数列专题总复习知识点整理与经典例题讲解_高中三年级数学
- 格式:doc
- 大小:1.37 MB
- 文档页数:15
高三数学数列知识点归纳总结数列是数学中重要的概念,广泛应用于各个领域。
高三学习阶段,数列的理解和应用变得尤为重要。
本文将对高三数学数列的知识点进行归纳总结,帮助同学们更好地掌握数列的相关内容。
一、数列的定义和性质数列是按照一定规律排列的一系列数的集合。
一般表示为{a₁, a₂, a₃, ... , aₙ},其中a₁, a₂, a₃, ... 分别表示数列的第1项、第2项、第3项、... 第n项。
1. 等差数列等差数列是一种常见的数列,其特点是每一项与前一项之间的差值是一个常数,称为公差,一般表示为d。
常用性质:(1) 第n项公式:aₙ = a₁ + (n-1)d(2) 前n项和公式:Sₙ = (a₁ + aₙ) * n / 22. 等比数列等比数列是一种常见的数列,其特点是每一项与前一项之间的比值是一个常数,称为公比,一般表示为r。
常用性质:(1) 第n项公式:aₙ = a₁ * r^(n-1)(2) 前n项和公式(当r ≠ 1时):Sₙ = a₁ * (1 - rⁿ) / (1 - r)3. 通项公式通项公式可以根据数列的规律,直接给出第n项的表达式。
通过通项公式,可以快速计算数列的任意一项。
二、数列的应用1. 等差数列的应用等差数列在实际问题中的应用非常广泛,常用于描述一些增减规律明显的情况。
(1) 速度、距离和时间的关系:当速度恒定时,可以利用等差数列来描述物体在某段时间内的位置变化。
(2) 等差数列求和:可以利用等差数列的前n项和公式,求解一段时间内某物体的总距离或总位移。
2. 等比数列的应用等比数列在实际问题中也有广泛的应用,常用于描述一些指数型的增长或衰减规律。
(1) 复利问题:利用等比数列可以解决一些复利问题,比如定期存款、投资基金等。
(2) 指数增长和衰减:利用等比数列可以描述一些指数增长或衰减的情况,比如病菌的增殖、放射性物质的衰变等。
三、常见数列的特殊性质1. 斐波那契数列斐波那契数列是一种特殊的数列,每一项是前两项之和。
高三数学数列知识点总结数列是高中数学中的一个重要概念,它在各个领域具有广泛的应用。
高三数学中,数列的学习和理解是非常重要的。
本文将对高三数学数列的一些关键知识点进行总结和归纳。
一、数列的定义数列是数学中一组按照顺序排列的数,这些数按照一定的规律排列。
常用的数列有等差数列和等比数列。
二、等差数列等差数列特点是每一项与它前面的项之差都相等。
记为a,a+d,a+2d,a+3d...。
其中,a为首项,d为公差。
等差数列的通项公式可表示为an = a + (n-1)d,其中n为项数。
1. 等差数列的前n项和公式等差数列的前n项和公式为Sn = (a + an)n/2,其中a为首项,an为第n项,n为项数。
2. 求等差数列的公差已知等差数列的首项a1和第n项an,公差d可通过公式d = (an - a1)/(n-1)来求解。
3. 等差数列的性质等差数列有以下性质:- 任意两项的和与它们的夹着的项的和相等。
- 任意两项的和与中间项的和相等。
三、等比数列等比数列特点是每一项与它前面的项的比值都相等。
记为a,ar,ar^2,ar^3...。
其中,a为首项,r为公比。
等比数列的通项公式可表示为an = ar^(n-1),其中n为项数。
1. 等比数列的前n项和公式等比数列的前n项和公式为Sn = a * (1 - r^n) / (1 - r),其中a为首项,r为公比。
2. 求等比数列的公比已知等比数列的首项a1和第n项an,公比r可通过公式r = (an / a1)^(1/(n-1))来求解。
3. 等比数列的性质等比数列有以下性质:- 任意两项的和与它们的夹着的项的和相等。
- 任意两项的和与中间项的和不相等。
四、数列的应用数列在实际问题中有广泛的应用,如金融、生物、物理等领域。
在高三数学中,数列的应用也是不可忽视的。
1. 等差数列的应用等差数列在数学建模、运动学等方面有重要应用。
2. 等比数列的应用等比数列在金融学、生物学等方面有很多实际应用。
高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
数列题有关知识点总结归纳数列题是高中数学中一个重要的知识点,涉及到数列的定义、性质、通项公式、求和公式等内容。
下面是对数列题相关知识点的总结归纳。
一、数列的定义和性质数列是按照一定规律排列的一组数的集合。
常用的表示数列的方法有两种:通项公式和递归式。
通项公式是由数列的第一项和公差(或公比)组成的公式,可以直接计算数列的任意一项。
递归式是通过给出数列的前几项和递推关系来给出整个数列。
数列有很多重要性质,下面是一些常见的性质:1. 数列的项与项之间可以进行运算,如加减乘除。
2. 数列的同一位置的项组成的新数列,称为数列的子列。
3. 数列的子列可以是有限的,也可以是无限的。
4. 数列中的数称为项,数列的项数称为无限项数列的项数为正无穷。
5. 数列可以按照项数的奇偶性进行分类,得到奇数项数列和偶数项数列。
二、等差数列等差数列是指数列中任意两项之间的差都相等的数列。
等差数列的通项公式为:$a_n = a_1 + (n-1)d$。
其中,$a_n$表示第n项,$a_1$表示首项,d表示公差。
等差数列常见的问题类型包括:已知首项和公差,求第n项;已知首项和第n项,求公差;已知首项和末项,求项数等。
三、等比数列等比数列是指数列中任意两项之间的比都相等的数列。
等比数列的通项公式为:$a_n = a_1 \times r^{(n-1)}$。
其中,$a_n$表示第n项,$a_1$表示首项,r表示公比。
等比数列常见的问题类型包括:已知首项和公比,求第n项;已知首项和第n项,求公比;已知首项和末项,求项数等。
四、数列求和公式数列求和是指根据数列中的项数,计算数列的部分项或全部项之和。
常用的数列求和公式包括等差数列的求和公式和等比数列的求和公式。
