有理数的有理数乘除乘方培优
- 格式:doc
- 大小:220.01 KB
- 文档页数:4
七年级数学上册同步培优题典有理数的乘方姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020【分析】根据有理数的乘方运算,即可得出答案.【解析】﹣12020=﹣1.故选:B.2.(2020•长沙)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣8【分析】根据有理数的乘方的运算法则即可得到结果.【解析】(﹣2)3=﹣8,故选:D.3.(2019秋•开福区校级期末)若|m﹣2|+(n﹣1)2=0,则m+2n的值为()A.﹣1B.4C.0D.﹣3【分析】根据非负数的性质列式计算求出m、n的值,然后代入代数式进行计算即可得解.【解析】根据题意得m﹣2=0,n﹣1=0,解得m=2,n=1,则m+2n=2+2×1=4.故选:B.4.(2019秋•唐县期末)下列各数:(﹣3)2、0、−(−12)2、227、(﹣1)2019、﹣22、﹣(﹣8)、−|−34|中,负数有()A.2个B.3个C.4个D.5个【分析】负数是小于零的数,由此进行判断即可.【解析】(﹣3)2=9,0,﹣(−12)2=−14,227,(﹣1)2019=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|−34|=−34,则负数有4个,故选:C .5.(2019秋•宜宾期末)计算(﹣2)2020÷(﹣2)2019所得的结果是( )A .22019B .﹣22019C .﹣2D .1【分析】按照有理数乘方的运算法则,先化简符号,再进行计算即可.【解析】(﹣2)2020÷(﹣2)2019=﹣22020÷22019=﹣2×22019÷22019=﹣2×(2÷2)2019=﹣2.故选:C .6.(2019秋•兰州期末)式子﹣22+(﹣2)2﹣(﹣2)3﹣23的值为( )A .﹣2B .6C .﹣18D .0【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解析】﹣22+(﹣2)2﹣(﹣2)3﹣23=﹣4+4﹣(﹣8)﹣8=0故选:D .7.(2020春•义乌市期末)下列各组数中,相等的一组是( )A .﹣(﹣1)与﹣|﹣1|B .﹣32与(﹣3)2C .(﹣4)3与﹣43D .223与(23)2 【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解.【解析】A 、﹣|﹣1|=﹣1,﹣(﹣1)=1,﹣(﹣1)≠﹣|﹣1|,故本选项错误;B 、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C 、(﹣4)3=﹣64,﹣43=﹣64,(﹣4)3=﹣43,故本选项正确;D 、223=43,(23)2=49,43≠49,故本选项错误. 故选:C .8.(2019秋•邓州市期末)某种细菌在培养过程中,每半个小时分裂一次,每次由一个分裂为两个,若这种细菌由1个分裂到64个,这个过程要经过( )A .12小时B .6小时C .3小时D .2.5小时【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【解析】由题意可得:2n =64=26,则这个过程要经过:3小时.故选:C .9.(2019秋•安陆市期末)若(x ﹣1)2+|2y +1|=0,则x ﹣y 的值为( )A .12B .−12C .32D .−32【分析】根据非负数的性质求x 、y 的值,再求x ﹣y 的值.【解析】∵(x ﹣1)2+|2y +1|=0,∴x ﹣1=0,2y +1=0,解得x =1,y =−12,∴x ﹣y =1﹣(−12)=32,故选:C .10.(2020•张家港市校级模拟)如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262【分析】由(2n +1)3﹣(2n ﹣1)3=24n 2+2≤2019,可得n 2≤201724,再根据和谐数为正整数,得到0≤n ≤9,可得在不超过2019的正整数中,“和谐数”共有10个,依此列式计算即可求解.【解析】由(2n +1)3﹣(2n ﹣1)3=24n 2+2≤2019,可得n 2≤201724, ∵和谐数为正整数,∴0≤n ≤9,则在不超过2019的正整数中,所有的“和谐数”之和为13﹣(﹣1)3+33﹣13+53﹣33+…+193﹣173=193﹣(﹣1)3=6860.故选:B .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•建湖县期中)下列各数:+(﹣15)、|﹣17|、−π2、﹣24、0、(﹣2020)2019,其中负数有4个.【分析】各式计算出结果,即可作出判断.【解析】+(﹣15)=﹣15,|﹣17|=17,−π2是负数,﹣24=﹣16,0既不是正数也不是负数,(﹣2020)2019=﹣20202019,∴负数的个数是4个.故答案为:4.12.(2020秋•盐田区期末)(多选)下列各式中,计算结果为正数的是A、C.A.﹣(﹣1)B.﹣|﹣1|C.(﹣1)2D.(﹣1)3【分析】分别根据相反数的定义,绝对值的定义,有理数乘方的定义逐一判断即可.【解析】A.﹣(﹣1)=1,故A符合题意;B.﹣|﹣1|=﹣1,故B不合题意;C.(﹣1)2=1,故C符合题意;D.(﹣1)3=﹣1,故C符合题意.故答案为:A、C13.(2019秋•合川区期末)计算:3×(﹣2)3=﹣24.【分析】根据有理数的乘方法则先求出(﹣2)3,再与3相乘即可得出答案.【解析】3×(﹣2)3=3×(﹣8)=﹣24;故答案为:﹣24.14.(2019秋•沙雅县期中)规定一种关于a、b的运算:a*b=a2﹣b2,那么3*(﹣2)=5.【分析】根据*的运算方法列出算式,再根据有理数的乘方进行计算即可得解.【解析】3*(﹣2)=32﹣(﹣2)2,=9﹣4,=5.故答案为:5.15.(2019秋•邗江区校级期末)平方等于36的数与立方等于﹣64的数的和是2或﹣10.【分析】分别利用平方根的定义和立方根的定义进行求解即可.【解析】∵36=(±6)2,∴平方等于36的数是±6;∵(﹣4)3=﹣64,∴立方等于﹣64的数是﹣4,∴平方等于36的数与立方等于﹣64的数的和是6+(﹣4)=2或﹣6+(﹣4)=﹣10.故答案为:2或﹣1016.(2020春•如东县校级月考)(a2+b2﹣2)2=25,则a2+b2=7.【分析】根据有理数的乘方的定义可知a2+b2﹣2=5,据此计算即可.【解析】∵(a2+b2﹣2)2=25,∴a2+b2﹣2=±5,∴a2+b2=5+2或a2+b2=2﹣5=﹣3(舍去),∴a2+b2=7.故答案为:7.17.(2019秋•成华区期末)计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=0.【分析】根据乘方的定义计算可得.【解析】原式=﹣1+1﹣1+1﹣……﹣1+1=0×1015=0,故答案为:0.18.(2018秋•临洮县期末)现规定一种新运算“※”:a※b=a b,如3※2=32=9,则(﹣2)※3等于﹣8.【分析】根据a※b=a b,可得答案.【解析】(﹣2)※3=(﹣2)3=﹣8,故答案为:﹣8.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•和县期末)计算:−22×(−12)3−|−2|3+(−12)【分析】根据有理数的乘方可得,原式=﹣4×(−18)﹣8−12=12−8−12=−8.【解析】原式=﹣4×(−18)﹣8−12=12−8−12 =﹣8.20.(2019秋•成华区期末)计算:(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020=16÷(﹣8)−12+1=﹣2−12+1=−32;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1−12×13×(2﹣9)=﹣1−16×(﹣7)=16.21.