成都市青羊区2008-2009年北师大八年级下数学期末调研试题
- 格式:doc
- 大小:695.00 KB
- 文档页数:5
北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
八年级(下)期末数学试卷(解析版)一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.42.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.63.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,76.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”或“中位数”)9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为cm.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.13.直线y=x+2与两坐标轴所围成的三角形面积为.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;2,(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=°时,四边形ACEF是菱形;②当t=s时,四边形ACDF是矩形.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.4【分析】利用平方差公式进行计算即可.【解答】解:(﹣)(+),=()2+()2,=2﹣5,=﹣3,故选:A.【点评】此题主要考查了二次根式的运算,关键是掌握平方差公式(a+b)(a﹣b)=a2﹣b2.2.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.6【分析】根据勾股定理,可得答案.【解答】解:PO==5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD是平行四边形,故本选项错误;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项正确;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形,故本选项错误;D、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误;故选:B.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,7【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:9出现了6次,出现的次数最多,则众数是9;把这组数据从小到达排列,最中间的数是7,则中位数是7.故选D.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】分x是正数和负数两种情况讨论求解.【解答】解:x>0时,﹣x+3可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,x<0时,﹣x+3>0,∴点P在第二象限,不在第三象限.故选C.【点评】本题考查了点的坐标,根据x的情况确定出﹣x+3的正负情况是解题的关键.二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.【分析】二次根式的除法运算,先运用法则,再化简.【解答】解:原式=2=.【点评】二次根式的乘除法运算,把有理数因数与有理数因数运算,二次根式与二次根式运算,结果要化简.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”或“中位数”)【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是直角三角形.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故答案为:直角三角形.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为(4,4).【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B 的坐标和点D的坐标得出OD=2,求出DE=4,AC=4,即可得出点C的坐标.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为:(4,4);故答案为:(4,4).【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为6cm.【分析】根据矩形的性质和折叠的性质,由C′E⊥AD,可得四边形ABEG和四边形C′D′FG是矩形,根据矩形的性质可得EG和FG的长,再根据勾股定理可得EF的长.【解答】解:如图所示:∵将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处,C′E⊥AD,∴四边形ABEG和四边形C′D′FG是矩形,∴EG=FG=AB=6cm,∴在Rt△EGF中,EF==6cm.故答案为:6cm.【点评】考查了翻折变换(折叠问题),矩形的判定和性质,勾股定理,根据关键是得到EG和FG的长.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.【分析】作PE⊥OA于E,PF⊥OB于F,连结OP,如图,先根据正方形的性质得OA=OC=OB=OD=BD=,OA⊥OB,然后根据三角形面积公式得到PEOA+PFOB=OAOB,则变形后可得PE+PF=OA=cm.【解答】解:作PE⊥OA于E,PF⊥OB于F,连结OP,如图,∵四边形ABCD为正方形,∴OA=OC=OB=OD=BD=,OA⊥OB,∵S△OPA+S△OPB=S△OAB,∴PEOA+PFOB=OAOB,∴PE+PF=OA=cm.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.13.直线y=x+2与两坐标轴所围成的三角形面积为2.【分析】易得此直线与坐标轴的两个交点坐标,与坐标轴围成的三角形的面积等于×与x轴交点的横坐标的绝对值×与y轴交点的纵坐标.【解答】解:当x=0时,y=2,当y=0时,x=﹣2,∴所求三角形的面积=×2×|﹣2|=2.故答案为:2.【点评】考查的知识点为:某条直线与x轴,y轴围成三角形的面积为:×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是(2015,2017).【分析】(1)先根据等边三角形的性质求出∠1的度数,过B1向x轴作垂线B1C,垂足为C,求出B1点的坐标.利用待定系数法求出直线y=kx的解析式即可;(2)根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:(1)∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,∴∠1=30°.过B1向x轴作垂线B1C,垂足为C,∵OB1=2,∴CB1=1,OC=,∴B1(,1),∴1=k,解得k=.故答案为:;(2)∵由(1)知,点B1,B2,B3,…都在直线y=x上,∴A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣2+﹣3=﹣.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.【分析】根据三角函数关系即可求解a、c的值.在Rt△ABC中,∠C=90°,∠A=60°,所以b=atanB,c=,代入数据即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∴b=atanB=×=,c===2.即,.【点评】这道题目简单的考查了三角函数知识在解直角三角形中的一般应用,属于基础题,要求熟练掌握特殊角的三角函数值及其计算.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.【分析】(1)设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)把x=﹣1代入一次函数解析式求出y,即可做出判断.【解答】解:(1)设一次函数解析式为y=kx+b,把A(6,﹣3)与B(﹣2,5)代入得:,解得:,则一次函数解析式为y=﹣x+3;(2)把x=﹣1代入一次函数解析式得:y=1+3=4,则点C在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.【分析】连结BD,与AC交于点O,根据四边形ABCD是平行四边形可得AO=CO,BO=DO,再由AE=CF,可得EO=FO,进而得到四边形BEDF为平行四边形.【解答】证明:连结BD,与AC交于点O,如图所示:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴EO=FO,∴四边形BEDF为平行四边形.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对角线互相平分;对角线互相平分的四边形是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【分析】(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..【点评】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.【分析】(1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.【解答】解:(1)设当4≤x≤12时的直线方程为:y=kx+b(k≠0).∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(2)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=.故每分钟进水、出水各是5升、升.【点评】此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;(3)先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.