2012高三数学一轮复习阶段性测试题(3):导数及其应用
- 格式:doc
- 大小:464.56 KB
- 文档页数:13
第三部分导数及其应用(2012年广东卷理)12.曲线33y x x =-+在点(1,3)处的切线方程为__________.(2012年安徽文)(17)(本小题满分12分)设定义在(0,+∞)上的函数1()(0)f x ax b a ax =++> (Ⅰ)求()f x 的最小值;(Ⅱ)若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值。
【解析】(I )1()2f x ax b b b ax =++≥=+ 当且仅当11()ax x a==时,()f x 的最小值为2b + (II )由题意得:313(1)22f a b a =⇔++= ① 2113()(1)2f x a f a ax a ''=-⇒=-= ② 由①②得:2,1a b ==-(2012重庆卷理)(8)设函数()f x 在R 上可导,其导函数为,()f x ,且函数,(1)()y x f x =-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f(C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(2012重庆卷理)(16) (本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴.(Ⅰ) 求a 的值;(Ⅱ) 求函数()f x 的极值.(2012年重庆卷文)(8)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf ′(x )的图像可能是(2012年重庆卷文)(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分。
2012届高考数学一轮复习课后强化作业2.3导数的实际应用一、选择题1.(2010·山东济南市模考)直线y=kx+b与曲线y=x3+ax+1相切于点(2,3),则b 的值为( )A.-3B.9C.-15D.-7[答案] C[解析] 将点(2,3)分别代入曲线y=x3+ax+1和直线y=kx+b,得a=-3,2k+b=3.又k=y′|x=2=(3x2-3)|x=2=9,∴b=3-2k=3-18=-15,故选C.2.(2010·安徽合肥市质检)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( )[答案] D[解析] 由f(x)的图象知,f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f′(x)≤0,在(-∞,0)上f′(x)≥0,故选D.3.(文)(2010·甘肃省质检)函数f(x)=x3-ax2+x在x=1处的切线与直线y=2x平行,则a=( )A.0B.1C.2D.3[答案] B[解析] 由条件知,f ′(1)=3×12-2a ×1+1=2, ∴a =1.(理)(2010·烟台市诊断)曲线y =2cos x 在x =π4处的切线方程是( )A .x -y -4+π4=0B .x +y +4-π4=0C .x +y -4+π4=0D .x +y +4+π4=0[答案] C[解析] y ′|x =π4=-2sin x |x =π4=-2sin π4=-1,∴切线方程为y -2cos π4=-⎝ ⎛⎭⎪⎫x -π4,即x +y -1-π4=0,故选C.4.(文)圆柱的表面积为S ,当圆柱体积最大时,圆柱的底面半径为( ) A.S3πB.3πSC.6πS6πD .3π·6πS [答案] C[解析] 设圆柱底面半径为r ,高为h ,∴S =2πr 2+2πrh ∴h =S -2πr 22πr又V =πr 2h =rS -2πr 32,则V ′=S -6πr 22,令V ′=0得S =6πr 2,∴h =2r ,r =6πS6π. (理)内接于半径为R 的球并且体积最大的圆锥的高为( ) A .R B .2RC.43RD.34R [答案] C[解析] 设圆锥的高为h ,底面半径为r ,则R 2=(h -R )2+r 2∴r 2=2Rh -h 2∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3V ′=43πRh -πh 2,令V ′=0得h =43R .5.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( ) A.33cm B.1033cm C.1633cm D.2033cm [答案] D[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =13πx (400-x 2) (0<x <20),V ′=13π(400-3x 2),令V ′=0,解得x =2033. 当0<x <2033时,V ′>0;当2033<x <20时,V ′<0所以当x =2033时,V 取最大值.6.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与产量x 的关系是R =⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80000, x >400.则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 [答案] D[解析] 由题意,总成本为C =20000+100x .所以总利润为P =R -C =⎩⎪⎨⎪⎧300x -x 22-20000,0≤x ≤400,60000-100x ,x >400,P ′=⎩⎪⎨⎪⎧300-x ,0≤x ≤400,-100,x >400.令P ′=0,得x =300,易知当x =300时,总利润最大.7.(文)(2010·山东邹平)若函数y =e x+mx 有极值,则实数m 的取值范围是( ) A .m >0 B .m <0 C .m >1 D .m <1 [答案] B[解析] y ′=e x+m ,由条件知e x+m =0有实数解, ∴m =-e x<0,故选B.