第3章 uCOS-II的中断和时钟
- 格式:ppt
- 大小:594.00 KB
- 文档页数:36
u c o s i i中文书邵贝贝集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第5章时间管理在节时钟节拍中曾提到,μC/OS-Ⅱ(其它内核也一样)要求用户提供定时中断来实现延时与超时控制等功能。
这个定时中断叫做时钟节拍,它应该每秒发生10至100次。
时钟节拍的实际频率是由用户的应用程序决定的。
时钟节拍的频率越高,系统的负荷就越重。
节讨论了时钟的中断服务子程序和节时钟节函数OSTimeTick——该函数用于通知μC/OS-Ⅱ发生了时钟节拍中断。
本章主要讲述五个与时钟节拍有关的系统服务:OSTimeDly()OSTimeDlyHMSM()OSTimeDlyResume()OSTimeGet()OSTimeSet()本章所提到的函数可以在文件中找到。
5.0任务延时函数,OSTimeDly()μC/OS-Ⅱ提供了这样一个系统服务:申请该服务的任务可以延时一段时间,这段时间的长短是用时钟节拍的数目来确定的。
实现这个系统服务的函数叫做OSTimeDly()。
调用该函数会使μC/OS-Ⅱ进行一次任务调度,并且执行下一个优先级最高的就绪态任务。
任务调用OSTimeDly()后,一旦规定的时间期满或者有其它的任务通过调用OSTimeDlyResume()取消了延时,它就会马上进入就绪状态。
注意,只有当该任务在所有就绪任务中具有最高的优先级时,它才会立即运行。
程序清单所示的是任务延时函数OSTimeDly()的代码。
用户的应用程序是通过提供延时的时钟节拍数——一个1 到65535之间的数,来调用该函数的。
如果用户指定0值[(1)],则表明用户不想延时任务,函数会立即返回到调用者。
非0值会使得任务延时函数OSTimeDly()将当前任务从就绪表中移除[(2)]。
接着,这个延时节拍数会被保存在当前任务的OS_TCB中[(3)],并且通过OSTimeTick()每隔一个时钟节拍就减少一个延时节拍数。
北航ARM9实验报告:实验3uCOS-II实验北航 ARM9 实验报告:实验 3uCOSII 实验一、实验目的本次实验的主要目的是深入了解和掌握 uCOSII 实时操作系统在ARM9 平台上的移植和应用。
通过实际操作,熟悉 uCOSII 的任务管理、内存管理、中断处理等核心机制,提高对实时操作系统的理解和应用能力,为后续的嵌入式系统开发打下坚实的基础。
二、实验环境1、硬件环境:ARM9 开发板、PC 机。
2、软件环境:Keil MDK 集成开发环境、uCOSII 源代码。
三、实验原理uCOSII 是一个可裁剪、可剥夺型的多任务实时内核,具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点。
其基本原理包括任务管理、任务调度、时间管理、内存管理和中断管理等。
任务管理:uCOSII 中的任务是一个独立的执行流,每个任务都有自己的堆栈空间和任务控制块(TCB)。
任务可以处于就绪、运行、等待、挂起等状态。
任务调度:采用基于优先级的抢占式调度算法,始终让优先级最高的就绪任务运行。
时间管理:通过系统时钟节拍来实现任务的延时和定时功能。
内存管理:提供了简单的内存分区管理和内存块管理机制。
中断管理:支持中断嵌套,在中断服务程序中可以进行任务切换。
四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM9 芯片型号,并配置相关的编译选项。
2、导入 uCOSII 源代码将 uCOSII 的源代码导入到工程中,并对相关的文件进行配置,如设置任务堆栈大小、系统时钟节拍频率等。
3、编写任务函数根据实验要求,编写多个任务函数,每个任务实现不同的功能。
4、创建任务在主函数中使用 uCOSII 提供的 API 函数创建任务,并设置任务的优先级。
5、启动操作系统调用 uCOSII 的启动函数,使操作系统开始运行,进行任务调度。
6、调试与测试通过单步调试、查看变量值和输出信息等方式,对系统的运行情况进行调试和测试,确保任务的执行符合预期。
摘要:μC/OS-II是一种适用于嵌入式系统的抢占式实时多任务操作系统,开放源代码,便于学习和使用。
介绍μC/OS-II在任务级和中断级的任务切换原理,以及这一操作系统基于嵌入式系统的对于中断的处理;相对于内存资源较少的单片机,着重讨论一种优化的实用堆栈格式和切换形式,以提高资源的利用率;结合MSP430单片机,做具体的分析。
