初一数学最新教案-3.4整式的加减(第1课时) 精品
- 格式:doc
- 大小:47.93 KB
- 文档页数:3
1.2整式的加减(一)教学目标:(一)、知识与技能目标:1.经历同类项概念的形成过程,知道什么是同类项.2.经历合并同类项法则的形成过程,会合并同类项. (二)、过程与方法目标:1、在实行整式加减运算的过程中,发展学生有条理的思考及语言表达水平。
2、在实际情景中,进一步发展学生的符号感。
(三)、情感态度与价值目标:1、在解决问题的过程中了解数学的价值,发展“用数学”的信心。
2、在解决问题的过程中,获得成就感,培养学习数学的兴趣。
教学重点:同类项的概念,合并同类项.教学难点:同类项概念的形成.教学方法:教师利用活动游戏或根据情况创设情景,鼓励学生通过讨论发现数量关系,使用符号实行表示,再利用所学的合并同类项、去括号的法则验证自己的发现,从而理解整式加减运算的算理。
教具准备:投影仪。
教学过程:(一)创设情境,导入新课1、探索同类项概念:(1)252t- 100t=(252-100)t=152t(2)3x 2+2x 2=(3+2)x 2=5x 2(3)3ab 2-4ab 2=(3-4)ab 2=-ab 2这就是说,上面的三个多项式都能够合并为一个单项式. 具备什么特点的多项式能够合并呢?观察(1)中多项式的项252t 和-100t ,它们都含有相同字母t ,并且t 的指数都是1;(2)中的多项式的项3x 2+2x 2都含有相同字母x ,并且字母x 的指数都是2;(3)•中的多项式的项3ab 2和-4ab 2都含有字母a ,b ,并且字母a 的指数都是1,b 的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项。
注意:两个相同(1)、字母相同 、(2)、相同字母的指数也相同。
练习一:1.判断下列各组中的两项是否是同类项:33233233(1).53(2).33(3).52(4).53(5).5ab a bxy xm n n m x --和与与与与归纳得出:同类项跟字母与字母指数因素相关,跟系数与字母位置因素无关。
3.4整式的加减(一)教学设计
教学目标:知识目标:使学生理解同类项的概念和合并同类项的意义,
学会合并同类项。
能力目标:培养学生观察、分析、归纳和动手解决问题的
能力,初步使学生了解数学的分类思想。
教学重点:同类项的概念和合并同类项
教学难点:学会合并同类项
一、回顾交流:热身练习。
通过练习主要复习单项式和多项式的系数,为合并同类项的学习做知识准备。
二、情境导入
从简单的练习发现问题,从而引入课题,是学生领会学习同类项的必要性。
三、同类项:以学生观察分析,归纳同类项的特征
同类项:所含字母相同、并且相同字母的指数也分别相同的项叫同类项。
特殊:几个单独的数也是同类项。
用判断的题型那理解同类项的定义。
为合并同类项做好知识准备。
四、合并同类项
1、合并同类项定义的介绍;
2、合并同类项的法则:(1)同类项的系数相加,所得的结果作为系数,
(2)字母和字母的指数不变.