(理)(2010·泰安质检)已知非零向量a ,b 满足:|a |=2|b |,若函数f (x )=13x 3+12|a |x2+a ·b x 在R 上有极值,设向量a ,b 的夹角为θ,则cos θ的取值范围为( )A.⎣⎢⎡⎦⎥⎤12,1B.⎝ ⎛⎦⎥⎤12,1 C.⎣⎢⎡⎦⎥⎤-1,12 D.⎣⎢⎡⎭⎪⎫-1,12 [答案] D[解析] ∵函数f (x )在R 上有极值,∴f ′(x )=x 2+|a |x +a ·b =0有两不等实根,∴Δ=|a |2-4|a |·|b |cos θ=4|b |2-8|b |2cos θ>0,∴cos θ<12,∴选D.[点评] 若f (x )为三次函数,f (x )在R 上有极值,则f ′(x )=0应有二不等实根,当f (x )有两相等实根时,不能保证f (x )有极值,这一点要特别注意,如f (x )=13x 3,f ′(x )=x 2=0有实根x =0,但f (x )在R 上单调增,无极值.即导数为0是函数有极值的必要不充分条件.8.(文)(2010·常德市检测)已知函数f (x )=13x 3+ax 2-bx +1(a 、b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是( )A.23B.32 C .2 D .3 [答案] C[解析] f ′(x )=x 2+2ax -b ,在[-1,3]上有f ′(x )≤0,∴⎩⎪⎨⎪⎧f -1≤0f 3≤0,∴⎩⎪⎨⎪⎧2a +b ≥16a -b ≤-9,由⎩⎪⎨⎪⎧2a +b =16a -b =-9得⎩⎪⎨⎪⎧a =-1b =3,∴当直线a +b =z 经过点A (-1,3)时,z min =2.(理)(2010·鞍山一中)函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是( )A .a >-316B .-65<a <-316C .a >-65D .-65≤a ≤-316[答案] B[解析] f ′(x )=ax 2+ax -2a =a (x +2)(x -1)有两个零点-2和1,故由题设条件知-2和1是函数f (x )的一个极大值点和一个极小值点,∵f (x )的图象经过4个象限,∴f (-2)·f (1)<0, ∴⎝⎛⎭⎪⎫16a 3+1⎝ ⎛⎭⎪⎫56a +1<0,∴-65<a <-316,故选B.9.在内接于半径为R 的半圆的矩形中,周长最大的矩形的边长为( )A.R 2和32R B.55R 和455R C.45R 和75R D .以上都不对 [答案] B[解析] 设矩形垂直于半圆直径的边长为x ,则另一边长为2R 2-x 2,则l =2x +4R 2-x 2(0<x <R ),l ′=2-4xR 2-x2,令l ′=0,解得x =55R . 当0<x <55R 时,l ′>0;当55R <x <R 时,l ′<0. 所以当x =55R 时,l 取最大值,即周长最大的矩形的边长为55R ,455R . 10.(文)函数y =x +2cos x 在[]0,π上取得最大值时,x 的值为( ) A .0 B.π6 C.5π6D .π [答案] B[解析] y ′=1-2sin x ,令1-2sin x =0,∵x ∈[]0,π,∴x =π6或5π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时,f ′(x )≥0,f (x )单调递增,当x ∈⎣⎢⎡⎦⎥⎤π6,5π6时f ′(x )≤0,f (x )单调递减,当x ∈⎣⎢⎡⎦⎥⎤5π6,π时,f ′(x )≥0,f (x )单调递增. ∵f ⎝ ⎛⎭⎪⎫π6=π6+2cos π6=π6+3,f (π)=π+2cos π=π-2,且π-2<π6+3,∴f (x )max =f ⎝ ⎛⎭⎪⎫π6. (理)如图,过函数y =x sin x +cos x 图象上点(x ,y )的切线的斜率为k ,若k =g (x ),则函数k =g (x )的图象大致为( )[答案] A[解析] ∵y ′=sin x +x cos x -sin x =x cos x , ∴k =g (x )=x cos x ,易知其图象为A. 二、填空题11.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,该长方体的最大体积是________.[答案] 3m 3[解析] 设长方体的宽为x ,则长为2x ,高为92-3x (0<x <2),故体积为V =2x 2⎝ ⎛⎭⎪⎫92-3x =-6x 3+9x 2,V ′=-18x 2+18x ,令V ′=0得,x =0或1,∵0<x <2,∴x =1.∴该长方体的长、宽、高各为2m 、1m 、1.5m 时,体积最大,最大体积V max =3m 3. [点评] 注意长方体的长、宽、高都是正值,且长、宽、高的和的4倍为总长度.请再练习下题:用总长为14.8m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.[解析] 设容器的短边长为x m , 则另一边长为(x +0.5)m , 高为14.8-4x -4x +0.54=3.2-2x .由3.2-2x >0和x >0,得0<x <1.6, 设容器的容积为y m 3,则有y =x (x +0.5)(3.2-2x )(0<x <1.6), 整理得y =-2x 3+2.2x 2+1.6x , ∴y ′=-6x 2+4.4x +1.6,令y ′=0,有-6x 2+4.4x +1.6=0,即15x 2-11x -4=0,解得x 1=1,x 2=-415(不合题意,舍去),∴高=3.2-2=1.2,容积V =1×1.5×1.2=1.8 答:高为1.2m 时容积最大,最大容积为1.8m 3.12.(2010·江苏,14)将边长为1m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.