等差数列求和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$,其中,$S_n$表示数列的前n项和。
等比数列求和公式为:$S_n = \frac{a_1 \times (1 - r^n)}{1 - r}$,其中,$S_n$表示数列的前n项和。
高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。
通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。
本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。
1. 数列的定义与性质数列是按照一定顺序排列的一组数。
其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。
数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。
设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。
解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。
1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。
设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。
解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。
2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。
下面分别介绍等差数列和等比数列的求和公式。
2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。
其中,a1为首项,an为末项,n为项数。
高三数列知识点总结数列是数学中的一个重要概念,广泛应用于各个学科领域。
对于高三学生来说,掌握数列的相关知识点不仅有助于提高数学成绩,也对解决实际问题具有较高的实用性。
本文将对高三数列的相关知识点进行总结和梳理,帮助学生们更好地掌握和应用这一知识。
一、等差数列等差数列是最基本也是最常见的数列类型。
它的定义是指数列中的相邻两项之差都是相等的。
设等差数列的首项为a1,公差为d,第n项为an,可以得到以下常用的公式:1. 通项公式:an = a1 + (n-1)d这个公式可以方便地计算出等差数列中任意一项的值。
2. 前n项和公式:Sn = (a1 + an) * n / 2这个公式用于计算等差数列的前n项和,其中Sn表示前n项的和。
二、等比数列等比数列是指数列中的相邻两项之比都相等的数列。
设等比数列的首项为a1,公比为q,第n项为an,可以得到以下常用的公式:1. 通项公式:an = a1 * q^(n-1)这个公式可以方便地计算出等比数列中任意一项的值。
2. 前n项和公式(当q不等于1时):Sn = (a1 * (1 - q^n)) / (1 - q)这个公式用于计算等比数列的前n项和。
三、数列的性质和常见问题除了上述常用的公式外,高三数列的学习还需要掌握数列的一些性质和解题技巧。
下面列举一些常见的数列问题和对应的解决方法。
1. 判断数列的性质:在解题过程中,经常需要判断一个数列是等差数列还是等比数列。
一种常用的方法是计算相邻两项之差或之比是否相等,如果相等则为等差或等比数列,否则不是。
2. 求等差数列的公差:当已知一个数列是等差数列,但不知道公差时,可以利用数列中的两个已知项求解。
设已知项为an和am(其中n>m),则公差d = (an - am) / (n - m)。
3. 求等比数列的公比:类似地,当已知一个数列是等比数列,但不知道公比时,可以利用数列中的两个已知项求解。
设已知项为an和am(其中n>m),则公比q = (an / am)^(1 / (n - m))。
高三数列综合知识点总结数列是高中数学中重要的概念,广泛应用于各个领域。
在高三阶段,数列是一个重点考点,在考试中占据一定的比重。
为了帮助同学们系统地掌握数列的知识,下面将对高三数列的综合知识点进行总结。
一、等差数列等差数列是最基础的数列之一,它的通项公式为an = a1 + (n-1)d,其中a1是首项,d是公差。
等差数列的求和公式为Sn = (n/2)(a1 + an)。
1. 判定等差数列等差数列的判定条件是相邻的两个数之差都相等。
2. 求通项公式已知等差数列的首项a1和公差d,可以利用通项公式求得任意一项的值。
3. 求前n项和求得前n项和。
4. 常见等差数列性质等差数列的性质包括首项、末项、公差、项数、前n项和等。
二、等比数列等比数列是另一个重要的数列概念,它的通项公式为an = a1 * r^(n-1),其中a1是首项,r是公比。
等比数列的求和公式为Sn = a1 * (1 - r^n)/(1 - r)。
1. 判定等比数列等比数列的判定条件是相邻的两个数之比都相等。
2. 求通项公式已知等比数列的首项a1和公比r,可以利用通项公式求得任意一项的值。
3. 求前n项和求得前n项和。
4. 常见等比数列性质等比数列的性质包括首项、公比、项数、前n项和等。
三、数列的应用数列在实际问题中的应用非常广泛,下面列举几个常见的数列应用问题。
1. 等差数列应用例如,一辆汽车以每小时60公里的速度行驶,问2小时后行驶的距离是多少?2. 等比数列应用例如,一枚细菌每分钟分裂一次,如果最初只有一枚细菌,10分钟后有多少枚细菌?3. 数列表示几何图形例如,如何利用数列表示一个等边三角形的周长或面积?四、数列的进阶知识除了等差数列和等比数列,高三阶段还会涉及到数列的一些进阶知识,如等差数列的部分和、等比数列的无穷和、等差数列与等比数列的混合应用等。