3、例题:训练合并同类项的法则,规范计算过程的书写。
4、小组合作:以实战形式,四人小组合作,共同达到学习目标。
五、应用:先化简,再求值(以教师和学生PK的形式引入)。
六、小结:同类项;合并同类项。
七、终极挑战:提高学生求知欲望,拓展训练。
4 整式的加减第1课时 合并同类项教师备课 素材示例●情景导入 动漫故事:早上围裙妈妈要大头儿子买早点,告诉他:爸爸要3个烧饼,3根油条;妈妈要2个烧饼,4根油条;他自己要2个烧饼,2根油条.大头儿子来到街上,孝顺的他先想到了爸爸,买了3个烧饼,3根油条,又去为妈妈买了2个烧饼,4根油条,最后又汗流满面地为自己买了2个烧饼,2根油条.【教学与建议】教学:用生活中的故事情境,激发学生的学习兴趣,感受到分类的必要性.建议:教师可提出问题:(1)为什么笑了?你发现了什么?(2)若是你如何做?日常生活有分类整理的问题,数学也有分类问题.●悬念激趣 浆糊的好朋友万事通学习成绩非常优秀,他也陪浆糊来到了整式王国.当他看到几个排好队的单项式后,竟将多项式合并为二项式.其过程如下:5x 2-6xy +x 2-3xy -8x 2=5x 2+x 2-8x 2-6xy -3xy=(5x 2+x 2-8x 2)+(-6xy -3xy)=-2x 2-9xy.你知道万事通是如何合并的吗?【教学与建议】教学:通过数学悬念问题调动学生的积极性,激发学生的求知欲望.建议:学生先自己独立思考,然后由学生代表讲解万事通的计算过程,明白同类项可以合并.同类项所含字母相同,相同字母的指数相同.【例1】下列各组单项式中,不是同类项的是(C)A .3a 2b 与-2ba 2B .32m 与23mC .-xy 2与2yx 2D .-ab 2与2ab 【例2】已知14-1y n 是同类项,则m +n =__8__. 通过移动多项式中项的位置,合并同类项时,把同类项的系数相加,字母和字母的指数不变.【例3】下列运算正确的是(D)A .3m 2-2m 2=1B .5m 4-2m 3=3mC .m 2n -mn 2=0D .3m -2m =m【例4】把(a -b)看成一个整体,合并3(a -b)2-7(a -b)2+2(a -b)2的结果是__-2(a -b)2__.把整式化简求值也就是将整式的同类项先移项,再合并同类项后代入字母的值计算.【例5】先化简,再求值:(1)3-2xy +3yx 2+6xy -4x 2y ,其中x =-1,y =-2;(2)5ab +4a +7b +6a -3ab -4ab +3b ,其中a +b =6,ab =3.解:(1)原式=3+4xy -x 2y =13;(2)原式=-2ab +10(a +b)=54.先理解题意列出代数式,再利用合并同类项法则进行合并.【例6】如图,阴影部分的面积为__112xy__.【例7】某学校组织七、八年级全体学生参观西柏坡纪念馆,七年级租用45座大巴车x 辆,60辆大巴车y 辆;八年级租用60座大巴车x 辆,30座中巴车y 辆,当每辆车恰好坐满.(1)用关于x ,y 的代数式表示该学校七、八年级的总人数;(2)当x =4,y =7时,该学校七、八年级共有多少学生?解:(1)总人数为45x +60y +60x +30y =105x +90y ;(2)105×4+7×90=1050.高效课堂 教学设计1.感受合并同类项的必要性,理解合并同类项依据的运算律.2.了解合并同类项的法则,能进行同类项的合并.同类项的定义以及合并同类项的法则.找出同类项并能正确合并同类项.活动一:创设情境 导入新课强强非常好学,他看姐姐的作业如下图.5x 2-6xy +x 2-3xy -8x 2=5x 2+x 2-8x 2-6xy -3xy=-2x 2-9xy强强问姐姐,你怎么把五项式变成了二项式呢?活动二:实践探究 交流新知【探究1】同类项的概念如图,长方形由两个小长方形组成,求这个长方形的面积.解法一:大长方形的长为(8+5),宽为n ,所以面积为13n ;解法二:大长方形的面积等于两个小长方形的面积和,所以大长方形的面积为8n +5n =13n.【归纳】所含字母相同,并且相同字母的指数也相同的项,叫做同类项.注意:所有常数项都是同类项.【探究2】合并同类项的概念及方法问题:上题中的8n +5n ,以及-7a 2b +2a 2b 该如何进行计算呢?解:8n +5n =(8+5)n =13n(利用乘法分配律计算).-7a 2b +2a 2b =(-7+2)a 2b =-5a 2b(利用乘法分配律计算).【归纳】把同类项合并成一项叫做合并同类项.活动三:开放训练 应用举例【例1】(教材P 90例题)根据乘法分配律合并同类项:(1)-xy 2+3xy 2;(2)7a +3a 2+2a -a 2+3.【方法指导】合并同类项时,把同类项的系数相加,字母和字母的指数不变.解:(1)-xy 2+3xy 2=(-1+3)xy 2=2xy 2;(2)7a +3a 2+2a -a 2+3=(7a +2a)+(3a 2-a 2)+3=(7+2)a +(3-1)a 2+3=9a +2a 2+3.【例2】化简求值:2a 2b -2ab +3-3a 2b +4ab ,其中a =-2,b =12. 【方法指导】原式合并同类项得到最简结果,再代入a 与b 的值. 解:原式=(2-3)a 2b +(-2+4)ab +3=-a 2b +2ab +3.当a =-2,b =12时,原式=-(-2)2×12+2×(-2)×12+3=-1. 【例3】有这样一道题:“当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3的值.”小明说:“本题中a =0.35,b =-0.28是多余的条件.”小强马上反对,说:“这个多项式中每一项都含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?”