[答案]3233[解析] 设DE =x , 则梯形的周长为:3-x ,梯形的面积为:12(x +1)·32(1-x )=34(1-x 2)∴s =3-x 2341-x 2=433·x 2-6x +91-x2,x ∈(0,1), 设h (x )=x 2-6x +91-x2, h ′(x )=-6x 2+20x -61-x 22. 令h ′(x )=0,得:x =13或x =3(舍),∴h (x )最小值=h ⎝ ⎛⎭⎪⎫13=8, ∴s 最小值=433×8=3233.13.(文)曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________.[答案] 34[解析] y =1x与y =x 2的交点P (1,1),如右图易求得K AP =2,K BP =-1,因此可求点A ⎝ ⎛⎭⎪⎫12,0,B (2,0),故S △ABP =34. (理)函数f (x )=12e x (sin x +cos x ) ⎝⎛⎭⎪⎫0≤x ≤π2的值域为________.[答案] ⎣⎢⎢⎡⎦⎥⎥⎤12,e π22 [解析] f ′(x )=12e x (sin x +cos x )+12e x (cos x -sin x )=e xcos x ,0≤x ≤π2时,f ′(x )≥0,∴f (x )是⎣⎢⎡⎦⎥⎤0,π2上的增函数.∴f (x )的最大值为f ⎝ ⎛⎭⎪⎫π2=12e π2,f (x )的最小值为f (0)=12.∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤12,12e π2. 14.某工厂要围建一个面积为128m 2的矩形堆料场,一边可以用原有的墙壁,其它三边要砌新的墙壁,要使砌墙所用的材料最省,堆料场的长、宽应分别为________.[答案] 16m 8m[解析] 解:设场地宽为x m ,则长为128xm ,因此新墙总长度为y =2x +128x(x >0),y ′=2-128x2,令y ′=0,∵x >0,∴x =8.因为当0<x <8时,y ′<0;当x >8时,y ′>0, 所以当x =8时,y 取最小值,此时宽为8m ,长为16m. 即当堆料场的长为16m ,宽为8m 时,可使砌墙所用材料最省. 三、解答题15.用一块钢锭浇铸一个厚度均匀,且全面积为2m 2的正四棱锥形有盖容器(如右图).设容器的高为h m ,盖子边长为a m.(1)求a 关于h 的函数解析式;(2)设容器的容积为V m 3,则当h 为何值时,V 最大?求出V 的最大值.(容器的厚度忽略不计)[解析] (1)如右图,作PO ⊥平面ABCD ,O 为垂足,作OE ⊥BC 于E ,连结PE ,则PE ⊥BC ,正四棱锥的全面积为第 10 页 共 12 页 金太阳新课标资源网2=4×12×a ×h 2+a22+a 2.所以a =11+h2(h >0).(2)V =13a 2h =13·h 1+h 2(h >0),V ′=13·1+h 2-h 2h 1+h 22=1-h 231+h 22.所以当0<h <1时,V ′>0.所以V (h )在(0,1]上为增函数. 当h >1时,V ′<0,所以V (h )在[1,+∞)上为减函数. 故h =1为函数V (h )的唯一极大值点也是最大值点, ∴V max =16.答:当高h =1m 时,容积取最大值16m 3.16.(2010·陕西宝鸡市质检)高新开发区某公司生产一种品牌笔记本电脑的投入成本是4500元/台.当笔记本电脑销售价为6000元/台时,月销售量为a 台;市场分析的结果表明,如果笔记本电脑的销售价提高的百分率为x (0<x <1),那么月销售量减少的百分率为x 2.记销售价提高的百分率为x 时,电脑企业的月利润是y 元.(1)写出月利润y 与x 的函数关系式;(2)如何确定这种笔记本电脑的销售价,使得该公司的月利润最大.[解析] (1)依题意,销售价提高后变为6000(1+x )元/台,月销售量为a (1-x 2)台, 则y =a (1-x 2)[6000(1+x )-4500], 即y =1500a (-4x 3-x 2+4x +1)(0<x <1). (2)由(1)知y ′=1500a (-12x 2-2x +4), 令y ′=0得,6x 2+x -2=0, 解得x =12或x =-23(舍去).当0<x <12时,y ′>0;当12<x <1时,y ′<0.故当x =12时,y 取得最大值.此时销售价为6000×32=9000元.故笔记本电脑的销售价为每台9000元时,该公司的月利润最大.17.(文)(2010·南通模拟)甲乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度第 11 页 共 12 页 金太阳新课标资源网不得超过100千米/小时,已知该汽车每小时的运输成本P (元)关于速度v (千米/小时)的函数关系是P =119200v 4-1160v 3+15v , (1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.[解析] (1)汽车从甲地到乙地需用400v 小时,故全程运输成本为Q =400P v =v 348-5v 22+6000 (0<v ≤100).(2)Q ′=v 216-5v ,令Q ′=0得,v =80, ∴当v =80千米/小时时,全程运输成本取得最小值,最小值为20003元. (理)已知函数f (x )=x 3+3bx 2+cx +d 在(-∞,0)上是增函数,在(0,2)上是减函数,且f (x )=0的一个根为-b .(1)求c 的值;(2)求证:f (x )=0还有不同于-b 的实根x 1、x 2,且x 1、-b 、x 2成等差数列;(3)若函数f (x )的极大值小于16,求f (1)的取值范围.[解析] (1)f ′(x )=3x 2+6bx +c , x =0是极大值点,f ′(0)=0,∴c =0.(2)由(1)知,f (x )=x 3+2bx 2+d ,令f ′(x )=0得,x =0或-2b ,由f (x )的单调性知,-2b ≥2,∴b ≤-1,∵-b 是方程f (x )=0的一个根,则(-b )3+3b (-b )2+d =0,d =-2b 3,∴f (x )=x 3+3bx 2-2b 3=(x +b )(x 2+2bx -2b 2).