【点评】本题考查了菱形的判定与性质:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.也考查了折叠的性质.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=30°时,四边形ACEF是菱形;②当t=4s时,四边形ACDF是矩形.【分析】(1)根据垂直平分线的性质找出∠BDE=∠BCA=90°,进而得出DE∥AC,再根据三角形中位线的性质可得出DE的长度,根据边与边之间的关系可得出EF=AC,从而可证出四边形ACEF是平行四边形;(2)①根据垂直平分线的性质可得出BE=EC=AB,再根据菱形的性质可得出AC=CE=AB,利用特殊角的正弦值即可得出∠B的度数;②根据矩形的性质可得出DF=AC,再根据运动时间=路程÷速度即可得出结论.【解答】(1)证明:当t=6时,DF=6cm.∵DG是BC的垂直平分线,∠ACB=90°,∴∠BDE=∠BCA=90°,∴DE∥AC,DE为△BAC的中位线,∴DE=AC=2.∵EF=DF﹣DE=4=AC,EF∥AC,∴四边形ACEF是平行四边形.(2)①∵DG是BC的垂直平分线,∴BE=EC=AB,∵四边形ACEF是菱形,∴AC=CE=AB,∴sin∠B==,∴∠B=30°.故答案为:30°.②∵四边形ACDF是矩形,∴DF=AC=4,∵动点F从D点出发以1cm/s的速度移动,∴t=4÷1=4(秒).故答案为:4.【点评】本题考查了平行四边形的判定、菱形的性质、特殊角的三角函数值以及矩形的性质,解题的关键是:(1)找出EF=AC,且EF∥AC;(2)①找出sin∠B==;②根据数量关系算出时间t.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形(菱形或矩形)的性质找出相等的边角关系是关键.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.【分析】(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可.【解答】解:(1)∵P(x,y)代入y=x+6得:y=x+6,∴P(x,x+6),当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8)当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x﹣18(x<﹣8).解:(2)把s=代入得:=x+18或=﹣x﹣18,解得:x=﹣6.5或x=﹣9.5,x=﹣6.5时,y=,x=﹣9.5时,y=﹣1.125,∴P点的坐标是(﹣6.5,)或(﹣9.5,﹣1.125).(3)解:假设存在P点,使△COD≌△FOE,①如图所示:P的坐标是(﹣,);②如图所示:P的坐标是(,)存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).【点评】本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.八年级期末学业水平测试数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二学期期末教学水平调研卷八年级数学第Ⅰ卷(客观卷 共30分)一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列图形中,可以看作是中心对称图形的是( )A. B. C. D.2. 下列各式中,从左到右的变形是因式分解的是( )A .22212(1)1a a a a -+=-+ B .22()()x y x y x y +-=- C .265(5)(1)x x x x -+=-- D .222()2x y x y xy +=-+3. 如图,点A 是直线l 外一点,在l 上取两点,B C ,分别以点,A C 为圆心,以,BC AB 的长为半径画弧,两弧交于点D ,分别连接,AD CD ,得到的四边形ABCD 是平行四边形, 根据上述作法,能判定四边形ABCD 是平行四边形的条件是( )A .两组对边分别平行的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形4. 若分式293x x --的值为0,则x 的值等于( )A .0B .3± C.3 D .-35. 如图,已知ABC ∆,90C ∠=,AD 是BAC ∠的角平分线,3CD =,4AC =,则点D 到AB 的距离是( )A .3B .4 C.5 D .6 6. 解分式方程12211x x x +=-+时,在方程的两边同时乘以(1)(1)x x -+,把原方程化为12(1)2(1)(1)x x x x x ++-=-+,这一变形过程体现的数学思想主要是( )A .类比思想B .转化思想 C. 方程思想 D .函数思想7. 如图,Rt ABC ∆中,90ABC ∠=,AB AC =,将ABC ∆绕点C 顺时针旋转40得到出'''A B C ∆,'CB 与AB 相交于点D ,连接'AA ,则''B A A ∠的度数为( )A .10B .15 C. 20 D .308. 如图,有一直角三角形纸片ABC ,90C ∠=,30B ∠=,将该直角三角形纸片沿DE 折叠,使点B 与点A 重合,1DE =,则BC 的长度为( )A .2B .32+ C.3 D . 239. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分ABC ∠和BCD ∠,点E 为矩形ABC 外一点,连接BE ,CE ,现添加下列条件:①//EB CF ,//CE BF ;②BE CE =,BE BF =;③//BE CF ,CE BE ⊥;④BE CE =,//CE BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个 C.3个 D .4个10. 如图,已知平行四边形AOBC 的顶点(0,0)O ,(1,2)A -,点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在AOB ∠内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A .51,2)B .5,2) C. (35,2)- D . (52,2)第Ⅱ卷(主观卷 共90分)二、填空题(每题3分,满分15分,将答案填在答题纸上)11.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为 cm .12.若关于x 的方程226111k x x x -=+--有增根,则k 的值为 . 13.如图,在平行四边形ABCD 中,72A ∠=,将平行四边形ABCD 绕顶点B 顺时针旋转到平行四边形1111A B C D ,当11C D 首次经过顶点C 时,旋转角1ABA ∠= .14.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,24AC =,10BD =,DE BC ⊥,垂足为点E ,则DE = .15.如图,点E ,F 是平行四边形ABCD 的边AB ,DC 上的点,F 与DE 相交于点P ,BF 与CE 相交于点Q ,若214APD S cm ∆=,216BCQ S cm ∆=,四边形PEQF 的面积为 2cm .三、解答题:共75分.解答应写出文字说明、证明过程或演算步骤.16.(1)分解因式:①22363mx mxy my-+②2(2)(2)x x x---(2)解不等式组,并把解集在数轴上表示出来.45133(1)7xxx x-⎧-≤⎪⎨⎪--<⎩17. 先化简:2121(1)1a aa a++-•+,然后a在-1,0,1三个数中选一个你认为合适的数代入求值. 18. 如图,在ABC∆中,90ABC∠=,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE BC⊥于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.19. 如图1,在平行四边形ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若//EF AB,//GH BC,在不添加任何辅助的情况下,请直接写出图2中与四边形AGHD 面积相等的所有的平行四边形(四边形AGHD除外).20. 如图,在平行四边形OABC 中,已知点A 、C 两点的坐标为(3,3)A ,(23,0)C . (1)求点B 的坐标.(2)将平行四边形OABC 向左平移3个单位长度,求所得四边形''''A B C O 四个顶点的坐标. (3)求平行四边形OABC 的面积.21. 近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售,若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同. (1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?22.综合与实践—猜想、证明与拓广 问题情境:数学课上同学们探究正方形上的动点引发的有关问题,如图1,正方形ABCD 中,点E 是BC 边上的一点,点D 关于直线AE 的对称点为点F ,直线DF 交AB 于点H ,直线FB 与直线AE 交于点G ,连接,DG CG .猜想证明(1)当图1中的点E 与点B 重合时得到图2,此时点G 也与点B 重合,点H 与点A 重合,同学们发现线段GF 与GD 有确定的数量关系和位置关系,其结论为: ; (2)希望小组的同学发现,图1中的点E 在边BC 上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到直线AE 是线段DF 的垂直平分线… 小丽:连接AF ,图中出现新的等腰三角形,如AFB ∆,…小凯:不妨设图中不断变化的角BAF ∠的度数为n ,并设法用n 表示图中的一些角,求出FGD ∠的度数,从而可证明结论.请你参考同学们的思路,完成证明: 联系拓广:(3)如图3若将题中的“正方形ABCD ”变为“菱形ABCD ”,ABC α∠=,其余条件不变,请探究DFG ∠的度数,并直接写出结果(用含α的式子表示).23.如图,在梯形中ABCD 中,//AD BC ,E 是BC 的中点,5AD =,12BC =,42CD =,45C ∠=,点P 是BC 边上一动点,设PB 的长为x .(1)当x 的值为多少时,以点,,P A D 为顶点的三角形为直角三角形; (2)当x 的值为多少时,以点,,,P A D E 为顶点的四边形为平行四边形;(3)点P 在BC 边上运动的过程中,以,,,P A D E 为顶点的四边形能否构成菱形?