(2020春•道里区期末)计算(1)10﹣(﹣5)+(﹣8);(2)15÷(﹣115)×(﹣216); (3)(14+16−12)×12; (4)(﹣1)10×2+(﹣2)3÷4.【分析】(1)先化简,再计算加减法即可求解;(2)将带分数化为假分数,除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加法.【解析】(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)15÷(﹣115)×(﹣216) =15×(−56)×(−136) =1336;(3)(14+16−12)×12 =14×12+16×12−12×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.22.(2018秋•建宁县期中)已知下列有理数,请按要求解答问题:﹣3,﹣|﹣312|,﹣(﹣2),0,3.5,﹣22 (1)将上列各数填入对应括号内负有理数集合{ ﹣3,﹣|﹣312|,﹣22 } 整数集合{ ﹣3,﹣(﹣2),0,﹣22 }(2)画数轴,并把上列各数在数轴上表示出来【分析】(1)根据负有理数和整数的概念求解可得;(2)将各数表示在数轴上.【解析】(1)负有理数集合{﹣3,﹣|﹣312|,﹣22} 整数集合{﹣3,﹣(﹣2),0,﹣22}故答案为:﹣3,﹣|﹣312|,﹣22;﹣3,﹣(﹣2),0,﹣22.(2)如图所示23.阅读下面的材料,并解决问题:根据乘方的意义可得42=4×4,43=4×4×4,则42×43=(4×4)×(4×4×4)=4×4×4×4×4=45.(1)运用上面的方法计算55×54= 59 ,a 2•a 4=a (6 ). (2)归纳以上的学习过程,可猜测结论:a m •a n = a m +n (m ,n 是正整数)【分析】(1)仿照题例,根据乘方的意义,可得结论;(2)根据题例和(1)的结果,观察底数指数间关系,得猜测.【解析】(1)55×54=(5×5×5×5×5)×(5×5×5×5)=5×5×5×5×5×5×5×5×5=59;a 2•a 4=(a •a )•(a •a •a •a ) =a •a •a •a •a •a=a 6.故答案为:59,6;(2)∵42×43=42+3=4555×54=54+5=59,∴猜测a m •a n =a m +n故答案为:a m +n24.(2019秋•高邮市校级月考)回答下列问题:(1)填空:①(2×3)2= 36 ;22×32= 36②(−12×8)2= 16 ;(−12)2×82= 16③(−12×2)3= ﹣1 ;(−12)3×23= ﹣1(2)想一想:(1)中每组中的两个算式的结果是否相等? 是 (填“是”或“不是”).(3)猜一猜:当n 为正整数时,(ab )n = a n b n .(4)试一试:(112)2017×(−23)2017= ﹣1 . 【分析】根据已知条件进行计算,然后归纳结论即可.【解析】(1)①(2×3)2=62=36; 22×32=4×9=36;故答案为36,36;②(−12×8)2=(﹣4)2=16,(−12)2×82=14×64=26 故答案为16,26;③(−12×2)3=(﹣1)3=﹣1,(−12)3×23=−18×8=﹣1故答案为﹣1,﹣1;(2)答案为 是.(3)答案为a n b n ;(4):(112)2017×(−23)2017=:[32×(−23)]2017=.(﹣1)2017=﹣1, 故答案为﹣1.。
七年级数学上册第二章有理数一.知识点梳理:(一)有理数的相关概念1.正数和负数可以表示具有的量,既不是正数也不是负数。
2.有理数的分类:(1)有理数可以分为和;(2)有理数可以分为,和 .3.非负数是指;非正数是指 .(二)数轴绝对值相反数1.数轴:规定了的直线叫做数轴。
数轴是研究有理数的工具。
2.任何一个有理数都可以用数轴上的来表示。
3.任何一个数都有两部分组成: .4.相反数:只有的两个数互为相反数,0的相反数是 .一个数a的相反数是 .5. 绝对值:在数轴上,一个数所对应的点与原点之间的距离,叫做这个数的绝对值.一个数a的绝对值可以表示为 .6.绝对值的性质:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。
7.有理数大小的比较:数轴上两个点表示的数,右边的总比左边的;正数都与0;负数都 0;两个负数比较,绝对值大的反而(三)有理数的加减运算1.有理数的加法法则:同号两数相加,取的符号,并把绝对值;绝对值不等的异号两数相加,取的符号,并用较大数的绝对值较小数的绝对值;互为相反数的两数相加得;一个数同0相加得。
2.有理数的减法法则:减去一个数等于这个数的相反数。
3.有理数的运算是先定符号,再定绝对值。
要分清“+”是正号还是加号.4.数轴上点A表示数a,点B表示数b,则点A,B之间的距离是 .5.非负数的性质:若几个非负数的和为0,则每一个非负数的值为 .(四)有理数的乘法运算有理数的乘除运算法则:1.两数相乘,同号得,异号得,并把相乘。
2.任何数与0相乘都得3.几个不等于0的数相乘,积的符号由的个数决定。
当负因数有个数时,积为正;当负因数有个数时,积为负,并把绝对值相乘。
4.几个数相乘,有一个因数为0时,积为5.进行有理数乘法运算时,先确定积的符号,再确定积的绝对值 .6.进行乘除运算时,带分数要化为假分数 .(五)有理数的除法有理数的除法法则:除以一个数(不为0))等于乘以这个数的倒数(六)乘方的意义及性质1.求n个相同因数a的的运算叫做乘方,记作a n,这里a叫,n叫做 .乘方的结果叫 .2.底数是分数或负数时,要用括号把底数括起来。
有理数混合运算一、基础知识1.有理数的混合运算,要掌握运算顺序,即先算乘方,再算乘除,最后算加减,如有括号,就先算括号里面的。
2.进行有理数运算时,要认真看题,除考虑运算顺序外,还要善于观察题目中各数之间的特殊关系,灵活运用运算律,适当改变运算顺序,寻求比较合理的计算方法,以求简化运算。
3.运算过程中,运用符号法则正确熟练地确定符号,仍然是关键所在。
4.乘除及乘方运算,带分数化假分数,小数往往化分数。
二、实战演练――基础卷一.填空题:34-6.8+5=______。
77232.42⨯(-)+(-)÷(-0.25)=______。
341.-3.2+33.当a=-5.4,b=6,c=4.8,d=-1.2时,代数式a c+的值为______。
-d b4.x,y为有理数,且x+1+2(y+3)2=0,则代数式x2-3xy+2y2的值为______。
5.已知3a-2b=5,代数式2(3a-2b)2-3(2b-3a)的值为______。
6.若a为最大的负整数,则a2001+a2002=______。
二.选择题:1.下列说法正确的是()A.当n为自然数时,4n(n+1)必是8的倍数;B.a为有理数时,-a+a可能为负数;C.a+2一定比2大;D.a,b为有理数时,a+b一定大于a-b。
2.若a与b的差为正数,则一定有()A.a>0;B.a>b;C.a>b;D.a>0或b<0。
3.下列各组数中,数值相等的是()A.32和23;B.(-2)3和-23;C.-32和(-3)2;D.(-3⨯2)2和(-3⨯22)。
4.若ab<0,则下列各式中一定成立的个数是()a<0。
bA.1个;B.2个;C.3个;D.4个。
5.设a=-(1-2)-3,b=-1-(2-3),c=(-1)-(-2)-3,则-a-[b-(-c)]的值为()(1)a<0<b,(2)a≠0,(3)a>0,且b<0,(4)A.1;B.4;C.-1;D.-2。