方程x 2+2bx -2b 2=0的根的判别式,Δ=4b 2-4(-2b 2)=12b 2>0.又(-b )2+2b (-b )-2b 2=-3b 2≠0,即-b 不是方程x 2+2bx -2b 2=0的根.∴f (x )=0有不同于-b 的根x 1、x 2.∵x 1+x 2=-2b ,∴x 1,-b ,x 2成等差数列.(3)∵x →+∞,f (x )→+∞,且x =0是极大值点,∴f (0)<16,即-2b 3<16,∴b >-2,于是-2<b ≤-1,第 12 页 共 12 页金太阳新课标资源网 令g (b )=f (1)=-2b 3+3b +1,∴g ′(b )=-6b 2+3, ∵-2<b ≤-1时,g ′(b )<0,∴g (b )在(-2,-1]上单调递减,∴g (-1)≤g (b )<g (-2),即0≤g (b )<11. 即0≤f (1)<11.。
导数的综合应用 【选题明细表】 知识点、方法题号参数范围及恒成立问题1、5、7、8、9不等式问题2、4、10实际应用题3、6一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m1,则不等式ex·f(x)>ex+1的解集为( A ) (A){x|x>0}(B){x|x<0} (C){x|x1}(D){x|x<-1或0<xex-ex=0, 所以g(x)=ex·f(x)-ex为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A ) 解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0)(D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)<f(4),又由f'(x)≥0,得f(x)为增函数,所以a+2b<4,而a,b为正数,所以a+2b<4所表示的区域为如图所示的直角三角形AOB(不包括边界),其中A(0,4),B(2,0),可看成是直线PM的斜率,其中P(-2,-2),M(b,a)在直角三角形AOB的内部(不包括边界),所以kPB<kPM<kPA,而kPA==3,kPB==,所以<kPM<3,故选B. 5.(2013淄博一检)已知a≤+ln x对任意x∈恒成立,则a的最大值为( A ) (A)0(B)1(C)2(D)3 解析:设f(x)=+ln x=+ln x-1, 则f'(x)=-+=. 当x∈时,f'(x)0, 故函数f(x)在(1,2]上单调递增, ∴f(x)min=f(1)=0, ∴a≤0,即a的最大值为0. 故选A. 二、填空题 6.电动自行车的耗电量y与速度x之间有关系y=x3-x2-40x (x>0),为使耗电量最小,则速度应定为 .? 解析:由y'=x2-39x-40=0, 得x=-1或x=40, 由于0<x<40时,y'40时,y'>0. 所以当x=40时,y有最小值. 答案:40 7.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是 .? 解析:方程可化为a=x3-3x2, 设f(x)=x3-3x2, 则f'(x)=3x2-6x, 由f'(x)>0,得x>2或x<0; 由f'(x)<0,得0<x2或a2或a0), (1)若函数f(x)在x=1处与直线y=-相切, ①求实数a,b的值; ②求函数f(x)在上的最大值. (2)当b=0时,若不等式f(x)≥m+x对所有的a∈,x∈(1,e2]都成立,求实数m的取值范围. 解:(1)①f'(x)=-2bx, ∵函数f (x)在x=1处与直线y=-相切, ∴ 解得 ②f(x)=ln x-x2, f'(x)=-x=, 当≤x≤e时, 令f'(x)>0得≤x<1; 令f'(x)<0,得10, ∴h(a)在a∈上单调递增, ∴h(a)min=h(0)=-x, ∴m≤-x对所有的x∈(1,e2]都成立. ∵1<x≤e2, ∴-e2≤-xln 2-1且x>0时,ex>x2-2ax+1. (1)解:∵f'(x)=ex-2, 由f'(x)<0可得,x0可得x>ln 2, 所以函数f(x)的单调递减区间为(-∞,ln 2), 单调递增区间为(ln 2,+∞). 当x=ln 2时,有极小值f(ln 2)=2(1-ln 2+a). (2)证明:设g(x)=ex-x2+2ax-1,x∈R, 于是g'(x)=ex-2x+2a,x∈R. 由(1)知当a>ln 2-1时, g'(x)的最小值为g'(ln 2)=2(1-ln 2+a)>0. 于是对任意x∈R,都有g'(x)>0, 所以g(x)在R内单调递增. 于是当a>ln 2-1时,对任意x∈(0,+∞), 都有g(x)>g(0). 而g(0)=0, 从而对任意x∈(0,+∞),g(x)>0, 即ex-x2+2ax-1>0, 故ex>x2-2ax+1.。
高考数学一轮复习导数及其应用多选题测试试题含答案一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.4.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x -'=, (]0,x π∈,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >,所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.5.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立,所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=,()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.6.