试说明理由.试卷答案一、选择题1-5: BCDDA 6-10: BCCDA二、填空题11. 1 12. 3 13. 36 14.1201315. 30 三、解答题16.解:(1)①原式223(2)m x xy y =-+23()m x y =-②原式2(1)(2)x x =--(1)(1)(2)x x x =+--(2)解不等式①,得:12x ≤解不等式②,得:2x >- 则不等式组的解集为122x -<≤17.解:22121(1)(1)111a a a aaa a a a+++-•=•=+++∵0a≠,1a≠-,故把1a=代入原式得2.18.(1)解:如图所示,E点即为所求:(2)证明:∵CE BC⊥∴90BCE∠=∵90ABC∠=∴180BCE ABC∠+∠=∴//AB CE∴ABE CEB∠=∠,BAC ECA∠=∠∵BD为AC边上的中线∴AD DC=在ABD∆和CED∆中ABD CEDBAC ECAAD DC∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD∆≌CED∆()AAS∴AP EC =∴四边形ABCE 是平行四边形 ∵90ABC ∠=∴平行四边形ABCE 是矩形19.(1)证明:∵四边形ABCD 为平行四边形 ∴//AD BC ∴EAO FCO ∠=∠∵OA OC =,AOE COF ∠=∠ ∴OAE ∆≌OCF ∆∴OE OF =,同理OG OH = ∴四边形EGFH 是平行四边形 (2)ABFE 、GBCH 、EFCD 、EGFH20.(1)点B 坐标是(33,3)(注:写必要的步骤)(233 所以'3)A ,'(23,3)B ,'3,0)C ,'(3,0)O -.(3)平行四边形的面积为2333)236==⨯=21.解:(1)设每台甲种空气净化器为x 元,乙种净化器为(300)x +元,由题意得:60007500300xx =+ 解得:1200x =经检验得:1200x =是原方程的解 则3001500x +=答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元. (2)设甲种空气净化器为y 台,乙种净化器为(30)y -台,根据题意得:12001500(30)42000y y +-≤ 10y ≥答:至少进货甲种空气净化器10台. 22.解:(1),GF GD GF GD =⊥(2)连接AF ,∵点D 关于直线AE 的对称点为点F , ∴直线AE 是线段DF 的垂直平分线, ∴,AF AD GF GD == ∴12∠=∠,3FDG ∠=∠ ∴132FDG ∠+∠=∠+∠ ∴AFG ADG ∠=∠ ∵四边形ABCD 是正方形, ∴,90AB AD BAD =∠= 设BAF n ∠= ∴90FAD n ∠=+ ∵AF AD AB == ∴FAD ABF ∠=∠∴180AFB ABF n ∠+∠=- ∴180AFB ADG n ∠+∠=-∴360360(90)(180)90FGD FAD AFG ADG n n ∠=-∠-∠-∠=-+--= ∴GF DG ⊥ (3)902α-23.解(1)如图,分别过,A D 作AM BC ⊥于M ,DN CB ⊥于N∴,5===AM DN AD MN而42,45=∠=CD C∴4===DN CN AM∴3=--=BM CB CN MN若以,,P A D为顶点的三角形为直角三角形,则90∠=,90∠=(在图中不存在)APBDAP∠=或90ADP当90DAP∠=时∴P与M重合∴3==BP BM当90∠=时ADP∴P与N重合∴8==BP BN故当x的值为3或8时,以点,,P A D为顶点的三角形为直角三角形;(2)若以点,,,=,有两种情况:P A D E为顶点的四边形为平行四边形,那么AD PE①当P在E的左边,∵E是BC的中点,∴6BE=∴651=-=-=BP BE PE②当P在E的右边,=+=+=6511BP BE PE故当x的值为1或11时,以点,,,P A D E为顶点的四边形为平行四边形;(3)由(2)知,当11BP=时,以点,,,P A D E为顶点的四边形能构成菱形当11BP =时,以点,,,P A D E 为顶点的四边形是平行四边形, ∴5EP AD ==,过D 作DN BC ⊥于N , ∵42CD =45C ∠=,则4DN CN ==, ∴3NP =. ∴2222435DP DN NP -=+=,∴EP DP = 故此时PDAE 是菱形即以点,,,P A D E 为顶点的四边形能构成菱形.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
北师大版八年级数学下册期末模拟检测试卷及答案一、选择题(12*4)1.下列图案中,不是中心对称图形的是()A.B.C.D.2.(如果a<0,则下列式子错误的是()A.5+a>3+a B.5﹣a>3﹣a C.5a>3a D.3.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)24.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.A B=DC B.∠1=∠2 C.A B=AD D.∠D=∠B5.“5•12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.若原计划每天修x米,则所列方程正确的是()A.B.C.D.6.不等式组的整数解是()A.﹣1,0,1 B.0,1 C.﹣2,0,1 D.﹣1,17.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()A.18 B.22 C.24 D.268.如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是()A.(3,2)B.(6,2)C.(6,4)D.(3,5)9.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2B.3C.4D.1.510.已知x+y=12,xy=9,则的值等于()A.B.C.D.11.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:12.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC 交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④B.①②③C.①④D.②③二、填空题(每小题4分,共24分)13.(4分)一个n边形的每个外角都等于36°,则n=_________.14.(4分)若分式的值为零,则m=_________.15.(4分)如图,△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于_________.16.(4分)(2012•哈尔滨)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=_________度.17.(4分)(2014•昆山市模拟)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.18.(4分)(2006•温州)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=_________.三、解答题(19题8分,20题10分,共18分)19.(8分)分解因式:(1)2(m﹣n)2+m(n﹣m);(2)(2x+y)2﹣(x+2y)2.20.(10分)并将解集在数轴上表示出来.四、解答题(每小题10分,共40分)21.(10分)计算,其中.22.(10分)某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C的距离相等.(1)若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC=56°,则∠BPC=_________°.23.(10分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC 交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.(10分)(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋甲乙价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?26.(10分)(2013•沈阳模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2013•郴州)下列图案中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项正确;C、是中心对称图形,故C选项错误;D、是中心对称图形,故D选项错误;故选:B.点评:本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.2.(4分)(2013•德宏州)如果a<0,则下列式子错误的是()A.5+a>3+a B.5﹣a>3﹣a C.5a>3a D.考点:不等式的性质.分析:根据不等式的基本性质对各选项进行逐一分析即可.解答:解:A、∵5>3,∴5+a>3+a,故A选项正确;B、∵5>3,∴5﹣a>3﹣a,故B选项正确;C、∵5>3,a<0,∴5a<3a,故C选项错误;D、∵5>3,∴<,∵a<0,∴>,故D选项正确.故选:C.点评:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.3.(4分)(2009•眉山)下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)2考点:因式分解的意义.分析:根据公式特点判断,然后利用排除法求解.解答:解:A、是平方差公式,故A选项正确;B、是完全平方公式,故B选项正确;C、是提公因式法,故C选项正确;D、(x+y)2=x2+2xy+y2,故D选项错误;故选:D.点评:本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.4.(4分)(2013•成都一模)如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.A B=DC B.∠1=∠2 C.A B=AD D.∠D=∠B考点:平行四边形的判定;平行线的判定与性质;三角形内角和定理;等腰梯形的性质.