可为水环境风险管理提供直接信息ꎬ从而为水环境风险管理提供技术支持[26 ̄29].该系统包括水环境风险评估㊁突发风险预测预警㊁累积风险态势分析㊁风险应对方案选择等ꎬ其计算核心涉及一系列水环境模型ꎬ包括累积性日常水质模型㊁突发事故应急模型㊁溢油模型㊁水环境容量计算模型等.系统整合污染事故应急处置决策功能ꎬ能够在水污染事故发生后快速预报风险事故影响范围㊁程度及发展趋势ꎬ针对风险事故的不同风险等级判别结果ꎬ响应相应的应急预案对策ꎬ生成水环境污染事故的应急处置方案ꎬ并于计算机网络发布相关信息.根据建立的相关应急预案知识库ꎬ结合专家咨询意见ꎬ为突发环境事件提供指导流程和辅助决策支持方案ꎬ并根据风险事故的发展态势和应急处置效果做出及时反馈ꎬ对辅助决策方案进行相关调整和优化.2 2 4㊀数据汇交与信息共享系统数据汇交与信息共享是指汇集长江经济带生态环境㊁水文㊁气象等各部门单位和驻点城市相关成果ꎬ以及流域水文㊁水质㊁生态㊁管理㊁统计等多源数据和环境模型ꎬ建立共享数据集ꎬ构建数据资源目录ꎬ建立数据交互共享机制ꎬ确定数据共享的权限划分与业务化运行规则ꎬ同时制定相关保密制度ꎬ确保数据安全.最终ꎬ以此建设数据汇交与共享系统ꎬ实现数据的分级分层共享ꎬ促进各部门信息交流共享.数据汇交与信息共享系统功能包括支撑平台三维展示㊁水质目标管理数据汇交㊁水质目标管理数据挖掘㊁水质目标管理数据共享等.在支撑平台三维展示方面ꎬ系统采用EV ̄Globe5 0作为三维展示平台ꎬ支持基础地理数据㊁通用GIS数据㊁常见模型数据的加载㊁展示与显隐控制ꎬ通过对多源数据进行信息融合与集成ꎬ用三维场景真实再现长江经济带区域地理环境ꎻ在水质目标管理数据汇交方面ꎬ系统在统一集成标准和规范下ꎬ基于基础地理数据ꎬ叠加水功能分区㊁水源地分布㊁水质监控点㊁水质断面㊁监控断面㊁污染源㊁水文气象站等专题数据ꎬ从流域㊁控制单元等多视角实现区域内水质目标 一张图 展现[30]ꎻ在水质目标管理数据挖掘方面ꎬ系统针对国家及地方管理部门对水环境风险数据的深度应用与信息共享需求ꎬ运用关联分析㊁时间序列分析等方法ꎬ完成水环境风险数据挖掘与分析ꎬ通过数据挖掘模块ꎬ可以进行地区植被变化信息㊁土地利用变化信息㊁水质变化信息地挖掘ꎻ在水质目标管理数据共享方面ꎬ系统通过对大数据库基础地理㊁水质监控等信息的抽取㊁共享㊁发布ꎬ为长江经济带驻点城市提供上下游一体的水质达标形势研判㊁风险联防联控数据支持服务.2 3㊀讨论目前关于水质目标管理平台的研究侧重于实际突发风险的控制㊁管理与应用ꎬ鲜见针对特定流域级的业务化水质目标管理平台.笔者开展的长江经济带水质目标管理平台构建的研究ꎬ以长江经济带为研究对象ꎬ在水质目标管理信息化工作上进行了探索和应用.在 流域 ̄区域 ̄控制单元 ̄污染源 水环境管理层次体系下ꎬ以流域总量控制为基础ꎬ立足于控制单元ꎬ面向污染源ꎬ兼顾了行政区划和流域特点ꎬ克服了单一区域水质目标管理的局限性ꎬ为其他重要流域水质目标管理提供了信息化工作参考ꎬ可将平台框架㊁数据㊁功能等多个层面进行推广应用.平台已在国家长江生态环境保护修复联合研究中心进行业务化运行ꎬ将有效提升长江经济带水环境综合管理能力.长江经济带水质目标管理平台围绕水生态环境功能分区管理㊁容量总量控制管理㊁风险评估与预警和数据汇交与信息共享集成流域水质目标管理技术体系ꎬ是长江经济带生态环境㊁水文㊁气象等各部门数据共享机制的尝试ꎬ旨在打破数据壁垒ꎬ实现资源共5852㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷享.但由于各部门数据存在标准不统一㊁数据结构不一致㊁部门利益冲突等问题ꎬ平台接入的外部数据仍不够全面ꎬ对实际的业务化运行产生了一定影响ꎬ今后应继续健全数据标准体系ꎬ兼容并接入更多部门数据ꎬ使水质目标管理平台能够更好地服务于长江经济带水环境保护工作.3㊀结论a)基于长江经济带水生态环境功能分区ꎬ兼顾不同类别水质目标管理技术的协调性㊁衔接性和适应性ꎬ应用大数据挖掘㊁云计算等现代信息技术ꎬ对水质目标管理相关信息进行跟踪㊁模拟㊁分析和三维可视化表达ꎬ构建长江经济带水质目标管理平台.b)平台构建遵循 五横两纵四统一 的设计思路ꎬ实现了设施㊁数据㊁服务资源的统一调度与管控㊁平台的统一搭建㊁门户网站的统一身份管理ꎬ最后依托统一门户网站为用户提供 一站式 服务.c)长江经济带水质目标管理平台构建的研究可为其他重要流域水质目标管理提供信息化工作参考ꎬ将有效提升长江经济带水环境综合管理能力.