你同意哪名同学的观点?请说明理由.【方法指导】多项式化简后若只剩下常数项,则跟字母的取值无关;若化简后含有字母项,则跟字母的取值有关.解:原式=(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b =0,所以小明的说法正确,与字母的取值无关.活动四:随堂练习1.下列各组代数式中,是同类项的是(C)①-5与π;②-5mn 与nm 2;③-3m 2n 3与2n 3m 2;④2ab 与2xy ;⑤-a b与b a;⑥5x 2y 3与3x 2y 2. A .②③⑤B .②③④C .①②③D .①②⑥2.若-2x 3a y 3与2x 12y b 是同类项,则(a -b)的值是(B)A .0B .1C .-1D .3.合并同类项:(4)4b -2a 3+1+a 3-3b.解:原式=b -a 3+1.4.求代数式的值.(1)8p 2-7q +6q -7p 2-7,其中p =3,q =3;(2)13m -32n -56n -16m ,其中m =6,n =2. 解:(1)原式=p 2-q -7.当p =3,q =3时,原式=-1;(2)原式=16m -73n.当m =6,n =2时,原式=-113. 活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识,还有哪些疑问? 教学说明:教师引导学生回顾同类项的概念及合并同类项的应用,让学生大胆发言,积极与同伴进行交流,加深对知识的理解.作业:课本P91习题3.5中的T1、T3、T4本节课学生从了解同类项的概念到合并同类项,知识层次递进,培养了学生动脑习惯,提升了学生解决问题的能力.教学中鼓励学生参与学习,培养思维的灵活性.。
《整式的加减》第一课时教学设计(姓名:刘享佳)教学目标:1.理解同类项的概念;2.掌握合并同类项法则,能进行同类项的合并;3.通过比较数的运算律得出合并同类项的法则,发展类比的思想方法; 教学重点 合并同类项法则;教学难点 对同类项概念的理解及合并同类项法则的探究教学过程一、 问题引入比较下列各式有何特点(1)100t 与252t(2)32x 与2x(3)32ab 与24ab -(认真观察,后抽答)一起总结出特点:字母相同,相同的字母的指数相同.师:像这样的式子我们叫做同类项.今天我们就一起来学习同类项的相关知识。
(引出同类项的定义,同时板书出课题)二、 同类项(一)同类项的定义师:请打开书63页,做笔记,勾画出定义,问:关键词是什么?(抽打,同时老师板书出关键)关键:(1)字母相同;(2)相同的字母的指数相同;(指导关键词做笔记) 师:几个常数项也是同类项.师:了解到同类项的概念之后,我们首先就要会判断哪些是同类项,请看例1.(二)例1下列各式:(1)y x 23与y x 23- (2)nabc 与bc 7(3)125与833- (4)323n m 与23m n - (5)24xy 与yz x 24 (6)26与2x同类项有 (1)(3)(4) (填序号)(学生先独立完成,后抽答,把空填上)师问:(1)(4)为什么是同类项?(抽答)小结出:要判断两个式子是不是同类项,紧紧扣着两相同来,字母相同,相同的字母的指数相同,只要同时满足这两个条件,就一定是同类项,从(1)可以看出与各式的系数无关,从(4)可以看出还与字母的顺序无关.(板书出:两无关 (1)与系数无关 (2)与字母的顺序无关师问:(3)为什么是同类项?(抽答)小结出:常数项也是同类项.师:(2)(4)(6)不满足两相同,所以不是同类项.(三)小试牛刀1. 判断下列几组式子,哪些是同类项?(1)y x 23与25.0xy (2)xy 5.2与ab 3 (3)b a 321和b a 33- (4)xyz 4与yz 21 (5)6y x 2与2yx - (6)1-和32. 33y x m 与n xy 3-是同类项,求m 、n 的值。
3.4 整式的加减(第一课时)[教学目标]▲知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
▲能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
▲情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。
培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
[教学重点]同类项的概念和合并同类项的法则[教学难点]学会合并同类项[教学过程](一)创设情境,引入课题1.我首先设计了一个学生非常熟悉的一个生活场景:教室里非常混乱,有书本、扫把、粉笔等东西,问学生如何整理。
学生很容易回答出:将扫把放到一起,将书本摆放整齐…。
我问学生为什么这样做,引导学生意识到“归类”存在于生活中。
由学生举例在生活中那些运用到归类方法。
2.教师:我想和同学们进行一场比赛,看谁最快得到答案,你们愿意吗?学生:(很好奇、兴奋)愿意。
出示题目:求代数式—4x2+7 x + 3 x2 —4 x + x2的值,请一学生任意说出一个一至两位整数,教师和另一学生比赛,结果教师很快说出答案。
在学生的惊讶声中教师说:“你们想知道为什么吗?学了这节课后你们也可以像老师一样算得那么快了。
”(用师生竞赛的方式,充分调动了学生积极参与,激发了学生求知欲望)3.根据某学校的总体规划图(单位:m),计算这个学校的占地面积。
提出让学生尝试用不同的方法。
提问:两种方法的结果是否一样?如果一样,那么是不是又可以得到这样的一个等式:100a+200a+240b+60b = (100+200)a+(240+60)b---①让学生观察这个等式,使其从中发现规律、联系。