分析:根据等腰梯形的定义判断A;根据平行线的性质可以判断B;根据平行四边形的判定可判断C;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD即可.解答:解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故B选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;D、∵D∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故D选项正确.故选:D.点评:本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.5.(4分)(2008•西宁)“5•12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.若原计划每天修x米,则所列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:工程问题.分析:关键描述语为:提前4天开通了列车;等量关系为:计划用的时间﹣实际用的时间=4.解答:解:题中原计划修天,实际修了天,可列得方程﹣=4,故选:B.点评:本题考查了用方程的思想来求解实际生活中的未知量,从关键描述语找到等量关系是解决问题的关键.6.(4分)(2013•南充)不等式组的整数解是()A.﹣1,0,1 B.0,1 C.﹣2,0,1 D.﹣1,1考点:一元一次不等式组的整数解.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:,由不等式①,得x>﹣2,由不等式②,得x≤1.5,所以不等组的解集为﹣2<x≤1.5,因而不等式组的整数解是﹣1,0,1.故选:A.点评:此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(4分)如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()A.18 B.22 C.24 D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选:D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.8.(4分)(2003•资阳)如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是()A.(3,2)B.(6,2)C.(6,4)D.(3,5)考点:坐标与图形变化-平移.专题:压轴题.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:根据中点坐标的求法可知点PD坐标为(3,2),因为左右平移点的纵坐标不变,由题意向右平移3个单位,则各点的横坐标加3,所以点Q的坐标是(6,2).故选:B.点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.9.(4分)(2013•梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2B.3C.4D.1.5考点:旋转的性质;三角形中位线定理.分析:先根据图形旋转不变性的性质求出B′C′的长,再根据三角形中位线定理即可得出结论.解答:解:∵△ABC以点O为旋转中心,旋转180°后得到△A′B′C′,∴△ABC≌△A′B′C′,∴B′C′=BC=4,∵D′E′是△A′B′C′的中位线,∴D′E′=B′C′=×4=2.故选:A.点评:本题考查的是图形旋转的性质,熟知旋转前、后的图形全等是解答此题的关键.10.(4分)已知x+y=12,xy=9,则的值等于()A.B.C.D.考点:分式的化简求值.专题:计算题.分析:把所求式子的分子配方变为x+y与xy的关系式,分母提取xy也变为xy与x+y的形式,然后把已知的x+y 与xy的值代入即可求出值.解答:解:∵x+y=12,xy=9,∴====.故选:A点评:此题考查了分式的化简求值,利用了整体代入的思想.其中灵活运用完全平方公式及提取公因式的方法把所求式子化为关于x+y与xy的式子是解本题的关键.11.(4分)(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:考点:平行四边形的性质;三角形的面积;勾股定理.专题:压轴题.分析:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.解答:解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=2:.故选:D.点评:本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,关键是求出AF×DP=CE×DQ和求出AF、CE的值.12.(4分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④B.①②③C.①④D.②③考点:旋转的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.分析:延长FD到M使MD=DF,连结AM、EM、CD,根据等腰直角三角形的性质得CD=BD,∠B=∠DCA=45°,CD⊥AB,再根据等角的余角相等得∠CDE=∠BDF,则可根据“AAS”判断△CDE≌△BDF,所以CE=BF,DE=DF,易得AE+BF=AC,△△DEF等腰直角三角形;再由△CDE≌△BDF得S△CDE=S△BDF,于是S四边=S△CDB=S△ABC;然后根据“SAS”判断△DAM≌△DBF,得到AM=BF,∠DAM=∠B=45°,则△AME 形CEDF为直角三角形,所以AE2+AM2=EM2,即AE2+BF2=EM2,接着由ED垂直平分MF得到EM=EF,所以AE2+BF2=EF2.解答:解:延长FD到M使MD=DF,连结AM、EM、CD,如图,∵AC=BC,点D为AB中点.∠GDH=90°,∴CD=BD,∠B=∠DCA=45°,CD⊥AB,∵∠GDF=90°,即∠CDE+∠CDF=90°,而∠CDF+∠BDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(AAS),∴CE=BF,DE=DF,∴AE+BF=AE+CE=AC,故①正确;∵∠EDF=90°,∴△DEF始终为等腰直角三角形,故④正确;∵△CDE≌△BDF,∴S△CDE=S△BDF,∴S四边形CEDF=S△CDB=S△ABC,故③正确;在△DAM和△DBF中,,∴△DAM≌△DBF(SAS),∴AM=BF,∠DAM=∠B=45°,∴∠EAM=45°+45°=90°,∴AE2+AM2=EM2,∴AE2+BF2=EM2,∵ED垂直平分MF,∴EM=EF,∴AE2+BF2=EF2,故②正确.故选:A.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质、等腰直角三角形的性质和勾股定理.二、填空题(每小题4分,共24分)13.(4分)一个n边形的每个外角都等于36°,则n=10.考点:多边形内角与外角.分析:正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数.解答:解:n=360°÷36°=10.故答案为:10.点评:本题考查的是多边形内角与外角,用到的知识点为:正多边形的边数等于360÷正多边形的一个外角度数.14.(4分)若分式的值为零,则m=﹣2.考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件(分子为零、分母不为零)可以求出m的值.解答:解:根据题意,得m+2=0,且m﹣2≠0、m+3≠0;解得m=﹣2;故答案是:﹣2.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.(4分)如图,△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于65°.考点:等腰三角形的性质.分析:由于∠EDF、∠C同为∠EDC的余角,因此它们相等,欲求∠EDF,只需求得∠C或∠B的度数即可,已知了∠AED的度数,可直接利用三角形的外角性质来求得∠B的度数,由此得解.解答:解:∵∠B=∠AED﹣∠BDE=155°﹣90°=65°,又∵AB=AC,∴∠C=∠B=65°,∵DF⊥AC,ED⊥BC,∴∠EDF=∠C=65°,故答案为:65°.点评:综合考查了三角形的外角性质和等腰三角形的性质.注意:等角的余角相等,根据这一性质是发现角相等的一种常用方法.16.(4分)(2012•哈尔滨)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=105度.考点:旋转的性质;平行四边形的性质.专题:压轴题.分析:根据旋转的性质得出AB=AB′,∠B AB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.解答:解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故答案为:105.点评:此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.17.(4分)(2014•昆山市模拟)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为x<.考点:一次函数与一元一次不等式.专题:探究型.分析:先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.解答:解:∵点A(m,3)在函数y=2x的图象上,∴3=2m,解得m=,∴A(,3),由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,∴不等式2x<ax+5的解集为:x<.故答案为:x<.点评:本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.18.(4分)(2006•温州)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=4.考点:平行四边形的性质;等边三角形的性质.专题:压轴题;规律型.分析:根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S3的一半,这样就可以把S1和S3用S来表示,从而计算出S的值.