一、解答题 1.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 2.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可. 【详解】解:|3|=3-;224=--,(1)=1-- 如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 3.计算(1)28()5(0.4)5+----; (2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦;(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】(1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案;(4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案. 【详解】解:(1)28()5(0.4)5+----2850.45=--+3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯()233662557=-⨯+-⨯-⨯2366557⎛⎫=-⨯+- ⎪⎝⎭667=--667=-(4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=---1164=-+315.4=【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ =2111()1369⨯-÷=519()3610⨯-⨯ =14-; (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28 =26. 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 5.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+= 算式2:()()()()34263824,-⨯-+-=-⨯-= 算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-= 故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维. 6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17- 【分析】(1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2) =﹣16-5 =-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷-=17-【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ (2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3 【分析】(1)先算乘方和小括号,再算中括号,后算加减即可; (2)把除法转化为乘法,再用乘法的分配率计算即可. 【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯-182493=-+=. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 8.计算: (1)113623⎛⎫-⨯-⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21. 【分析】(1)根据有理数的混合运算法则即可求解; (2)根据有理数的混合运算法则即可求解. 【详解】 解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+ =2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+ =1244--+ =-21. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则. 9.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额. 解析:(1)填表见解析;(2)40万元. 【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可; (2)把该商场下半年6个月的利润相加即可. 【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14 =40(万元)∴该商场下半年6个月的总利润额为40万元. 【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算. 10.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可. 【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键. 11.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭解析:(1)12- ;(2)0 【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可 (2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可 【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102-- =-12(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭=()()2386154-⨯---⨯- =243660--+ =0 【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序. 12.计算: (1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法; (2)先计算乘方,同时计算绝对值及去括号,再计算加减法. 【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=1 1232 --+=14 2-=132 -.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.13.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.14.计算:(1)5721()()129336--÷-(2)22115()(3)(12)23-+÷-⨯---⨯解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)15282437 1293--⨯-=-++=.(2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.16.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.17.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.解析:(1)1-(2)0.5(3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.18.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.19.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.20.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg).)根据记录的数据可知前三天共卖出kg(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.21.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.22.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯-=16×(-18)-8+(-8)×2=-2-8-16=−26.【点睛】本题考查有理数的混合运算,理解“a n,表示a的下n次方”的意义是正确计算的前提.23.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.24.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 26.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.27.在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.28.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.29.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.30.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.。