关键词:实时多任务操作系统μC/OS MSP430 中断堆栈引言在嵌入式操作系统领域,由Jean J. Labrosse开发的μC/OS,由于开放源代码和强大而稳定的功能,曾经一度在嵌入式系统领域引起强烈反响。
而其本人也早已成为了嵌入式系统会议(美国)的顾问委员会的成员。
不管是对于初学者,还是有经验的工程师,μC/OS开放源代码的方式使其不但知其然,还知其所以然。
通过对于系统内部结构的深入了解,能更加方便地进行开发和调试;并且在这种条件下,完全可以按照设计要求进行合理的裁减、扩充、配置和移植。
通常,购买RTOS往往需要一大笔资金,使得一般的学习者望而却步;而μC/OS对于学校研究完全免费,只有在应用于盈利项目时才需要支付少量的版权费,特别适合一般使用者的学习、研究和开发。
自1992 第1版问世以来,已有成千上万的开发者把它成功地应用于各种系统,安全性和稳定性已经得到认证,现已经通过美国FAA认证。
1 μC/OS-II的几大组成部分μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。
核心部分(OSCore.c) 是操作系统的处理核心,包括操作系统初始化、操作系统运行、中断进出的前导、时钟节拍、任务调度、事件处理等多部分。
能够维持系统基本工作的部分都在这里。
任务处理部分(OSTask.c)任务处理部分中的内容都是与任务的操作密切相关的。
包括任务的建立、删除、挂起、恢复等等。
因为μC/OS-II是以任务为基本单位调度的,所以这部分内容也相当重要。
ucos-ii的工作原理自我感觉对ucos-ii已经很熟悉了,但是在一次面试的时候,被问及ucos的工作原理,却不知道怎么叙说,从那叙说,恨啊现在网络上搜了一篇,感觉写的蛮好的,借用一下,留作以后回顾(具体作者不详,所以无法署其姓名,望原创见谅)。
uC/OS-II是一种基于优先级的可抢先的硬实时内核。
要实现多任务机制,那么目标CPU必须具备一种在运行期更改PC 的途径,否则无法做到切换。
不幸的是,直接设置PC指针,目前还没有哪个CPU支持这样的指令。
但是一般CPU都允许通过类似JMP,CALL这样的指令来间接的修改PC。
我们的多任务机制的实现也正是基于这个出发点。
事实上,我们使用CALL指令或者软中断指令来修改PC,主要是软中断。
但在一些CPU上,并不存在软中断这样的概念,所以,我们在那些CPU上,使用几条PUSH指令加上一条CALL指令来模拟一次软中断的发生。
在uC/OS-II里,每个任务都有一个任务控制块(Task Control Block),这是一个比较复杂的数据结构。
在任务控制快的偏移为0的地方,存储着一个指针,它记录了所属任务的专用堆栈地址。
事实上,在uC/OS-II内,每个任务都有自己的专用堆栈,彼此之间不能侵犯。
这点要求程序员在他们的程序中保证。
一般的做法是把他们申明成静态数组。
而且要申明成OS_STK类型。
当任务有了自己的堆栈,那么就可以将每一个任务堆栈当前位置,记录到前面谈到的任务控制快偏移为0的地方。
以后每当发生任务切换,系统必然会先进入一个中断,这一般是通过软中断或者时钟中断实现。
然后系统会先把当前任务的堆栈地址保存起来,紧接着恢复要切换的任务的堆栈地址。
由于所要切换的任务堆栈里一定也存的是地址(还记得我们前面说过的,每当发生任务切换,系统必然会先进入一个中断,而一旦中断CPU就会把地址压入堆栈),这样,就达到了修改PC为下一个任务的地址的目的。
一. UCOSII的中断过程简介系统接收到中断请求后,如果CPU处于开中断状态,系统就会中止正在运行的当前任务,而按中断向量的指向去运行中断服务子程序,当中断服务子程序运行完成后,系统会根据具体情况返回到被中止的任务继续运行,或转向另一个中断优先级别更高的就绪任务。
由于UCOS II是可剥夺型的内核,所以中断服务程序结束后,系统会根据实际情况进行一次任务调度,如果有优先级更高的任务,就去执行优先级更高的任务,而不一定要返回被中断了的任务。
二.UCOSII的中断过程的示意图三.具体中断过程1.中断到来,如果被CPU识别,CPU将查中断向量表,根据中断向量表,获得中断服务子程序的入口地址。
2.将CPU寄存器的内容压入当前任务的任务堆栈中(依处理器的而定,也可能压入被压入被中断了的任务堆栈中。
3.通知操作系统将进入中断服务子程序。
即:调用OSIntEnter()或OSIntNesting直接加1。