解答:解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形,∵F、G分别是BC、CE的中点,∴BF=MF=AC=BC,CP=PF=AB=BC∴CP=MF,CQ=BC,QG=GC=CQ=AB,∴S1=S,S3=2S,∵S1+S3=10,∴S+2S=10,∴S=4.故答案为:4.点评:此题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.三、解答题(19题8分,20题10分,共18分)19.(8分)分解因式:(1)2(m﹣n)2+m(n﹣m);(2)(2x+y)2﹣(x+2y)2.考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:(1)先变形得到原式=2(m﹣n)2﹣m(m﹣n),然后利用提公因式法分解因式;(2)利用平方差分解因式.解答:解:(1)原式=2(m﹣n)2﹣m(m﹣n)=(m﹣n)(2m﹣2n﹣m)=(m﹣n)(m﹣2n);(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).点评:本题考查了因式分解﹣运用公式法:如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法;平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;也考查了提公因式法分解因式.20.(10分)并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出不等式的解集,根据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式①得:x≤0,解不等式②得:x>﹣5,∴不等式组的解集为:﹣5<x≤0,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,关键是求出不等式组的解集.四、解答题(每小题10分,共40分)21.(10分)计算,其中.考点:分式的化简求值.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入原式进行计算即可.解答:解:原式=÷=×=,当x=2+时,原式===.点评:本题考查分式的化简求值,在解答此类题目时要注意通分、约分的灵活运用.22.(10分)某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C的距离相等.(1)若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC=56°,则∠BPC=112°.考点:作图—应用与设计作图.分析:(1)到线段两个端点距离相等的点应在线段的垂直平分线上,所以应作出任意两条线段的垂直平分线,它们的交点即为所求;(2)连接点P和各顶点,以及AC.根据线段的垂直平分线的性质和三角形的内角和定理求解.解答:解:(1)如图:.(2)连接点P和各顶点,延长AP到D交BC于D,∵PA=PB,∴∠PAB=∠PBA,同理∠PAC=∠PCA,∵∠BAP+∠PAC=∠BAC=56°,∴∠PAB+∠PBA+∠PAC+∠PCA=112°,∵∠BPD=∠PAB+∠PBA,∠CPD=∠PAC+∠PCA,∴∠BPC=∠BPD+∠CPD=∠PAB+∠PBA+∠PAC+∠PCA=112°.故答案为:112.点评:此题考查应用与设计作图.本题用到的知识点为:到线段两个端点距离相等的点应在线段的垂直平分线上;线段的垂直平分线上的点到线段的两个端点的距离相等.等边对等角.23.(10分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:(1)证明△AGE≌△ACE,根据全等三角形的性质可得到GE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;(2)先证明BF=DE=BG,再证明AG=AC,可得到BF=(AB﹣AG)=(AB﹣AC).解答:(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,又∵∠GAE=∠CAE,AE=AE,∴△AGE≌△ACE.∴GE=EC.∵BD=CD,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:BF=(AB﹣AC).理由如下:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).点评:此题主要考查了平行四边形的判定与性质,三角形中位线定理,题目综合性较强,证明GE=EC,再利用三角形中位线定理证明DE∥AB是解决问题的关键.24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC 交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.考点:等腰三角形的判定与性质;全等三角形的判定与性质.专题:几何综合题.分析:(1)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,利用三角形全等,易证.(2)要判断△ACF的形状,看其边有无关系.根据(1)的推导,易证CF=AF,从而判断其形状.解答:(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.点评:此题难度中等,考查全等三角形的判定和性质及等腰三角形性质和判定.25.(10分)(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋甲乙价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?考点:一次函数的应用;分式方程的应用;一元一次不等式组的应用.专题:压轴题.分析:(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.解答:解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.点评:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.26.(10分)(2013•沈阳模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.专题:压轴题.分析:(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.解答:(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC是等边三角形.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.八年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列图案中,不是中心对称图形的是()A.B.C.D.2.如果分式有意义,那么x的取值范围是()A.x≠0B.x≤﹣3 C.x≥﹣3 D.x≠﹣33.如图,数轴上表示的关于x的一元一次不等式组的解集为()A.x≥3B.x>3 C.3>x>﹣1 D.﹣1<x≤34.下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等5.将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.6.平行四边形一边长为12cm,那么它的两条对角线的长度可以是()A.8cm和14cm B.10cm和14cm C.18cm和20cm D.10cm和34cm7.如图在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转到△ADE的位置,使得EC∥AB,。
北师大版八年级数学第二学期期末综合素质测试试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,计30分)1.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是 ( ) A. B. C. D.2.因式(m+2n)(m-2n)是下列哪个多项式分解因式的结果 ( )A.m 2+4n 2B.-m 2+4n 2C.m 2-4n 2D. –m 2-4n 23.如图所示,ΔABC 是等边三角形,且BD=CE ,∠1=15°,则∠2的度数为 ( )A. 15°B. 40°C. 45°D. 60°4.把分式y x y 3+中的x 和y 都扩大2倍,分式的值( )A. 扩大2倍B. 扩大4倍C. 不变D. 缩小2倍5.如图,在ΔAB C 中,AD 是角平分线,DE ⊥AB 于点E ,ΔABC 的面积为10,AB=6,DE=2,则AC 的长是( )A. 6B. 5C. 4D. 3 6.不等式的最大整数解为( )A.0B.4C.6D.77.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x 人,根据题意,可列方程为( )A.B.C. D. 8.在四边形ABCD 中,AB=CD ,要判定此四边形是平行四边形,还需要满足的条件是( )A.∠A+∠C=180°B. ∠B+∠D=180°C. ∠A+∠B=180°D. ∠A+∠D=180°9.若关于x 的方程0552=--+--xm x x 有增根,则m 的值是 ( )A.-2B. 2C. 5D. 3 10.如图,在□ABCD 中,AC ,BD 为对角线,BC=10,BC 边上的高为6,则图中阴影部分的面积为( ) A. 6 B. 15C. 30D. 60第Ⅱ卷 非选择题(共70分)二、填空题(本大题共6小题,每小题3分,计18分)11.若a >b ,要使ac<bc ,则c________0.12.当x= 时,分式112--x x 值为0. 13.若一个正多边形的每一个外角都是72°,则这个多边形是_________边形.14.如图,已知线段DE 是由线段AB 平移而得,AB=DC=5cm ,EC=6cm ,则ΔDCE 的周长是 cm .15.在平行四边形ABCD 中,若AB :BC=2:3,周长为30cm ,则AB=______cm ,BC= ______cm . 16.三角形的三条中位线的长分别为3,4,5,则此三角形的周长为________.三、解答题(本大题共7小题,计52分)17.(本题8分) 因式分解:(1)x 3-25x (2)-2x 2y+16xy-32y .18.(本题5分) 尺规作图:如图,已知∠AOB 及M 、N 两点.