参考文献(References):[1]㊀程鹏ꎬ李叙勇ꎬ苏静君.我国河流水质目标管理技术的关键问题探讨[J].环境科学与技术ꎬ2016ꎬ39(6):195 ̄205.CHENGPengꎬLIXuyongꎬSUJingjun.StudyonthekeyissuesofriverwaterqualitytargetmanagementtechniqueinChina[J].EnvironmentalScience&Technology(China)ꎬ2016ꎬ39(6):195 ̄205.[2]㊀BEHMELSꎬDAMOURMꎬLUDWIGRꎬetal.Waterqualitymonitoringstrategies:areviewandfutureperspectives[J].ScienceoftheTotalEnvironmentꎬ2016ꎬ571:1312 ̄1329.[3]㊀WANGYingꎬHEALYTꎬCHENWenruiꎬetal.WaterresourcecapacityꎬregulationꎬandsustainableutilizationoftheChangjiangRiverDelta[J].JournalofCoastalResearchꎬ2004ꎬ20:75 ̄88. [4]㊀WANGQingꎬYANGZhiming.IndustrialwaterpollutionꎬwaterenvironmenttreatmentꎬandhealthrisksinChina[J].EnvironmentalPollutionꎬ2016ꎬ218:358 ̄365.[5]㊀刘天石ꎬ董欣ꎬ刘雅玲ꎬ等.基于水质目标的流域排放管控模式与案例研究[J].中国环境管理ꎬ2019ꎬ11(5):82 ̄87.LIUTianshiꎬDONGXinꎬLIUYalingꎬetal.EffectsofeconomicpolicycouplingonwaterresourcemanagementinChinabasedonthesimulationtechnology[J].ChineseJournalofEnvironmentalManagementꎬ2019ꎬ11(5):82 ̄87.[6]㊀王彩艳ꎬ彭虹ꎬ张万顺ꎬ等.TMDL技术在东湖水污染控制中的应用[J].武汉大学学报(工学版)ꎬ2009ꎬ42(5):665 ̄668.WANGCaiyanꎬPENGHongꎬZHANGWanshunꎬetal.Applicationoftotalmaximumdailyload(TMDL)technologytowaterpollutioncontrolforEastLake[J].EngineeringJournalofWuhanUniversityꎬ2009ꎬ42(5):665 ̄668.[7]㊀李贵宝ꎬ周怀东ꎬ郭翔云ꎬ等.我国水环境监测存在的问题及对策[J].水利技术监督ꎬ2005(3):57 ̄60.[8]㊀张海军.水资源保护监测存在问题及建设初探[J].水土保持应用技术ꎬ2016(3):40 ̄43.[9]㊀牛志春ꎬ蔡琨ꎬ张宏ꎬ等.太湖流域水生态监控系统平台构建研究[J].环境监测管理与技术ꎬ2018ꎬ30(1):1 ̄3.NIUZhichunꎬCAIKunꎬZHANGHongꎬetal.ResearchontheconstructionofwaterecologicalmonitoringsystemplatforminTaihuBasin[J].TheAdministrationandTechniqueofEnvironmentalMonitoringꎬ2018ꎬ30(1):1 ̄3.[10]㊀刘柏音ꎬ刘孝富ꎬ王维.