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln xg x x-'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确; 对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点, 即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+, 要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确.故选:AD.【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.7.已知0a >,0b >,下列说法错误的是( )A .若1a b a b ⋅=,则2a b +≥B .若23a b e a e b +=+,则a b >C .()ln ln a a b a b -≥-恒成立D .2ln a a bb e e-<恒成立 【答案】AD【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln 1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误. 【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b +=此时1+→a b ,故A 错误.B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确 C. ()ln ln ln1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a b b a ,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e; 所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误. 故选:AD【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.8.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果. 【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确;C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n n a a +->,则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误.故选:AB.【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.。
湖北省各地市2011年高考数学最新联考试题分类大汇编第3部分:函数与导数一、选择题:3.(湖北省黄冈市2011年3月份高三质量检测理科)将函数()1xf x x =+图象上每一点的横坐标变为原来的12倍,纵坐标变为原来的12倍,然后再将图象向左平移1个单位,所得图象的函数表达式为( B )A .1()23x f x x +=+B .44()23x f x x +=+C .22()21x f x x -=-D .1()1x f x x -=+10.(湖北省黄冈市2011年3月份高三质量检测理科)若11()(),()[()](2,*),(1)(2)1n n xf x f x f x f f x n n N f f x ⋅===≥∈+++则122011(2011)(1)(1)(1)f f f f +++++=( C )A .2009B .2010C .2011-3-12D .13.(湖北省黄冈市2011年3月份高三质量检测文科)函数1ln(1)2x y -+-=的反函数是( C )A .211(0)x y e x +=-> B .211(0)x y ex +=+>C .211()x y e x R +=-∈ D .211()x y e x R +=+∈ 8.(湖北省黄冈市2011年3月份高三质量检测文科)用max{,}a b 表示a ,b 两数中的较大数,若函数()max(||,||)f x x x a =-的最小值为2,则a 的值为( C )A .4B .±4C .2D .±2(湖北省襄阳市2011年3月高中调研统一测试高三理科)定义域为[a ,b]的函数y = f (x)图像的两个端点为A 、B ,M(x ,y)是 f (x)图象上任意一点,其中(1)[]x a b a b λλ=+-∈,.已知向量(1)ON OA OBλλ=+-,若不等式||MN k ≤恒成立,则称函数f (x)在[a ,b]上“k 阶线性近似”.若函数1y x x =-在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( D ) A .[0,+∞) B .1[)12+∞, C.3[)2++∞ D.3[)2-+∞(湖北省襄阳市2011年3月高中调研统一测试高三理科)动点A(x ,y)在圆x2 + y2 = 1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t = 0时,点A 的坐标是13()22,,则当0≤t ≤12时,动点A 的纵坐标y 关于t(单位:秒)的函数的单调递减区间是( B ) A .[0,1] B .[1,7] C .[7,12] D .[0,1]和[7,12]3.(湖北省襄阳市2011年3月高中调研统一测试高三理科)下列函数中,既是偶函数又在(0,+∞)上单调递增的是( D )A .y = x3B .y = cos xC .y = tan xD .ln||y x =7.(湖北省襄阳市2011年3月高中调研统一测试高三理科)某市原来居民用电价为0.52元/kW·h .换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/ kW·h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/ kW·h .