第三讲有理数的运算知识导引本讲主要是有理数的运算,包括有理数的加、减、乘、除、乘方等多种运算.进行有理数的 混合运算时要注意以下运算顺序:(1 )先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按从小括号、中括号到大括号依次进行. 进 行运算时一般按此顺序进行,能用简便方法的尽量用简便方法. 若恰当的运用交换律、结合律、分配律有时可以简化计算•通过有理数的混合运算来解决实际问题,要注意分析题意, 列出正确的算式.用有效数字表示近似数的精确度比较复杂也较难理解,其关键是理解有效数字的概念•要注意用科学记数法表示的数字或者是带有单位的数字的精确度. 典例分析24 1 例「计算:(1)3(-2)2-12 (丁 4).一 2.5 "0.75 (一1) (_13) (_1.4) (一3)54 51 1 1 1例2:计算:(1) —+— +十…+—(2) 1 — 2+ 3 — 4+ - + 2007— 20082 6 1290例2— 1:计算:1■ 1 1113 2 43 51998 2000例3: (1)如果ab v 0, a — b >0,试确定a 、b 的正负. (2)如果ab v 0, a — b v 0,试确定a 、b 的正负. (3)如果ab v 0, a + b >0, a - b 试确定a 、b 的正负.例3— 1:若ab v 0,求旦十% +西的值. a |b| ab(2) - 4.41 0.59 0.41 1.59.例1 — 1:计算:a 丨bc abc…,」+ 一+一 = _1,求___的值.abc|abc|例5 — 1:下表是某报纸公布的我国 九五”期间国内生产总值(GDP )的统计表,那么这几年我国的国内生产总值平均每年比上一年增长()A 、0.46万亿元B 、0.575万亿元C 、7.78万亿元D 、9.725万亿元例5— 2:甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市连续两次降价 20% ,乙超市一次性降价 40%,丙超市第一次降价 30%,第二次降价10%,那么顾客在( )超 市买这种商品会更合算. A 、甲B 、乙C 、丙D 、一样I例4:已知 2m-n =3,求 2(2m-n)m +2 n m+2 n2m - n m 2n_3的值.探究活动例:在一次团体操排练活动中,某班 45名学生面向老师站成一列横队•老师每次让其中任 意6名学生向后转(不论原来方向如何)•问:能否经过若干次后全体学生都背向老师站立? 如果能,请设计一种方案;如不能,请说明理由.例6: (1)观察一列数2, 4, 8,16,(2 )如果要求1 3 32 3^.320的值,可令S = 1 3 3233 (320)①将①式两边同乘以 3,得___________________ ②由②式减去①式,得 S = ___________________ .(3)用由特殊到一般得方法知:若数列 a 1 , a 2, a 3,…,a .,从第二项开始每一项与前一项之比的常数为 q ,则a n =(用含a 1 , q, n 的代数式表示).如果这个常数q 工1,那么a 1 + a ? + a 3 +…+ a n = _______________________ (用含 a 1 , q , n 的代数式表示)规律题:若ai ,a,a 3,…,a n 中,每一项与前一项之比是 q ,则(1) a n =a i q n-1;adq n-1)(2) a i +a 2+a 3+...+a n= -------------------------------------;q-i—5m+1-1.(5-1)S=5 m+1-1 S= —4(作差法)反思:若站屜抚,…,a n 中,每一项与前一项之比是 ■则, a 1=a 1 ,a=a 1q,a 3=a 1q 2,…,a n =a 1q n-1,2n-1a 1+a 2+a 3+...+a n =a 1+a 1q+a 1q +...+a 1q「q n 1=a 1(1+q+q 2+...+q n-1 )=a 1 ?q-1思维训练题:q ,a 1(q n-1)q-1(1) (2) n n+1 ,m +m +m +...+m m n(m x+1-1)m-153(518-1)53+54+55+...+520= ------------------------------------46、若 x — y = 3,贝V 2x — 2y = = _______________ (直接写出答案)•8、 黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别 想再 爬”出来,无独有偶,数字中也有类似的黑洞”满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌•例如,任意写出一个三位数,它的各个数位上 的数字都不想等,用这个三位数各个数位上的数字组成一个最大数和一个最小数, 并用最大数减去最小数,得到一个新的三位数,对于新得到的三位数, 重复上面的过程,又得到一个新的三位数,一直重复下去,,就得到一个固定的数 ________ ,我们称它为三位数的黑洞数.用同样的方法,你可以得到四位数的黑洞数为 ________________ •9、 计算:_2 28 ^2)2•学力训练A 组务实基础1、负实数a 的倒数是(12、使--1二0成立的条件是C 、a = 1D 、a = ±13、如果m 表示有理数,那么 -m 的值(A 、可能是负数 C 、必定是正数4、下列各式中,计算正确的是( 不可能是负数可能是负数也可能是正数 A 、— 8-2X6=(— 8 — 2) X6 B 、2送牛2疋舟“ 八 2006 丄“ 八 2007 / C 、( -1) (-1) - 19D 、-(-3) = -95、如图简单的数值运算程序,当输入x 的值为一1时,则输出的数值为> 輸出表示运算a — b + c ,图形 7、图形表示预算x + n — y — m ,则10、杭州市出租车的收费标准如下:3千米以内(含3千米)收费10元,超过3千米的部分每千米收费2元.超过起步里程10千米以上的部分加收50%,即每千米3元(不足1千米以1千米计算). (1 )小明有一次乘坐出租车行驶了 4.1千米,他应付车费多少元?(2)若小明乘坐出租车行驶了14.9千米,他应付车费多少元?(3 )小明家距离学校13.1千米,他带了31元钱,则他从学校坐出租车到家,钱够吗?如果够,还剩多少钱?如果不够,他至少要先走多少千米路?B组瞄准中考2 93 1、(荆门中考)下列计算:① 0—(—5)=—5 :②(一3)+ (—9)=- 12;③一(「一)二-—;3 4 2④(一36) -(—9)=—4.其中正确的个数是()A、1个B、2个C、3个D、4个2、(青岛中考)生物学指出:在生态系统中,每输入一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1》H2:h H3》H4\H5》H 6这条生物链中(H n表示第n个营养级,n= 1, 2,…,6),要使获得10千焦的能量,需要比提供的能量约为()A、106千焦B、105千焦C、104千焦D、103千焦3、(日照中考)观察图中正方形四个顶点所标的数字的规律,可知数2011应标在()4、 (盐城中考)根据如图所示的程序计算,若输入的 出y 的值为 ________ .5、 (绍兴中考)小明测得其一周的体温并记录如下表:星期 日 —-二 三 四五A周平均体涓体温36,636. 