请你在∠AOB 内部找一点P ,使它到这个角两边的距离相等,且到点M 、N 的距离也相等(不写做法,保留作图痕迹).19.(本题8分)解方程: (1) 189-=x x (2) xx x --=+-2132120.(本题7分)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF=DE ,连接BF .求证:BF=DC ;21.(本题8分)化简:(1)21442---a a(2)先化简212)121(2-+-÷+-x x x x ,然后在-2,-1,0,1,2五个数中给x 选择一个合适的数代入求值.22.(本题8分)如图,在□ABCD中,AE平分∠BAD,BE平分∠ABC,且AE、BE 相交于CD上的一点E.求证:AE⊥BE.23.(本题8分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成200万只医用外科口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天生产口罩的数量是乙厂每天生产口罩数量的2倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问甲、乙两厂每天各生产多少万只口罩?八年级数学参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10选项 B C D C C C A D D C二、填空题(每小题3分,共18分)11.12.-1 13. 5 14. 1615. 6;9 16. 24三、解答题(本题有7小题,计52分)17.(本题8分)解:(1)=x(x2-25)…………………………………………………………………2分.……………………………………………………4分(2)-2x2y+16xy-32y=-2y(x2-8x+16)………………………………………………………2分=-2y(x-4)2………………………………………………………………4分18、(本题5分)解:.………………………………………………4分如图所示:点P即为所求作的点.………………………………………5分19. (本题8分)解:(1)分式方程两边同乘以得:,…………………2分去括号得:,移项得:,合并同类项得:,…………………………………………………3分经检验:是原分式方程的解,原分式方程的解为;………………………………………………4分 分式方程两边同乘以得:,……………1分 去括号得:, 移项得:, 合并同类项得:,系数化为1得:,…………………………………………………3分 经检验:是原分式方程的增根,原分式方程无解.……………………………………………………4分20.(本题7分)证明:连接DB ,CF ,……………………………………1分∵DE 是△ABC 的中位线,∴CE=BE ,………………………………………………………………3分∵EF=ED ,∴四边形CDBF 是平行四边形,…………………………………………6分∴CD=BF ;…………………………………………………………………7分21.(本题8分)解:(1)原式=)2)(2(2)2)(2(a 4-++--+a a a a ……………………………………2分=)2)(2(a 2-+-a a=2a 1+-……………………………………………………………4分(2)原式=2)1(221--⋅--x x x x ……………………………………………………2分=11-x …………………………………………………………………3分当x=0时,原式=101-=-1…………………………………………………4分 (学生选值只要不是1,2即可)22.(本题8分)证明:四边形ABCD 是平行四边形,, ,…………………………………………………2分平分,BE 平分,,,………………………………………5分,,即.………………………………………………………………8分23.(本题8分)解:乙厂每天生产口罩x 万只,则甲厂每天生产口罩2x 万只,根据题意得:……………………………………………………………1分526060=-x x ,………………………………………………………………4分解得:x=6,………………………………………………………………………6分经检验x=6是原方程的解,且符合题意,∴2x=12答:甲厂每天生产口罩12万只,乙厂每天生产口罩6万只.……………8分。
期末测评(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.将下列多项式因式分解,结果中不含因式x-1的是(D)A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB绕某点逆时针旋转角α得到的,点A'与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°,当x=-m时,下列说法正确的是(C) 4.对分式2-3A.分式的值等于0B.分式有意义时,分式的值等于0C.当m≠-32时,分式没有意义D.当m=325.下列说法不一定成立的是(C)A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.如图所示,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(A)A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为(B)A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为(A)A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组,3的整数解有三个,则a的取值范围是(A)A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是(C)A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值为18.12.如图所示,在△ABC中,点D,E,F分别是AB,BC,AC的中点,若平移△ADF,则图中能与它重合的三角形是△DBE(或△FEC)(写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA.若PC=4,则PD的长是2.=1的解为正数,那么字母a的取值范围是a>1且a≠2.14.若关于x的分式方程2--115.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的不等式kx+b>0的解集为x>-1.(第15题图)(第16题图)16.如图所示,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:12,①54 3 ②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:2-- -1 2-2 2-22,其中x= 2,y= 6.2-- -1 2-2 2-22= 2- -2 - ( - )2( )( - )=-( )- =- -. 当x= 2,y= 6时,原式=- 2- 6 2=-1+ 3.19.导学号99804154(6分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,点B和点C重合.求证:四边形ACE'E是平行四边形.证明∵DE是△ABC的中位线,AC.∴DE∥AC,DE=12∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,∴DE=DE',∴EE'=2DE=AC,∴四边形ACE'E是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.,连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.解(1)如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF,求证:AE=AD.∵△ABC是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB,∴EF∥DC.∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BE=EF,∠EFB=60°,∴△EBF是等边三角形,∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×1515,-0 5解得x=1.5.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
2009—2010八年级下教期数教期终试卷之阳早格格创做一、采用题1、正在相共时刻的物下与影少成比率,如果下为1.5米的测竿的影少为2.5米,那么影少为30米的旗杆的下是( )2、下列道法精确的是( ) A .所有的等腰三角形皆相似 B.所有的曲角三角形皆相似C.所有的等腰曲角三角形皆相似3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的面,DE ∥BC ,而且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( )(A)32 (B)43(C)54(D)944、某烟花爆仗厂从20万件共类产品中随机抽与了100件举止量检,创制其中有5件分歧格那么您预计该厂那20万件产品中合格品约为() A .1万件B .19万件C .15万件D .20万件5、已知0432≠==c b a ,则c b a +的值为( ) A.54 B.45C.2D.216、如图是圆桌正上圆的灯泡O 收出的光芒映照桌里后,正在大天上产生阳影(圆形)的示企图.已知桌里的曲径为1.2m ,桌里距离大天1m ,若灯泡O 距离大天3m ,则大天上阳影部分的里积为( ) πm 2πm 2πm 2πm 2 二、挖空题7、妈妈干了一份好味好味的菜品,为了相识菜品的咸浓是可切合,于是妈妈与了一面品尝,那该当属于.(挖普查或者抽样考察)8、甲、乙二位共教介进跳下锻炼,正在相共条件下各跳10次,统计各自结果的圆好得22S S <乙甲,则结果较宁静的共教是.(挖“甲”或者“乙”)9、二个相似多边形的一组对于应边分别为3cm 战4.5cm ,如果它们的里积之战为130cm 2,那么较小的多边形的里积是cm 2.10、化简:2222444m mn n m n-+-=. 