对于一个平均每月用电量为200 kW·h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( C ) A .110 kW·h B .114 kW·h C .118 kW·h D .120 kW·h3. (湖北省襄阳市2011年3月高中调研统一测试高三文科)下列函数中,既是偶函数又在(0,+∞)上单调递增的是( D )A .y = x3B .y = cos xC .y = tan xD .ln||y x =5. (湖北省襄阳市2011年3月高中调研统一测试高三文科)已知函数()f x 满足:2132()()f x f x x -=,则()f x 的最小值是( C )A .2B .3C .22D .42. (湖北省八市2011年高三年级三月调考理科) 设,则=( B )A.B.C.D.9. (湖北省八市2011年高三年级三月调考文科) 函数的值域为( A )A.B.C.D.3. (湖北省八市2011年高三年级三月调考文科) 设,则=( B )A.B.C.D.8.(湖北省黄冈中学等八校2011届高三第二次联考理科)有三个命题①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②函数1(0)y x x =≥ 的反函数是2(1)(1)y x x =-≥-;③函数29|4||3|xyx x-=++-的图象关于y轴对称。
高考数学一轮复习导数及其应用多选题单元测试含答案一、导数及其应用多选题1.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.2.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e ,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确, 故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.3.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴213x x -==≥,B 对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.4.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为14327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.5.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.6.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++=B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫= ⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确.【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=;当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=,A 项:1ln 1110f,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误; D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确,故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.7.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()x h x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==,所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.8.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.9.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确; 任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.10.若方程()2110x m x -+-=和()120x m ex -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞-D .1151x ⎫--∈-⎪⎪⎝⎭【答案】ABD 【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x xy e-=-交点的横坐标,再用导数研究函数11y xx=--和12xxye-=-的单调性与取值情况,作出函数图象,数形结合即可解决问题.【详解】解:由题,1x,2x和3x,4x分别是11m xx=--和12xxme-=-的两个根,即y m=与11y xx=--和12xxye-=-交点的横坐标.对于函数11y xx=--,定义域为{}0x x≠,21'10yx=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x=时,1y=-;对于函数12xxye-=-,11'xxye--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y→+∞→-,0x=时,2y=-,1x=时,1y=-;故作出函数11y xx=--,12xxye-=-的图像如图所示,注意到:当()0,1x∈时,11122xxx xx e---<-<-,由图可知,3201x x<<<,()2,1m∈--,从而()11112,1xx--∈--,解得115,1x⎛⎫--∈-⎪⎪⎝⎭,所以选项AD正确,选项C错误,又121310x x x x-=<<.故选:ABD.【点睛】本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.。