7 37,037, 336,937, 136,9其中星期四的体温的数据被墨迹污染•根据表中数据,可得星期四的体温为 6、(常德中考)如图,一个数表有 7行7列,设a i j 表示第i 行第j 列上的数(其中i = 1 , 2, 3,…,7; j = 1, 2, 3,…,7).例 如:第5行第3列上的数a 53 = 7. (1) __________________________________________ ( a 23 _a?2) + ( a 52 - a 53) =.第2个 正方形第4个正方形A 、第502个正方形的左下角 C 、第503个正方形的左上角B 、第502个正方形的右下角 D 、第503个正方形的右下角x 的值为1,则输1第4题图)第3个正方形/辅击乎/(2)此数表中的四个数a np , a nk , a mp, a mk满足(a np —a nk)a mk —a mp )=4 1 57、计算:(1) 5- -[2- (-4.8) -(-48、(河南中考)要测量M , N两处的高度差,直接不好测.现另有五个点: A , B , C, D ,E,先测量每相邻两点间的高度差.如果测得点A比点M高0.32m,就在A —M列内填上0.32;如果点B比点A低0.46m,就在B —A列内填上—0.46,以此类推.现实际测得结果如下表所示(单位:m).1 2 32 3 43 4 54 5 65 6 767 878 9(2)9、如图所示,在数轴上有三个点 A 、B 、C .I f I £ I I_-5 -4 -3 -2 -1 0 1 2 3 4 5(1)将点B 向左移动四个单位,此时该点表示的数是多少?(2)将点C 向左移动6个单位的到数x i ,再向右移动2个单位得到数X 2,那么X i , X 2分 别是多少?请用把移动后的点B , x 1 , X 2表示的数连起来.(3)怎样移动A 、B 、C 中的两点,才能使三个点表示的数相同?10、(怀化中考)有一列数,第一个数X i = 1,第二个数x 2 = 4,第三个数记为 X 3,以后依次记为X 4 , X 5,…,X n ,从第二个数开始,每个数是它相邻两个数的和的一半(如(1) 求第三、四、五个数,并写出计算过程. (2) 探索这一列数的规律,猜想第k 个数X k 等于多少(k 是大于2的整数),请由此算出X 2005 等于多少.X 2 二X 1 X 32).=24 ,…,则空的值为()983、已知p 二辔,Q 二吗,则P , Q 的大小关系为P _____________ Q .9 94、吉尔最近搬进了新居,房号是一个三位数•这个数与三个数位上的数字之和是 429.则房号三个数位上的数字的乘积是 __________ .5、黑板上写有1, 2, 3,…,1997, 1998,这1998个自然数,对它们进行操作,每次操作 规则如下:擦掉写在黑板上的三个数后, 再添加上所擦掉三个数之和的个位数字,例如:擦掉5, 13和1998后,添加上6;若再擦掉6, 6, 38,添加上0.如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.C 组冲击金牌1、若! 疋一种数学运算符号, 并且 1! = 1, 2! = 2 X1 = 2, 3! = 3 X2 X1 = 6, 4! = 4 X3 >2 X1 50A 、——B 、99!C 、 9900492、如果其+其十[3 -1,则. 以2七3 -的值为( )材 址2七D 、2!D 、不确定A 、一 1B 、1C 、 ±第三讲有理数的运算参考答案典例精析 4、0或—6 5、哈尔滨温差最大,为 14C ;大连的温差最小,为 8C5— 1、C5— 2、B6、( 1) 2218 2n ;(2) 3S =3 32 33 34 … 321 丄(321-1)探究活动乘积为—1”,故这是不可能的.A 组1、 B2、 B3、 B4、D5、16、6 7、08、495 6174 9、一 3 10(1) 14 元;(2) 39元; (3) 不够, 右/[、曲土丰 1.1千米路.至少要先走B 组1、 B2、 A3、 C4、45、36.7 6、 (1) 0 ; (2) 07(1) 3-2(2) —8、M 处比N 处高0.34m 9、( 1)因为点B 所表示的数是—1,则—1 — 43=—5,此时该点表示的数是一 5; (2)点C 表示的数是4,将点C 向左移动6个单位得到 2,再向右移2个单位得到数X 2,因一2+ 2= 0,故X 2表示的数是0,故一5v — 2v 0; (3)把点A 向右移动2个单位,点C 向左移动5个单X + X 。
初中数学培优:有理数的乘方一、乘方的应用【典例】有人说,将一张纸对折,再对折,重复下去,第43次后纸的厚度便超过地球到月球的距离,已知一张纸厚0.006cm,地球到月球的距离约为3.85×108m,用计算器算一下这种说法是否可信.【解答】解:对折43次后,这张纸的厚度为0.006×243≈5.28×1010(cm)=5.28×108(m),∵5.28×108m>3.85×108m,∴这种说法是可信的.【巩固】1883年,康托尔构造的这个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,上图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为()A.23B.23C.(23)D.(23)K1【解答】解:根据题意知:第一阶段时,余下的线段的长度之和为23,第二阶段时,余下的线段的长度之和为23×23=(23)2,第三阶段时,余下的线段的长度之和为23×23×23=(23)3,…以此类推,当达到第n个阶段时(n为正整数),余下的线段的长度之和为(23)n.故选:C.二、等比数列求和【典例】阅读下列材料:小明为了计算1+2+22+…+22020+22021的值,采用以下方法:设S=1+2+22+…+22020+22021①则2S=2+22+…+22021+22022②②﹣①得,2S﹣S=S=22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220=;(2)求1+12+122+⋯+1250=;(3)求1+a+a2+a3+…+a n的和.(a>1,n是正整数,请写出计算过程)【解答】解:(1)设S=2+22+…+220,则:2S=22+23+…+220+221,2S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2,∴S=221﹣2,故答案为:221﹣2.(2)设S=1+12+122+⋯+1250,则:2S=2+1+12+122+⋯+1249,2S﹣S=(2+1+12+122+⋯+1249)﹣(1+12+122+⋯+1250)=2−1250,∴S=2−1250,故答案为:2−1250.(3)设S=1+a+a2+a3+…+a n,则:a S=a+a2+a3+…+a n+a n+1,a S﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=r1−1K1.【解答】设,则,巩固练习1.已知(a+1)2=25,且a<0,|a+3|+|b+2|=14,且ab>0,则a+b=()A.﹣19B.﹣9C.13D.3【解答】解;∵(a+1)2=25,∴a+1=±5,∴a=﹣6或4,∵a<0,∴a=﹣6,∵|a+3|+|b+2|=14∴b+2=±11,b=9或﹣13,∵ab>0,a<0,∴b<0,b=﹣13,∴a+b=﹣6﹣13=﹣19.故选:A.2.若a,b,c均为整数且满足(a﹣b)10+(a﹣c)10=1,则|a﹣b|+|b﹣c|+|c﹣a|=()A.1B.2C.3D.4【解答】解:因为a,b,c均为整数,所以a﹣b和a﹣c均为整数,从而由(a﹣b)10+(a﹣c)10=1可得|−U=1|−U=1.|−U=0或|−U=0若|−U=1|−U=0则a=c,从而|a﹣b|+|b﹣c|+|c﹣a|=|a﹣b|+|b﹣a|+|a﹣a|=2|a﹣b|=2.若|−U=0|−U=1则a=b,从而|a﹣b|+|b﹣c|+|c﹣a|=|a﹣a|+|a﹣c|+|c﹣a|=2|a﹣c|=2.因此,|a﹣b|+|b﹣c|+|c﹣a|=2.