长江生态环境保护修复智慧决策平台构建与初步设计[J].环境科学研究ꎬ2020ꎬ33(5):1276 ̄1283.LIUBaiyinꎬLIUXiaofuꎬWANGWei.Constructionanddesignofintelligentdecision ̄makingplatformforenvironmentalprotectionoftheYangtzeRiver[J].ResearchofEnvironmentalSciencesꎬ2020ꎬ33(5):1276 ̄1283.[11]㊀韦大明ꎬ孙运海ꎬ陈岩ꎬ等.我国水环境综合管理平台设计研究[J].中国环保产业ꎬ2018(12):54 ̄56.WEIDamingꎬSUNYunhaiꎬCHENYanꎬetal.StudyoncomprehensivemanagementplatformconstructionofwaterenvironmentinChina[J].ChinaEnvironmentalProtectionIndustryꎬ2018(12):54 ̄56.[12]㊀XUXibaoꎬYANGGuishanꎬTANYan.IdentifyingecologicalredlinesinChinaᶄsYangtzeRiverEconomicBelt:aregionalapproach[J].EcologicalIndictorsꎬ2019ꎬ96(1):635 ̄646.[13]㊀LUOQiaolingꎬLUOYanlongꎬZHOUQingfengꎬetal.DoesChinaᶄsYangtzeRiverEconomicBeltpolicyimpactonlocalecosystemservices[J].ScienceoftheTotalEnvironmentꎬ2019ꎬ676:231 ̄241. [14]㊀HANHanꎬLIHuiminꎬZHANGKaize.Spatial ̄temporalcouplinganalysisofthecoordinationbetweenurbanizationandwaterecosystemintheYangtzeRiverEconomicBelt[J].InternationalJournalofEnvironmentalResearchandPublicHealthꎬ2019ꎬ16(19):1 ̄18.[15]㊀GRIFFITHSJAꎬCHANFKSꎬZHUFangfangꎬetal.Reach ̄scalevariationsurfacewaterqualityinareticularcanalsysteminthelowerYangtzeRiverDeltaRegionꎬChina[J].JournalofEnvironmentalManagementꎬ2017ꎬ196:80 ̄90.[16]㊀李艳ꎬ胡成ꎬ李法云ꎬ等.清河流域水质目标管理技术应用示范[J].环境监控与预警ꎬ2013ꎬ5(1):1 ̄6.LIYanꎬHUChengꎬLIFayunꎬetal.TheapplicationdemonstrationoftechnologysystemsforQinheWatershedwaterqualitytargetmanagement[J].EnvironmentalMonitoringandForewarmingꎬ2013ꎬ5(1):1 ̄6.[17]㊀陈善荣ꎬ何立环ꎬ林兰钰ꎬ等.近40年来长江干流水质变化研究[J].环境科学研究ꎬ2020ꎬ33(5):1119 ̄1128.CHENShanrongꎬHELihuanꎬLINLanyuꎬetal.ChangetrendsofsurfacewaterqualityinthemainstreamoftheYangtzeRiverduringthepastfourdecades[J].ResearchofEnvironmentalSciencesꎬ2020ꎬ33(5):1119 ̄1128.[18]㊀LIYingxiaꎬQIURuzhiꎬYANGZhifengꎬetal.ParameterdeterminationtocalculatewaterenvironmentalcapacityinZhangweinanCanalsub ̄basininChina[J].JournalofEnvironmentalScienceꎬ2010ꎬ22(6):904 ̄907.6852。