出示:由等式我们可以知道,计算100a+200a,可以先把它们的系数相加,再乘a;计算240b+60b,可以先把它们的系数相加,再乘以b。
(创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题。
七年级数学《整式的加减》教案范文整式的加减就是单项式和多项式的加减,可利用去括号法则和合并同类项来完成。
接下来是为大家整理的(七班级数学)《整式的加减》教案(范文),希望大家喜欢!七班级数学《整式的加减》教案范文一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示(方法)和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,进展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有20xx个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课老师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和乐观性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培育应用意识和创新意识;(3)乐观参加数学活动,在数学活动过程中,合作沟通、(反思)质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体(总结)规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,常常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中乐观思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.老师准备几何画板软件供学生使用,同时采纳多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有20xx个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.老师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.老师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数 1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七班级数学《整式的加减》教案范文二教学目标理解同类项的概念,在具体情景中,认识同类项.通过小组讨论、合作学习等方式,经历概念的形成过程,培育学生自主探索知识和合作沟通的能力.初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点理解同类项的概念.根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.老师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,老师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们经常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y 与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为讨论对象,并称它们为同类项.(板书课题:同类项) (老师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解老师读题,指名回答.判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项) 游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的(阅历),从而揭示同类项的本质特征,透彻理解同类项的概念.指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.k取何值时,3xky与-x2y是同类项?要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由老师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作沟通的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标理解合并同类项的概念,掌握合并同类项的法则.经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培育观察、归纳、概括能力,进展应用意识.在独立思考的基础上,乐观参加讨论,敢于发表自己的观点,从沟通中获益.教学重难点正确合并同类项.找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,老师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,经常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标去括号与添括号法则及其应用.在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点去括号和添括号法则.当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n 个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七班级数学《整式的加减》教案范文三一、教学内容解析:1.本节课选自:新人教版数学七班级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、讨论的一个课题。