4.If(OSIntNesting==1){OSTCBCur->OSTCBStrPtr=SP;} //如果是第一层中断,则将堆栈指针保存到被中断任务的任务控制块中5.清中断源,否则在开中断后,这类中断将反复的打入,导致系统崩贵6.执行用户ISR7.中断服务完成后,调用OSIntExit().如果没有高优先级的任务被中断服务子程序激活而进入就绪态,那么就执行被中断了的任务,且只占用很短的时间.8.恢复所有CPU寄存器的值.9.执行中断返回指令.四.相关代码与编译器相关的数据类型:typedef unsigned char BOOLEAN;typedef unsigned char INT8U;typedef unsigned int OS_STK; //堆栈入口宽度为16 位(一) void OSIntEnter (void)的理解uCOS_II.H中定义:#ifdef OS_GLOBALS#define OS_EXT#else#define OS_EXT extern#endif //定义全局宏OS_EXT#ifndef TRUE#define TRUE 1#endifOS_EXT BOOLEAN OSRunning; //定义外部BOOLEAN类型全局变量,用来指示//核是否在运行OS_EXT INT8U OSIntNesting;//定义外部8位无符号整型数全局变量,用来表//示中断嵌套层数OS_CORE.C中的OSIntEnter()函数原型:void OSIntEnter (void){if (OSRunning == TRUE) //如果内核正在运行则进入if{if (OSIntNesting < 255) //如果嵌套层数小于255,则可以继//续{OSIntNesting++; //嵌套层数加1}}}(二)在中断服务子程序中加if ( OSIntNesting == 1){…}的原因uCOS_II.H中定义:typedef struct os_tcb {OS_STK *OSTCBStkPtr;//声明指向任务堆栈栈顶的16位指针………………} OS_TCB;//定义名为OS_TCB的结构体数据类型,即任务控制块的数据结构OS_EXT OS_TCB *OSTCBCur;//声明一个指向任务控制块的全局指针变量//用于指向当前任务的任务控制块中断服务程序中添加的代码:if ( OSIntNesting == 1){OSTCBCur->OSTCBStkPtr = SP; // 如果是第一层中断,则将被中断任务//的堆栈指针保存在被中断任务的任务//任务控制块中}关于uCOS-II的中断服务程序(ISR)中必须加“OSIntNesting == 1”的原因==避免调整堆栈指针.出现这个问题的根源是当低优先级的任务被中断,当中断完成后由于有高优先级的任务就绪,则必须调度高优先级的任务,原来的低优先级任务继续被中断着,但是此时的低优先级任务的堆栈已经被破坏,已不能被调度程序直接调度了,要想被调度而必须调整堆栈指针。
北航ARM9嵌⼊式系统实验实验三uCOS-II实验实验三 uCOS-II实验⼀、实验⽬的在内核移植了uCOS-II 的处理器上创建任务。
⼆、实验内容1)运⾏实验⼗,在超级终端上观察四个任务的切换。
2)任务1~3,每个控制“红”、“绿”、“蓝”⼀种颜⾊的显⽰,适当增加OSTimeDly()的时间,且优先级⾼的任务延时时间加长,以便看清三种颜⾊。
3)引⼊⼀个全局变量BOOLEAN ac_key,解决完整刷屏问题。
4)任务4管理键盘和超级终端,当键盘有输⼊时在超级终端上显⽰相应的字符。
三、预备知识1)掌握在EWARM 集成开发环境中编写和调试程序的基本过程。
2)了解ARM920T 处理器的结构。
3)了解uCOS-II 系统结构。
四、实验设备及⼯具1)2410s教学实验箱2)ARM ADS1.2集成开发环境3)⽤于ARM920T的JTAG仿真器4)串⼝连接线五、实验原理及说明所谓移植,指的是⼀个操作系统可以在某个微处理器或者微控制器上运⾏。
虽然uCOS-II的⼤部分源代码是⽤C语⾔写成的,仍需要⽤C语⾔和汇编语⾔完成⼀些与处理器相关的代码。
⽐如:uCOS-II在读写处理器、寄存器时只能通过汇编语⾔来实现。
因为uCOS-II 在设计的时候就已经充分考虑了可移植性,所以,uCOS-II的移植还是⽐较容易的。
要使uCOS-II可以正常⼯作,处理器必须满⾜以下要求:(1)处理器的C编译器能产⽣可重⼊代码可重⼊的代码指的是⼀段代码(如⼀个函数)可以被多个任务同时调⽤,⽽不必担⼼会破坏数据。
也就是说,可重⼊型函数在任何时候都可以被中断执⾏,过⼀段时间以后⼜可以继续运⾏,⽽不会因为在函数中断的时候被其他的任务重新调⽤,影响函数中的数据。
(2)在程序中可以打开或者关闭中断在uCOS-II中,可以通过OS_ENTER_CRITICAL()或者OS_EXIT_CRITICAL()宏来控制系统关闭或者打开中断。
这需要处理器的⽀持,在ARM920T的处理器上,可以设置相应的寄存器来关闭或者打开系统的所有中断。