科技成果——长江泥沙调控及干流河道演变与治理技术技术开发单位长江水利委员会长江科学院等研究背景长江流域面积180万平方公里,人口和国民生产总值均超过全国的40%,是我国水资源配置的战略水源地、水电开发的主要基地、连接东中西部的“黄金水道”和珍稀水生生物的天然宝库,在我国经济社会发展中具有重要的战略地位。
近些年来,在自然条件和人类活动的双重影响下,长江泥沙时空分布与产输过程发生了重大变化,给河流开发利用与保护均带来了显著影响,而沿江经济社会快速发展和生态文明建设不断对长江泥沙提出调控要求。
同时,河流工程建设和泥沙资源化利用的发展也使长江泥沙调控具备了基本条件。
但泥沙兼具灾害性与资源性,泥沙调控与河流功能发挥之间存在着矛盾与统一,需要深入研究。
项目以揭示长江泥沙输移分布与河流开发及保护之间的耦合作用关系,研究提出满足沿江经济社会和生态环境需求的长江泥沙调控、河道演变与治理的基本理论和关键技术为总目标。
项目研究可推动河流动力学学科发展,促进长江水资源利用与保护,为流域社会经济发展和河流生态保护提供基础保障,具有显著的社会经济与环境效益。
拟解决的关键问题(1)强人类活动影响下长江来水来沙过程时空变异规律(2)水沙过程变异下河床重塑过程与驱动机制(3)防洪、航运及岸滩利用等对河流系统再造的响应机理(4)长江泥沙多维耦合与协同调控的理论与方法(5)多尺度、多目标和多过程的江河湖库泥沙调控技术(6)河道治理新技术及泥沙调控下河道综合治理方案研究内容(一)强人类活动影响下长江来水来沙过程时空变异规律经初步分析,在梯级水库各级拦截作用下,今后相当长的时间内,金沙江下游沙量将保持较少水平;2003-2015年三峡水库区间产沙量估计在2000万t左右。
(二)水沙过程变异下河床重塑过程与驱动机制初步揭示了山区性河流松散排列床面结构与水流阻力的耦合机制,提出了含有松散排列床沙的河道糙率尺度kv表达方法;分析表明山区性河流均匀卵石推移质输沙率总体上具有单值性,非均匀卵石推移质随泥沙补给、床沙结构调整具有多值性;阐明了强震、强人类活动影响下,山前河流剧烈演变的内因与外因基于临界起动假说,提出了山前河流演变模式和相应预测计算方法;通过淹没植被群周围泥沙冲淤特性试验,初步构建了基于水生植物-水沙运动-河床演变相互作用机制的二维河床演变数学模型;初步阐明三峡水库下游冲积河段发生长距离冲刷的主要原因是d<0.125mm泥沙补给不足;提出了河段平均的河道演变分析方法,建立了监利段平滩河槽形态与前期5年内水沙条件的量化关系;建立了荆江河段典型断面尺度的崩岸过程模拟方法;建立了紫坪铺水库作用下岷江都江堰河段二维水沙模型,并率定验证;揭示了长江中下游河道演变特点,推求建立了分汊河道水力几何形态公式,建立了分汊河道概化物理模型。
全国大学生数学建模竞赛参赛队员 1.周少甫2.马铮3.周哲长江水质的评价和趋势分析模型【摘要】本文要解决的问题是:对长江沿江各处水质情况的相关数据进行分析,以确定哪些地方的水质污染较少和以后水质发展的一个相关的趋势。
通过对长江近几年水质的相关分析并结合了实际情况,对题目进行了简化假设。
在整体考虑各个问题的基础上抓住研究长江水质情况这根主线,建立了对长江水质的评价和趋势分析模型。
关于问题一的解决方法:首先,我们对长江近两年多来的观测数据做了一系列相关的分析和处理,将各种污染物的浓度进行标准的正交化,以得出一个年平均值标准;然后,以此年平均值标准考察沿江各个观测站的水质遭受污染的情况,并定量的进行相关数据的分析,并以此绘制了相关系列的图表,得出了长江水质污染总体上呈越来越严重的趋势;最后,分析比较各类主要污染物在沿江各各观测站污染程度的高低,综合评判了各观测站水质情况的好坏。