故选:B.3.如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中值可以等于732的是()A.A1B.B1C.A2D.B3【解答】解:A1=2n﹣2+2n﹣4+2n﹣6=732,整理可得:2n=248,n不为整数;A2=2n﹣8+2n﹣10+2n﹣12=732,整理可得:2n=254,n不为整数;B1=2n﹣2+2n﹣8+2n﹣14=732,整理可得:2n=252,n不为整数;B3=2n﹣6+2n﹣12+2n﹣18=732,整理可得:2n=256,n=8;故选:D.4.若|a+b+1|与(a﹣b+1)2互为相反数,则a与b的大小关系是()A.a>b B.a=b C.a<b D.a≥b【解答】解:∵|a+b+1|与(a﹣b+1)2互为相反数,∴|a+b+1|+(a﹣b+1)2=0,∴|a+b+1|=0,(a﹣b+1)2=0,即a+b+1=0,a﹣b+1=0,∴a=﹣1,b=0,∴﹣1<0,即a<b.故选:C.5.很多整数都可以表示为几个互异的平方数之和,例如30=12+22+32+42=12+22+52,现将2012表示为k(k为正整数)个互异的平方数之和,则k的最小值是()A.2B.3C.4D.5【解答】解:2012=392+212+72+12,∴k的最小值是4.故选:C.6.计算:[−75×(−212)−1]÷9÷1(−0.75)2−|2+(−12)3×52|=.【解答】解:原式=[75×52−1]÷9÷169−98=52×19×916−98=−3132.7.若(x+1)2与|xy+2|互为相反数,则:1(r2)+1(r3)(r1)+⋯+1(r2011)(r2009)的值是【解答】解:∵(x+1)2与|xy+2|互为相反数,∴(x+1)2=0,|xy+2|=0,∴x=﹣1,y=2.代入原式可得11×2+12×3+⋯+12010×2011=1−12+12−13+13⋯+12010−12011=20102011.故答案为20102011.8.试写出所有3个连续正整数立方和的最大公约数,并证明.【解答】解:设三个连续的正整数的立方和为f(n)=(n﹣1)3+n3+(n+1)3=3n3+6n=3n3﹣3n+9n=3n(n﹣1)(n+1)+9n又∵当n≥2时,(n﹣1)n(n+1)是三个连续的整数的积,所以必是3的倍数,所以3n(n﹣1)(n+1)能被9整除.∴f(n)能被9整除∴三个连续的正整数的立方和的最大公约数是9.9.已知a,b为正整数,求M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值.【解答】解:∵a,b为正整数,要使得M=3a2﹣ab2﹣2b﹣4的值为正整数,显然有a≥2,当a=2时,b只能为1,此时M=4,故M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值不超过4;当a=3时,b只能为1或2,若b=1,则M=18,若b=2,则M=7;当a=4时,b只能为1或2或3,若b=1,则M=38,若b=2,则M=24,若b=,3,则M=2;若M=1,即3a2﹣ab2﹣2b﹣4=1,即3a2﹣ab2=2b+5①,注意到2b+5为奇数,∵3a2是偶数,又偶数减奇数才得奇数,∴a是偶数,b是偶数.此时3a2﹣ab2被4整除所得余数为3,2b+5被4整除所得余数为1,故①式不可能成立,即M≠1.故M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值为2.10.日常生活中,我们使用的是十进制数,而计算机使用的数是二进制数(数位的进位方法是“逢二进一”),有时候也会用到三进制数(数位的进位方法是“逢三进一”).如三进位制数201可用十进制数表示为2×32+0×3+1=19;二进位制数1011可用十进制数表示为1×23+0×22+1×2+1=11.(1)现有三进位制数a=221,二进位制数b=10111,试比较a与b的大小关系.(2)填空:将十进制数18用二进制数表示为.(3)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图是一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.求孩子出生的天数.【解答】解:(1)三进位制数a=221用十进制数表示为2×32+2×3+1=25,二进位制数b=10111用十进制数表示为24+22+1×2+1=23,所以a>b.(2)因为18=24+2,所以十进制数18用二进制数表示为10010.故答案为:10010.(3)图中的数为6+2×7+3×72+73=510,即孩子出生510天.11.阅读下列材料:小明为了计算1+2+22+…+22020+22021的值,采用以下方法:设S=1+2+22+…+22020+22021①则2S=2+22+…+22021+22022②②﹣①得,2S﹣S=S=22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220=;(2)求1+12+122+⋯+1250=;(3)求1+a+a2+a3+…+a n的和.(a>1,n是正整数,请写出计算过程)【解答】解:(1)设S=2+22+…+220,则:2S=22+23+…+220+221,2S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2,∴S=221﹣2,故答案为:221﹣2.(2)设S=1+12+122+⋯+1250,则:2S=2+1+12+122+⋯+1249,2S﹣S=(2+1+12+122+⋯+1249)﹣(1+12+122+⋯+1250)=2−1250,∴S=2−1250,故答案为:2−1250.(3)设S=1+a+a2+a3+…+a n,则:a S=a+a2+a3+…+a n+a n+1,a S﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=r1−1K1.12.老财主临终前将全部银元分给他的四个儿子.老大分得全部银元4等份中的1份,多出的1枚银元给了丫环;老二分得余下银元4等份中的1份,多出的1枚银元给了丫环;老三分得余下银元4等份中的1份,多出的1枚银元给了丫环;老四分得余下银元4等份中的1份,多出的1枚银元给了丫环;余下的银元又分成4等份,四个儿子各得一份,多出的1枚银元给了丫环.问老财主至少要有多少块银元才够分.【解答】解:从每次分得的银元都多出一枚可知,只要增加3枚银元,则每次分到的都是4的倍数,共分了5次4的倍数,所以至少要有4×4×4×4×4=45=1024枚,由于增加了3枚银元,所以至少要1024﹣3=1021枚银元才够分,具体情况如下:第一次:老大分得(1021﹣1)÷4=255枚,第二次:老二分得(255×3﹣1)÷4=191枚,第三次:老三分得(191×3﹣1)÷4=143枚,第四次:老四分得(143×3﹣1)÷4=107枚,第五次:四个儿子各分得(107×3﹣1)÷4=80枚,所以老财主至少要有1021块银元才够分.。
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
完整版)有理数培优专题
有理数培优专题
简介
本文档将详细介绍有理数的基本概念、性质和运算规则,以及一些与有理数相关的常见问题和解法。
内容
1.有理数的定义
有理数是可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
有理数可以用分数的形式表示,例如1/2、-3/4等。
2.有理数的四则运算
加法:有理数之间的加法可以通过分数的加法规则进行计算,即分子相加,分母保持不变。
减法:有理数之间的减法可以通过分数的减法规则进行计算,即分子相减,分母保持不变。
乘法:有理数之间的乘法可以通过分数的乘法规则进行计算,即分子相乘,分母相乘。
除法:有理数之间的除法可以通过分数的除法规则进行计算,即将一个有理数乘以另一个有理数的倒数。
3.有理数的性质
有理数的加法满足交换律、结合律和分配律。
有理数的乘法满足交换律、结合律和分配律。
有理数的加法和乘法满足分数的相应性质。
有理数的乘法满足0的性质,即任何有理数乘以0的结果都是0.