11、没有等式5(1)31x x -<+的解集是. 12、如图,DE 与BC 没有服止,当AC AB=时,ΔABC 与ΔADE 相似.13、如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=.14、如图,正圆形ABCD 的边少为2,AE=EB ,MN=1,线段MN 的二端正在CB 、CD 上滑动,当CM=时,ΔAED 与N ,M ,C 为顶面的三角形相似.15、如图,正在曲角坐标系中有二面A(4,0)、B(0,2),如果面C 正在x 轴上(C 与A 没有沉合),当面C 的坐标为时,使得由面B 、O 、C 组成的三角形与ΔAOB 相似(写出1个谦脚条件的面的坐标). 三、预计题(共75分)16.(8分)先化简,再供值:xx xx x x x ÷--++--22121222其中21=x17、(8分)解没有等式组⎩⎨⎧>+<-063512x x ,并把解集正在数轴上表示出去.18、(9分)解分式圆程(注意要考验哦):19、(10分)如图,四边形ABCD 、CDEF 、EFGH 皆是正圆形. (1)⊿ACF 与⊿ACG 相似吗?道道您的缘由. (2)供∠1+∠2的度数.20、(9分)好国NBA 工做篮球赛的火箭队战湖人队正在本赛季已举止了5场比热.将角逐结果举止统计后,画制成统计图(如图10-1).请完毕以下四个问题:(1)正在图10-2中画出合线表示二队那5场角逐结果的变更情况; (2)已知火箭队五场角逐的仄衡得分90x ,请您预计湖人队五场角逐结果的仄衡得分(3)便那5场角逐,分别预计二队结果的极好;(4)根据上述统计情况,试从仄衡得分、合线的走势、得胜场次战极好四个圆里分别举止简要分解,请预测下一场角逐哪个队更能博得佳结果?21、(10分)王明共教为了丈量河对于岸树AB 的下度.他正在河岸边搁部分仄里镜MN ,他站正在C 处通过仄里镜瞅到树的顶端A .如图l -4-33,而后他量得B 、P 间的距离是56米,C 、P 间距离是 12米,他的身下是1.74米.⑴他那种丈量的要领应用了物理教科的什么知识?请简要道明; ⑵请您助他预计出树AB 的下度.22、(10分)为实止中央“节能减排,好化环境,修制优好新农村”的国策,尔市某村计划修制A 、B 二种型号的沼气池共20个,以办理该村所有农户的焚料问题.二种型号沼气池的占大天积、使用农户数及制价睹下表:型号占大天积 (单位:m 2/个 )使用农户数 单位:户/个)制价 (单位: 万元/个)A 15 18 2 B20303已知可供修制沼气池的占大天积没有超出365m 2,该村农户公有492户.得分/分火箭队 湖人队 110 100 90 80 70 60 50 4030 20 100 一 二 三 四 五 /场图10-2120 100 80604020 一 二 三 四 五 场次/场 80 110 86 90 95 83 91 87 98 80 湖人队 火箭队 图10-1得分/分(1)谦脚条件的规划公有几种?写出解问历程. (2)通过预计推断,哪种修制规划最省钱.23、(11分)正在ΔABC 中,AB=4如图(1)所示,DE ∥BC ,DE 把ΔABC 分成里积相等的二部分,即S Ⅰ=S Ⅱ,供AD 的少.如图(2)所示,DE ∥FG ∥BC ,DE 、FG 把ΔABC 分成里积相等的三部分,即S Ⅰ=S Ⅱ=S Ⅲ,供AD 的少.如图(3)所示,DE ∥FG ∥HK ∥…∥BC ,DE 、FG 、HK 、…把ΔABC 分成里积相等的n 部分,S Ⅰ=S Ⅱ=S Ⅲ=…,请曲交写出AD 的少.八年级月考问案一采用题 二.挖空题7. 抽样考察8. 甲9. 40 10. (m-2n)÷(m+2n)11. x <3 12. AE ÷AD 13. 1:3:5 14.552或者515. (1,0)(问案没有唯一) 三预计与道明16. 解: 本式=1)1()1)(1(2+-+-x x x 当x=21时本式=-3+1= -2=1)1()1(+-+x x17.解:由(1)可得:x <3 由(2)可得:x >-2∴本没有等式的解集是-2<x <3把次解集表示正在数轴,如下图:18.解: )1(516++=+x x x x6x=x+5X=1经考验x=1谦脚圆程切合题意没有是删根∴本圆程的解便是x=119.解:(1)略(2)(110+90+83+87+80)÷5=90(3) 火箭的极好 98-80=18 湖人的极好 110-80=30(4)综上所述:火箭队收挥稳固 得胜的机率大20.解:(1)∵22==AC CF CG AC ,∠C是⊿ACF 与⊿GCA 的大众角∴⊿ACF 与⊿GCA 相似(2)∵AC 是正圆形ABCD 的对于角线 ∴∠ACB=45° ∵⊿ACF ∽⊿GCA又∵∠ACB 是⊿ACF 与⊿GCA 的中角 ∴∠1﹢∠2=∠ACB ∴∠1﹢∠2=45°21.解:(1)仄里镜反射图像进射角等于反射角 (2)∵∠DCP=∠ABP ∠DPC=∠APB ∴⊿DCP ∽⊿ABP∴AB DCBP CP =∴AB 74.15612=∴树下8.12米.22. 解:(1)制A 型沼气池X 个,B 型的(20-X )个得圆程组:⎩⎨⎧≥-+≤-+492)20(3018365)20(2015x x x x解圆程组得79≤≤x x 是整数所以x=7,8,9 所以有3种规划(2)当x=7时,7×2+(20-7)×3=53万元 当x=8时,8×2+(20-8)×3=52万元 当x=9时,9×2+(20-9)×3=51万元 51<52<53 ∴x=9时费钱最少∴修A 型9个,B 型11个最省钱23.(1) (2)(3)n 16 2222121121==∴=∴=∴=ABAD AB AD SABC S S S 解: 334331311321==∴=∴=∴==AB AD AB AD SABC S S S S 解:。
八 年 级 数 学(参考答案)一、选择题: 1 2 3 4 5 6 7 8 9 10 CCDBBADCDB二、填空题:11、22yx 12、a b (a —b )2 13、3,2,2。
5 14、20 15、30 16、310三、解答题:17(1)解:由① x 〉-3 ………………………2分 由② x ≤1 ………………………2分∴原不等式组的解是-3<x ≤1 ……6分(2)解:方程的两边都乘以(x+2)(x -2)得:(x -2)2-(x 2-4)=16 —————--—-———---2分 解这个方程得:x =-2 ————-——-—--—4分 检验:将x =-2代入(x+2)(x -2)有(x+2)(x -2)=0∴x =-2是增根,原方程无解.——----——--—6分(3)解:原式=)3()4()3()3)(3(422-⋅-+⋅-+-m m m m m m ---——-—3分 =43-+m m -—-—--———-5分 当m=5时,原式=84535=-+ ——--——-——6分18、(1)∵BC AD ∥,∴B DOE =∠∠, ——-——-———(1分) 又BE AF ∥,∴DOE A =∠∠,——--————(2分) ∴A B =∠∠.--———-—-—(3分)(2)∵DOB EOA =∠∠,由BE AF ∥,得180EOA A +=∠∠,—-—-(5分) 又135DOB =∠,∴45A =∠ -----——--(6分)19、(6分)解:能求出旗杆的高度.………………(1分) 根据题意可知,在△ABC 中,∠ACB=50°,∠B=90°则∠BAC=40°…(2分) 在△ABC 与△DBA 中 ∠BAC =40°=∠D ∠B =∠B∴△ABC ∽△DBA ………………(4分) ∴ABDBBC AB =,AB 2=BC ·BD …………………(5分)又∵BC=9 DB=7+9=16∴AB 2=9×16∴AB=12(m )即旗杆的高度为12米.…………(6分)20、解(1)第三组的频率是511464324=+++++ ……………………1分 12÷51=60(件) ∴共有60件作品参评 ………2分(2)由图可知,第四组作品数量最多 ………………………………3分206×60=18(件) ∴第四组共有作品18件 …………………………4分(3)第四组获奖率是951810=……………………………5分 第六组获奖率是32602012=⨯ ……………………6分 ∵95<32 ∴第六组的获奖率较高 ………………………7分 21、解:如图,矩形ABCD 中,∠B=︒90. ∵M 是BC 的中点,BC=6,∴BM=3. 6342121=⨯⨯=⨯⨯=∆BM AB S ABM . -—-—-—————--3分(2)在Rt △ABM 中,5342222=+=+=BM AB AM .矩形ABCD 中,AD=BC=6.∵AD ∥BC ,∴∠DAM=∠AMB .又∵∠DEA=∠B=︒90,∴△ADE ∽△MAB .∴AM AD AB DE =.∴564=DE .∴524=DE .-————-—-6分(3)∵△ADE ∽△MAB ,相似比为56=AM AD ,∴256)(=∆∆MAB ADE S S .∵6=∆ABM S ,∴25216=∆ADE S .—----—--—--———-—-9分 B 卷一、填空题22、-3 23、2,1 24、(252)cm 或(625-)cm (不带单位扣1分)25、K=21,一、二、三 26、2222⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+n m n m 27、63m -<<. 二、28、(6分)解:这样的直线可以作4条 -———--———-——---——-(1分)理由是:若该直线与AC 相交,(1)过点D 作DE BC ∥,交AC 于点E ,则AED C =∠∠,∵A A =∠∠,∴ADE ABC △∽△ .(2)过点D 作直线DF 交AC 于点F ,使得ADF C =∠∠,—---3分 ∵A A =∠∠,∴AFD ABC △∽△.同理,若该直线与BC 相交,也可作DG AC ∥,和BDH C =∠∠,得到BDG BAC △∽△,BDH BCA △∽△.∴这样的直线可以作出4条. --—-——-—--—6分29、(10分)解:⑴设每辆中巴车有座位x 个,每辆大客车有座位(x +15)个,-——1分 依题意有11530270270+++=x x —-—-4分 解之得:x 1=45,x 2=-90(不合题意,舍去) —---—---——5分答:每辆中巴车有座位45个,每辆大客车有座位60个。
北师大版八年级下册数学期末考试卷含答案成都市2007-2008学年度上期末八年级数学试题一、填空题1、解不等式-3x1/3,选项A。
2、选项A为(x-4)(x+4)的展开式,是分解因式的变形。
3、选项B为两直线被第三条直线所截,内错角相等的命题。
4、化简分式得到2a^2+2ab+b^2,b,的最简公分母是(a+b)^2(a-b)^2.5、由平均分和方差的定义,可以算出八(1)班和八(2)班的平均分和方差,比较两个班的方差,较小的班级成绩较为稳定,选项A。
6、根据平行线的性质,当∠1=∠3时,BF∥DG,选项A。