五、解数列题的解题技巧解数列题需要掌握一些解题技巧,包括确定数列类型、找到已知条件、利用已知条件求解、化简计算过程等。
数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =na a a n+++ 21*n N ∈为通项公式的数列{}n b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如(1)数列{}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(答:13a =-,10n =);(2)已知数列{}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩).4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。
掌握数列的相关知识点是高三学生成功应对数学考试的关键。
本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。
一、等差数列等差数列是高中数学中最常见的数列类型之一。
等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。
1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。
二、等比数列等比数列是另一种常见的数列类型。
等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。
1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。
三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。
对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。
2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。
有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。
3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。
如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。
四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。
第五章 数列5.1数列基础 5.1.1数列的概念一、知识点1. 定义:按照一定顺序排列的一列数成为数列。
2. 项:数列中的每一个数都称为这个数列的项,各项依次称为这个数列的第1项(或首项) ,第2项,…,第n 项 ,n a a a a ,......,,321,-1a 首项。
3. 通项:因为数列从首项起,每一项都与正整数对应,所以数列的一般形式可以写成n a a a a ,......,,321…,其中n a 表示数列的第n 项(也称n 为n a 的序号,其中n 为正整数,即n ∈N+),n a 称为数列的通项.此时,一般将整个数列简记为{an} ,这里的小写字母a 也可以换成其他小写英文字母.4. 通项公式:一般地,如果数列的第n 项n a 与n 之间的关系可以用 n a =f(n) 来表示,其中f (n)是关于n 的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式 .不是所有的数列都能写出通项公式,如果数列有通项公式,那么通项公式的表达式不一定唯一.5. 与函数的关系:数列{n a }可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式.数列也可以用平面直角坐标系中的点来直观地表示.6. 分类:1)有穷数列:项数有限个2)无穷数列:项数无限个3)增数列:从第2项起,每一项都大于它的前一项的数列 4)减数列:从第2项起,每一项都小于它的前一项的数列 5)常数列:各项都相等6)摆动数列:时而增大时而减小二、典型题典型题一 数列定义的理解1.有下面四个结论,其中正确的为( ) ①数列的通项公式是唯一的;②数列可以看成是一个定义在正整数集或其子集上的函数; ③若用图像表示数列,则其图像是一群孤立的点; ④每个数列都有通项公式. A.①② B.②③ C.③④ D.①④2.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A.11B.12C.13D.143.(2020甘肃兰州高二期中)下列数列中,既是递增数列又是无穷数列的是( ) A.-1,-2,-3,-4,…B.-1,-,…C.-1,-2,-4,-8,…D.1,,…,典型题二 求数列的通项公式4.若数列{a n }的前4项依次是2,0,2,0,则这个数列的通项公式不可能是( ) A.a n =1+(-1)n+1B.a n =1-cos nπC.a n =2sin2D.a n =1+(-1)n-1+(n-1)(n-2)5.已知数列{a n }的通项公式为n n a n -=2,则下列各数中不是数列中的项是( )A.2B.40C.56D.906.(2020辽宁沈阳东北育才学校高二期中)如图是谢尔宾斯基三角形,在所给的四个三角形图案中,黑色的小三角形个数依次构成数列{a n }的前4项,则{a n }的通项公式可以是( )A.a n =3n-1B.a n =2n-1C.a n =3nD.a n =2n-17.已知数列{a n }的通项公式为13+=n na n ,那么这个数列是( ) A.递增数列B.递减数列C.摆动数列D.常数列 8.写出下列数列的一个通项公式.(1)-,…;(2),…;(3)7,77,777,7 777,….典型题三 数列的单调性9.在数列{a n }中,a n =n 2-kn(n ∈N +),且{a n }是递增数列,求实数k 的取值范围.10.(2020北京第十一中学高三一模)数列{a n }的一个通项公式为a n =|n-c|(n ∈N +),则“c<2”是“{a n }为递增数列”的( ) A.必要不充分条件 B.充要条件 C.充分不必要条件 D.既不充分也不必要条件 11.数列{a n }的通项公式为nan a n +=。