关于问题二的解决方法:首先,我们应用微分方程刻画出两个观测站之间污染物浓度的差值同污染物被降解的系数以及两个观测站距离的关系;然后建立浓度差值模型并绘制图表,通过分析两站点间的差值,方便快捷的找到了主要污染物的污染源。
关于问题三的解决方法:首先,我们对各类水质所占百分比的变化赋予权重,在验证了所赋权重的可靠性后,我们算出每年的污染指标;然后,依照过去10年的统计数据,预测了长江水质的污染趋势将会不断恶化变得越来越严重,国标将水质分为了六类,劣Ⅴ类水的比例将达到20%。
关于问题四的解决方法:首先,我们将水文年里干流中各类水的百分比变化情况反映在折线图上,并对各类水质的变化规律进行相关的研究,由此,我们推算出刚好使得干流水质超标的临界排放量;最后,我们线性拟合了年污水排放量的变化趋势,并预测了今后十年的污水排放总量。
从而,我们得到了每年应处理的污水量:关于问题五的解决方法:我们从经济管理的角度出发考虑如何有效的控制污物的排放量。
提供了两种管理方案:排污收费和排污征税。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 郝琪琪2. 高盈超3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):关于长江水质的综合评价与预测问题摘要作为世界第三大河流的长江,面临着前所未有的水资源污染问题,由于污染严重,长江岸边形成了许多污染带,在干流21个城市中,重庆、岳阳、武汉、南京、镇江、上海六大城市累计污染带长度占长江干流污染带总长的73%。
本文针对长江水质的水污染问题,进行长江水质的综合评价与其污染程度进行预测。
针对问题一,对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。
通过对附表: 《地表水环境质量标准》(GB3838—2002)中4个主要项目标准限值的分析,利用层次分析法,确定溶解氧、高锰酸盐指数、氨氮、PH值四个因素对长江水质的影响程度,也即是各个所对应得权重。
基于PLUS模型的长江流域土地利用变化模拟与多情景预测一、概述随着全球化和城市化进程的加速,土地利用变化已成为影响区域乃至全球环境、经济和社会发展的重要因素。
作为中国最重要的水系和农业经济区,其土地利用变化尤为引人关注。
为了科学合理地调控土地利用变化,实现生态与经济的协调发展,本研究基于PLUS模型(Patchbased Land Use Simulation,基于斑块的土地利用模拟模型)对长江流域的土地利用变化进行了深入模拟与多情景预测。
PLUS模型作为一种新兴的土地利用变化模拟工具,能够综合考虑自然和人为因素,通过空间显式的方式模拟土地利用变化过程。
本研究利用PLUS模型,对长江流域的土地利用现状进行了详细的分析,并基于斑块生成土地利用变化模拟方法,选取了一系列驱动因子,深入剖析了1985年至2020年间长江流域土地利用时空变化格局及其驱动力。
在此基础上,本研究设定了多种土地利用变化情景,包括惯性发展、耕地保护和生态优先等,以满足流域不同发展目标导向下的国土空间优化配置需求。
通过PLUS模型对这些情景进行模拟分析,本研究不仅预测了未来土地利用变化的趋势和特征,还深入探讨了不同情景下土地利用变化可能产生的环境影响。
本研究结果将为长江流域的土地利用规划、生态保护和可持续发展提供重要的科学依据和决策支持。
本研究的方法和结果也将为其他地区的土地利用变化模拟和预测提供有益的参考和借鉴。
通过对长江流域土地利用变化的深入研究和多情景预测,我们有望为区域的可持续发展和生态文明建设贡献智慧和力量。
1. 长江流域土地利用变化的背景与意义作为中国最大的水系和重要的农业经济区,其土地利用状况一直备受关注。
随着经济的快速发展和人口的不断增长,长江流域的土地利用格局发生了显著的变化。
这种变化不仅反映了区域经济社会发展的步伐,也对生态环境产生了深远的影响。
准确模拟和预测长江流域的土地利用变化,对于制定科学的区域发展规划、实现可持续发展具有重要的理论和实践意义。