7、根据相似三角形的性质,四边形ABCD的面积∶四边形A′B′C′D′的面积=AB²:A′B′²=1:4,选项A。
8、根据相似三角形的性质,△DEF与△ABC相似,DE∥BC,EF∥AC,点F在线段HM上,选项C。
9、根据平行四边形的性质,BD=EC,选项D。
10、根据图象,直线l1的斜率为k1,截距为b,直线l2的斜率为k2,不等式k1x+b>k2x成立的区间是x0,选项B。
1、解不等式-3x1/3.2、选项A为(x-4)(x+4)的展开式,是分解因式的变形。
3、选项B为两直线被第三条直线所截,内错角相等的命题。
4、化简分式得到2a^2+2ab+b^2,b,的最简公分母是(a+b)^2(a-b)^2.5、由平均分和方差的定义,可以算出八(1)班和八(2)班的平均分和方差,比较两个班的方差,较小的班级成绩较为稳定,选项A。
6、根据平行线的性质,当∠1=∠3时,BF∥DG,选项A。
7、根据相似三角形的性质,四边形ABCD的面积∶四边形A′B′C′D′的面积=AB²:A′B′²=1:4,选项A。
8、根据相似三角形的性质,△DEF与△ABC相似,DE∥BC,EF∥AC,点F在线段HM上,选项C。
9、根据平行四边形的性质,BD=EC,选项D。
10、根据图象,直线l1的斜率为k1,截距为b,直线l2的斜率为k2,不等式k1x+b>k2x成立的区间是x0,选项B。
2008—2009学年度下期期末
八年级数学调研考试题
全卷分A 卷和8卷,A 卷满分100分,B 卷满分50分;考试时间l20分钟,A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共1 00分)
第1卷(选择题,共30分)
注意事项:
1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员:降试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B锚笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分。
每小题只有一个选项符合题意,请将正确选项的序号 填入下面答题栏中)
1.不等式3x<6的解集是( )
A . x<2 8.x>2 C .x>1 D . x<1
2.观察下列各式:①2a+b和a+b ;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +;其中有公因式的是( )
A .①②
B .②③
C .③④ D·①④
3.当x=2时,下列各式的值为0的是( )
A .2
322+--x x x B .21-x C .942--x x D .12-+x x 4.在比例尺为l :n 的某市地图上,A ,B 两地相距5cm ,则A 、B 之间的实际距离为( )
A .ncm 51
B .cm n 225
1 C .ncm 5 D .cm n 225 5.下列分式运算,结果正确的是( ) A .n m m n n m =⋅3454 B .bc ad d c b a =⋅ C .222242b a a b a a -=⎪⎭⎫ ⎝⎛- D .3335353y x y x =⎪⎪⎭
⎫ ⎝⎛ 6.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间线段最短;③相等的角是对顶角;④两锐角的和是锐角;⑤同角或等角的补角相等。
其中是真命题的个数是( )
A .5个
B .4个
C .3个
D .2个
7.如图示跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当点A 端落地时,∠OAC=
20,横板上下转动的最大角度(即∠OA A ')
是( )
A . 80
B . 60
C . 40
D . 20
8.解关于x 的方程
1
16-=--x m x x 产生增根,则常数m 的值等于( ) A .2- B .3- C .1 D .5- 9.2009年成都市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,平卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是( )
A .每名学生的成绩是个体
B .50000名学生是总体
C .2000名考生是总体的一个样本
D .上述调查是普查
10.如图,在△ABC 中,∠ACB= 90,∠B=
30,AC=1,过点C 作AB CD ⊥1与1D ,过1D 作AB D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( ) A .121+⎪⎭
⎫ ⎝⎛n B .123+⎪⎭⎫ ⎝⎛n C .n ⎪⎪⎭⎫ ⎝⎛23 D .123+⎪⎪⎭⎫ ⎝⎛n
第11卷(非选择题,共70分)
二、填空题:(每小题4分,共16分)
11.已知三条段长为lcm 、2cm 、5cm ,请再写出一条线段之长,使之与前面三条线段长能够组成一个比例式,则你写出的线段长可能为 cm 。
12.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列命题,①PB AP AB ⋅=2
,②AB AP BP ⋅=2,③AP 2=PB·AB ,④AP PB AB AP ::=,其中正确的是 (填序号)。
13.某学校准备从甲、乙、丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是丙乙甲x x x ===1.8,方差分别是,3.12=甲s ,6.22=乙s 0.32=丙s ,那么根据以上提供的信息,你认为应该推荐参加全市射击比赛的同学是 。
14.如图,在□ABCD 中,E 为CD 中点,AE 交BD 于O ,212cm s D O E =∆,则=∆AOB s 。
三、解答题:(第1 5题每小题6分,第16题6分,共18分)
15.(1)分解因式:2
2)()(9b a b a +-- (2)解不等式组⎪⎩⎪⎨⎧-+≥--13
214)2(3x x x x ,并写出不等式组的非负整数解。
16.化简求值:x x x x x x x x -++⨯-+÷+--3962
3446222,其中x=4。
四、(每小题8分,共16分)
17.将图中的,△ABC作下列运动,画出各自相应的图形(注:(1)、(2)题在图甲中完
成,(3)题在图乙中完成)。
(1)沿y轴正向平移2个单位;(2)关于Y轴对称;
(3)以B点为位似中心,放大到2倍。
18.甲乙两人约好一同去距家l5千米的书市买书,由于乙临时有事,甲骑车先走,但途中修车用了半小时,乙在甲走l小时30分钟后办完事,乘汽车追去,已知汽车的速度是自行车速度的3倍,结果比甲晚到了10分钟,那么乙用了多长时间到达书市?
19.某校课外活动小组为了解本校九年级学生的睡眠时间情况,对学校若干名九年级学生的睡眠时间进行了抽查,将所得数据整理后,画出了频率分布直方图的一部分(如图所示)。
根据全班睡眠时间统计共分为六个小组,图中从左至右前五个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第二小组的频数为4。
请回答:
(1)这次被抽查的学生人数是多少?并补全频率分布直方图。
(2)被抽查的学生中,睡眠时间在哪个范围内的人数最多?这一范围内的人数是多少?
(3)如果该学校有900名九年级学生,若合理睡眠时间范围为7≤t<9,那么请你估计一下这个学校九年级学生中睡眠时间在此范围内的人数是多少?
20.如图,学校的围墙外有一旗杆AB,甲在操场上C处直立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D,与旗杆顶端B重合,量得CE=3m,乙的眼睛到地面的距离FE=1.5m;丙在C1处也直立3m高的竹竿C1D l,乙从E处退后6m到E l处,恰
好看到两根竹竿和旗杆重合,且竹竿顶端D l 与旅杆顶端B 也重合,艇得C l E l =4m 。
求旗杆AB 的高。
B 卷(共50分)
一、填空题(每小题4分,共20分)
21.如果b a +=8,ab =15,则a 2b +ab 2的值为 。
22.在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为52 则底角B 的大小为 。
23.若5:3:2::=z y x ,50=++z y x ,则=-+z y x 2 。
24.已知直线42+=x y 与x 轴、y 轴的交点分别为A 、B ,y 轴上点C 的坐标为(0,
2),在x 轴的正半轴上找一点P ,使以P 、O 、C 为顶点的三角形与△AOB 相似,则点P 的坐标为 。
25.对于任意非零实数a ,b ,定义运算“☆”如下:
a ☆
b =ab
b a 2-,则2☆1+3☆2+4☆3+…+2010☆2009的值为 。
二、(共8分) 26.如图,在△ABC 中,∠B<∠C< 90<∠A ,∠BAC 和∠ABC 的外角平分线AE 、
BD 分别与BC 、CA 的延长线交于E 、D 。
若∠ABC=∠AEB ,∠D=∠BAD 。
求∠BAC 的度数。
三、(共10分)
27.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000m 2的任务。
(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m 2或乙种板材20m 2,问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?
(2)某灾民安置点计划用该企业生产的这批板材搭建A、B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材,己知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
问:这400间板房最多能安置多少灾民?
四、(共1 2分)
28.如图1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P 从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S。
(1)分别求出点Q位于AB、BC上时,S与x之间函数关系式,并写出自变量x的取值范围:
(2)当线段PQ将梯形ABCD分成面积相等的两部分时,x的值是多少?
(3)在(2)的条件下,设线段PQ与梯形ABCD的中位线EF交于O点,那么OE与
OF的长度有什么关系?借助备用图2说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,其一定平分梯形的面积?(只要求说出条件,不需证明)。