数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =na a a n+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a = _,n =_(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
(答:225)(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );()1-n :n S =偶奇:S 。
如(1)在等差数列中,S 11=22,则6a =______(答:2);(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()nnA f nB =,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=nn b a ___________(答:6287n n --) (7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
法一:由不等式组⎪⎪⎭⎫⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是 (答:4006)(3)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则( )A 、1210,S S S 都小于0,1112,S S 都大于0B 、1219,S S S 都小于0,2021,S S 都大于0C 、125,S S S 都小于0,67,S S 都大于0D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.二、等比数列的有关概念:1、等比数列的判断方法:定义法1(n na q q a +=为常数),其中0,0n q a ≠≠或11n n n n a aa a +-=(2)n ≥。
如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____(答:56);(2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。
2、等比数列的通项:11n n a a q -=或n m n m a a q -=。
如等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和q .(答:6n =,12q =或2) 3、等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q -=-11n a a q q-=-。
如(1)等比数列中,q =2,S 99=77,求9963a a a +++ (答:44); (2))(101∑∑==n nk knC的值为__________(答:2046);特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。
4、等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。
提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。
如已知两个正数,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,22,,,,a aa aq aq q q…(公比为q );但偶数个数成等比时,不能设为…33,,,aq aq q a qa ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。
如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。
(答:15,,9,3,1或0,4,8,16)5.等比数列的性质:(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有2m n p a a a =.如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++= (答:10)。
(2) 若{}n a 是等比数列,则{||}n a 、*{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、成等比数列,则{}n n a b 、{}n na b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。
当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.如(1)已知0a >且1a ≠,设数列{}n x 满足1lo g 1lo g a n a n x x +=+(*)n N ∈,且12100100x x x +++=,则101102200x x x +++= . (答:100100a );(2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.(4) 当1q ≠时,b aq qaq q a S n n n +=-+--=1111,这里0a b +=,但0,0a b ≠≠,是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。