4.有理数的应用
有理数在日常生活中的应用非常广泛,例如计算物品的价格、测量长度和温度等。
有理数在代数学中也有重要的应用,例如解方程、求解不等式等。
5.有理数的解题技巧
解有理数的运算题可以借助分数运算的规则,如化简分数、通
分等。
解有理数的应用题可以将问题转化为数学模型,然后进行计算。
结论
有理数作为数学的重要分支之一,具有广泛的应用领域以及丰
富的运算规则和性质。
通过研究有理数的定义、运算规则和应用,
可以提高我们的数学思维能力,并且在实际问题解决中发挥重要作用。
【关键字】精品有理数的乘除法、乘方运算培优一、有理数的乘除法1、有理数乘法法则:(1)两数相乘,同号得,异号得,并把相乘;(2)任何数同0相乘都得;(3)多个有理数相乘:a:只要有一个因数为,则积为0。
b:几个不为零的数相乘,积的符号由的个数决定,当的个数为奇数,则积为负,当的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。
3、有理数除法法则:(1)法则:除以一个数等于乘以(2)符号确定:两数相除,同号得,异号得,并把相除。
(3)0除以任何一个数,等于;0不能作!2、有理数乘方:1、个的积的运算,叫做乘方。
乘方的结果叫做;用字母表示记作,其中叫做,叫做,的结果叫做;读法:读作的次方。
2、正数的任何次幂都是,负数的次幂是负数,负数的次幂是正数。
专题一有理数乘除法运算1.计算的结果是()A.-1B.1C.D.2.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为() A. B. 99! C. 9900 D. 2!3.计算:(1);(2)(-)÷3×÷(-).专题二运用运算律简化有理数乘除法运算4.计算:(1)(-10)××(-0.1)×6;(2);(3);(4).5.阅读下列材料:计算:50÷(-+).解法一:原式=50÷-50÷+50÷=50×3-50×4+50×12=550.解法二:原式=50÷(-+)=50÷=50×6=300.解法三:原式的倒数为(-+)÷50=(-+)×=×-×+×=.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法_______是错误的.观察下面的问题,选择一种合适的方法解决: 计算:(-)÷(-+-).6.阅读第(1)小题的计算方法,再计算第(2)小题. (1)计算: 解:原式= ==.上面这种解题方法叫做拆项法. (2)计算:.专题三 有理数加减乘除混合运算7.观察下列图形:45-7-3-13-31842012-2521603-2y -2x-549图① 图② 图③ 图④ 图⑤请用你发现的规律直接写出图④中的数y : ;图⑤中的数x : . 8.计算: (1))433()313()10(871-÷-⨯-÷; (2)(524)436183÷⨯-+; (3)213)127()3265(⨯-÷+-; (4)111713(37)17732221⨯-⨯÷.专题四 中考中的有理数混合运算规律题9.(河北)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报 (12+1),第3位同学报(13+1)……这样得到的20个数的积为 .10.(自贡)若x 是不等于1的有理数,我们把11x-称为x 的差倒数,如2的差倒数是 1112=--,-1的差倒数为11112=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2012= .专题五 利用乘方进行运算10.计算2)32(-;2)32(-;2)32(--;322-;232-.11. 化简(-2)2013×(21-)201212.计算: (1)32÷278×(-32)3;(2)-12-)32(712-⨯;(3)31)3(6)61(61)6(3⨯--⨯-÷⨯-.13. 你吃过“手拉面”吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),如图所示,这样的捏合,到第多少次后可拉出128根细面条?捏合了10次后可拉出多少根细面条?专题六 利用乘方解决规律问题14.(呼伦贝尔)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是 .15.观察下面的几个算式:1+2+1=4;1+2+3+2+1=9;1+2+3+4+3+2+1=16;1+2+3+4+5+4+3+2+1=25;…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=________. 16.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计如图所示的几何图形.(1)请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值为__________. (2)请你利用图2,再设计一个能求2341111122222n ++++⋅⋅⋅+的值的几何图形.专题七 有理数加减乘除乘方混合运算:17.计算:(1)8)3(4)2(323+-⨯--⨯ (2)2)2(2)1(3210÷-+⨯-(3)]2)33()4[()10(222⨯+--+-; (4)])2(2[31)5.01()1(24--⨯⨯---;此文档是由网络收集并进行重新排版整理.word 可编辑版本!图1 图2。
一、解答题1.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.2.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯-(3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】 (1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.8.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.9.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+=2; (2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.10.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数, ∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3, ∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 18.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7- 【分析】(1)根据移动的方向和距离结合数轴即可回答; (2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解. 【详解】解:(1)点B 表示的数为-4+5=1, ∵-1<1<2,∴三个点所表示的数最小的数是-1; (2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上, 则点E 表示的数为-3. 【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键. 19.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 解析:(1)14;(2)0 【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法. 【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.20.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 22.计算:(1)()()34287⨯-+-÷; (2)()223232-+---. 解析:(1)16-;(2)6. 【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值. 【详解】(1)原式12416=--=- (2)原式34926=-+-= 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求; (3)求出所有数的绝对值的和即可. 