北师大版数学七年级上册3.4《整式的加减》(第1课时)教案一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节主要介绍整式的加减运算。
在此之前,学生已经学习了有理数的加减法和乘除法,整数的加减法和乘除法,以及多项式的概念。
本节内容是这些知识的进一步扩展和应用,为学生今后的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于加减法和乘除法有了一定的理解。
但是,对于整式的加减运算,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将已有的知识迁移到整式的加减运算中,通过实际操作,加深对整式加减运算的理解。
三. 教学目标1.理解整式的加减运算的定义和规则。
2.能够进行简单的整式加减运算。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.重点:整式的加减运算的定义和规则。
2.难点:如何引导学生将已有的知识迁移到整式的加减运算中,以及如何进行复杂的整式加减运算。
五. 教学方法采用问题驱动法和案例教学法,通过实际操作,引导学生理解整式的加减运算的定义和规则,培养学生的问题解决能力和逻辑思维能力。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过提问,引导学生回顾已学的有理数和整数的加减法,以及多项式的概念。
2.呈现(10分钟)展示PPT课件,介绍整式的加减运算的定义和规则。
通过案例,让学生理解整式的加减运算的实际意义。
3.操练(10分钟)让学生分组进行练习,运用整式的加减运算的规则,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成练习题,巩固整式的加减运算的知识。
教师选取部分学生的作业,进行讲解和分析。
5.拓展(10分钟)引导学生思考如何将整式的加减运算应用到实际问题中,例如解析几何中的直线方程,通过实际案例,让学生理解整式的加减运算的应用价值。
6.小结(5分钟)对本节课的内容进行小结,强调整式的加减运算的定义和规则,以及其在实际问题中的应用。
3.4 整式的加减(第1课时)
导学指要
学习目标
1、了解整式加减的一般步骤,能熟练地进行整式的加减运算。
2、培养运算能力,渗透整体的思想。
内容简析
本节课的重点是整式的加减运算,难点是正确列出算式以及运算中的去括号,学习时须注意:(1)整式加减的实质是合并同类项;(2)求几个多项式的和或差时,要分别把每一个多项式看作一个整体,用括号括起;(3)整式加减的结果还是整式。
自我测评(三十五)
一、单选题(30分)
1、多项式x3-2x2+x-4与2x3-5x+6的和是( )
A、3x3+2x2-4x+2
B、3x3-2x2-4x+2
C、-3x3+2x2-4x+2
D、3x3-2x2-4x-2
2、若A是一个四次多项式,且B也是一个四次多项式,则A-B一定是( )
A、八次多项式
B、四次多项式
C、三次多项式
D、不高于四次的多项式或单项式
3、代数式9x2-6x-5与10x2-2x-7的差是( )
A、x2-4x-2
B、-x2+4x+2
C、-x2-4x+2
D、-x2+4x-2
二、填空题(40分)
1、整式的加减运算,实际上就是_______,在运算时,如果遇到括号,就先_____,再_______;
2、减去-2a等于6a2-2a-4的代数式是_________;
3、单项式11x3, -2x2, -x3, 3x2的和为_________;
4、已知A=2x2-3xy,B=x2+xy-4y2,那么A-B=_________;
*5、若x、y互为相反数,a、b互为倒数,则代数式10x+10y-的值为________;
三、计算题(30分)
(1)(x3-4x2y+5xy2-3y3)-(-2xy2-4x3+x2y);
(2)一个多项式减去3a4-a3+2a-1得5a4+3a2-7a+2,求这个多项式。
3.4 整式的加减(第2课时)
导学指要
学习目标
1、熟练地进行整式的加减运算,提高运算能力。
2、能熟练地运用加减运算进行整式化简求值。
内容简析
本节课的重点是熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值。
难点是准确地进行计算。
自我测评(三十六)
一、单选题(30分)
1、计算(a5+2a4-3a3)-(3a3+2a4+a5)的结果是( )
A、6a3
B、-6a3
C、-6a6
D、6a6
2、把下式化简求值( )
得(a3-3a2+5b)+(5a2-6ab)-(a3-5ab+7b),其中a=-1,b=-2
A、4
B、48
C、0
D、20
二、先化简下列各式,再求值(45分)
(1)x-2(x-)+3(x+),其中x=-4;
(2)(3xy-2x2)-(2x2-y2)-(y2-2xy)+(-y2+5x2+xy),其中x=,y=-;
(3)5xyz-{2x2y-[3xyz-(4xy2-x2y)]}其中x=-2,y=-1,z=3;
三、解答题(25分)
(1)三角形一边等于a+b,另一边比第一边大a+1,第三边等于2b+4,求三角形的周长。
*(2)给出下列算式32-1=8×1,52-32=16=8×2,72-52=24=8×4……,观察上面一系列等式,你能发现什么规律,用代数式来表述这个规律。