【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10) =(5+10+13)-(4+8+6+10) =28-28 =0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 27.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷-- ()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭255104=-⨯+ 54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 解析:(1)见解析;(2)4.5km ;(3)36分钟 【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可; (2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案. 【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=, 故小红家与学校之间的距离是4.5km ; (3)小明一共跑了(2 1.51)29()km ++⨯=, 跑步用的时间是:900025036÷=(分钟). 答:小明跑步一共用了36分钟. 【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数. 【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克. (2)()5428001.56793+⨯=(克) 所以抽样检测的这些奶粉的总质量为9635克. 【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。
有理数的乘除法、乘方运算 培优
一、有理数的乘除法 1、有理数乘法法则:
(1)两数相乘,同号得 ,异号得 ,并把 相乘; (2)任何数同0相乘都得 ; (3)多个有理数相乘:
a :只要有一个因数为 ,则积为0。
b :几个不为零的数相乘,积的符号由 的个数决定,当 的个数为奇数,则积为负, 当 的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律 ; (2)乘法结合律 ; (3)乘法分配律 。
3、有理数除法法则:
(1)法则:除以一个数等于乘以
(2)符号确定:两数相除,同号得 ,异号得 ,并把 相除。
(3)0除以任何一个 数,等于 ;0不能作 ! 二、有理数乘方:
1、n 个 的积的运算,叫做乘方。
乘方的结果叫做 ;用字母表示
a
n a a a a 个⋅⋅⋅⋅记 作 ,其中a 叫做 ,n 叫做 ,n a 的结果叫做 ;读法:n
a 读作a 的n 次方。
2、正数的任何次幂都是 ,负数的 次幂是负数,负数的 次幂是正数。
专题一 有理数乘除法运算
1.计算()()⎪⎭
⎫
⎝⎛-
⨯-÷-5151的结果是 ( ) A.-1 B.1 C.25
1
-
D.25- 2.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则
100!
98!
的值为( ) A. 5049
B. 99!
C. 9900
D. 2!
3.计算:
(1)2
11(2)573÷-⨯; (2)(-53)÷3×321÷(-4
3).
专题二 运用运算律简化有理数乘除法运算
4.计算:
(1)(-10)×13 ×(-0.1)×6; (2)3771
(1)(1)48127--⨯-;
(3)43510.712
(15)0.7(15)9494⨯+⨯-+⨯+⨯-; (4)16
191517
⨯.
5.阅读下列材料:
计算:50÷(
13-14+112
). 解法一:原式=50÷13-50÷14+50÷1
12=50×3-50×4+50×12=550.
解法二:原式=50÷(412-312+112)=50÷2
12=50×6=300.
解法三:原式的倒数为(13-14+1
12
)÷50
=(13-14+112)×150=13×150-14×150+112×150=1300
.故原式=300.
上述得出的结果不同,肯定有错误的解法,你认为解法_______是错误的. 观察下面的问题,选择一种合适的方法解决: 计算:(-142)÷(16-314+23-2
7
).
6.阅读第(1)小题的计算方法,再计算第(2)小题. (1)计算:)2
13(4317)329(655
-++-+- 解:原式=⎥⎦⎤
⎢⎣⎡
-+-+++⎥⎦⎤
⎢⎣⎡
-+-+⎥⎦⎤
⎢⎣⎡
-+-)21()3()43
17()32()9()65()5(
=[]⎥⎦⎤⎢⎣
⎡-++
-+-+-++-+-)21(43)3
2()65()3(17)9()5(=4
11)411(0-=-+. 上面这种解题方法叫做拆项法. (2)计算:)2
11(324000)321999()65
2000(-++-+-.
专题三 有理数加减乘除混合运算
7.观察下列图形:
45-7
-3
-13-318
4
2012-2
5
21603
-2
y -2x
-5
49
图① 图② 图③ 图④ 图⑤
请用你发现的规律直接写出图④中的数y : ;图⑤中的数x : . 8.计算:
(1))433()313()10(871-÷-⨯-÷; (2)
(524)4
3
6183÷⨯-+;
(3)213)127()3265(⨯-÷+-; (4)111713(37)17732221
⨯-⨯÷.
专题四 中考中的有理数混合运算规律题
9.(河北)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位 同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11
+1),第2位同学报 (12+1),第3位同学报(1
3
+1)……这样得到的20个数的积为 .
10.(自贡)若x 是不等于1的有理数,我们把
1
1x
-称为x 的差倒数,如2的差倒数是 1112=--,-1的差倒数为11112
=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2
的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2012= .
专题五 利用乘方进行运算
10.计算2)32(-;2)32(-;2)32(--;322-;23
2
-.
11. 化简(-2)2013×(2
1-)2012
12.计算: (1)32
÷278×(-32)3;(2)-12-)32(712-⨯;(3)3
1)3(6)61(61)6(3⨯--⨯-÷⨯-.
13. 你吃过“手拉面”吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),如图所示,这样的捏合,到第多少次后可拉出128根细面条?捏合了10次后可拉出多少根细面条?
专题六 利用乘方解决规律问题
14.(呼伦贝尔)观察下列算式:21
=2,22
=4,23
=8,24
=16,25
=32,26
=64,27
=128,28
=256,…
通过观察,用所发现的规律确定215
的个位数字是 .
15.观察下面的几个算式:1+2+1=4;1+2+3+2+1=9;1+2+3+4+3+2+1=16;1+2+3+4+5+4+3+2+1=25;…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=________. 16.在数学活动中,小明为了求23411111
22222
n ++++⋅⋅⋅+的值(结果用n 表示)
,设计如图所示的几何图形.
(1)请你利用这个几何图形求
23411111
22222
n ++++⋅⋅⋅+的值为__________. (2)请你利用图2,再设计一个能求23411111
22222
n ++++⋅⋅⋅+的值的几何图形.
专题七 有理数加减乘除乘方混合运算:
17.计算:
(1)8)3(4)2(32
3
+-⨯--⨯ (2)2)2(2)1(3
2
10
÷-+⨯-
(3)]2)33()4[()10(2
2
2
⨯+--+-; (4)])2(2[3
1
)5.01()1(24
--⨯⨯
---; 1
221
231
241
2
图1 图2。