2012届高考数学一轮精品:14.3导数的应用(考点疏理+典型例题+练习题和解析)14.3导数的应用【知识网络】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2.结合函数图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值;以及在给定区间上不超过三次的多项式函数的最大值、最小值.3.体会导数在解决实际问题中的作用. 【典型例题】[例1](1)函数32()31f x x x =-+是减函数的区间为( ).(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)(2)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个(3)已知函数bx ax x x f --=23)(的图象与x 轴切于点(1,0),则)(x f 的极值为( )A .极大值274,极小值0 B .极大值0,极小值274C .极小值-274,极大值0D .极大值-274,极小值0 (4)设函数)(3x x a y -=的递减区间为)33,33(-,则a 的取值范围是 . (5)函数]1,0[11)(22在x x x x x f -++-=上的最小值是 . [例2] 已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.[例3] 已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.[例4] 已知,a R ∈函数2().f x x x a =-(Ⅰ)当a =2时,求使f (x )=x 成立的x 的集合; (Ⅱ)求函数y =f (x )在区间[1,2]上的最小值.【课内练习】1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A .2B .3C .4D .52.函数y=x 3-3x 的单调递增区间是 ( )A .(-1,1)B .(-∞,-1)C .(-∞,-1)和(1,+∞)D .(1,+∞)3. 若函数y=x 3-2x 2+mx ,当x=13时,函数取得极大值,则m 的值为 ( ) A .3B .2C .1D .234.函数212xxy +=在( )A .(-∞,+∞)内是增函数B .(-∞,+∞)内是减函数C .(-1,1)内是增函数,在其余区间内是减函数D.(-1,1)内是减函数,在其余区间内是增函数5.已知函数f(x)=x3-12x在区间(-∞,-2)与(2,+∞)内是增函数,在(-2,2)内是减函数,那么这个函数的极大值是;极小值是.6.函数y=x4-2x3在[-2,3]上的最大值是;最小值是.7.已知函数y= 3x3+2x2-1在区间(m,0)上为减函数,则m的取值范围是.8.设函数f(x)=ax-(a+1)ln(x+1),其中a -1,求f(x)的单调区间.9.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?10.已知函数f(x)=d cx bx ax +++2331,其中a , b , c 是以d 为公差的等差数列,,且a >0,d >0.设的极小值点,在为)(0x f x [1-0,2ab]上,'1()f x x 在处取得最大值,在处取得最小值2x ,将点依次记为())(,(,()),(,()),(,22'21'100x f x f x x f x x f x A , B , C(I)求0x 的值(II)若△ABC 有一边平行于x 轴,且面积为32+,求a ,d 的值14.3导数的应用【典型例题】[例1] (1)D .提示:直接求导后看极大值点与极小值点. (2)A .提示:给出的函数图象是导函数图象不是原函数图象. (3)A .提示:据f(1)=0,f′(1)=0,求a,b,在通过求导得极值. (4)0>a 提示:与函数的极值点联系. (5)53.提示:先判断在给定区间上的单调性. [例2]. 解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+⎪⎢⎥⎝⎭⎣⎦当0m <时,有211>+,当x 变化时,()f x 与()f x '的变化如下表: 故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+ ⎪⎝⎭单调递减,在2(1,1)m+单调递增,在(1,)+∞上单调递减.(III )由已知得()3f x m '>,即22(1)20mx m x -++>又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-① 设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,所以22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<< 即m 的取值范围为4,03⎛⎫- ⎪⎝⎭例3、解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在例4、解:(1)当a=2时,()22f x x x =-,则方程f(x)=x即为22x x x -=解方程得:1230,1,1x x x == (2)(I )当a>0时,()32223,,x ax x af x x x a ax x x a⎧-≥⎪=-=⎨-<⎪⎩, 作出其草图见右, 易知()f x 有两个极值点1220,3ax x ==借助于图像可知 当01a <≤时,函数()f x 在区间[1,2]上为增函数,此时()()min 11f x f a ==- 当12a <≤时,显然此时函数的最小值为()0f a = 当23a <<时,42233a <<,此时()f x 在区间21,3a ⎡⎤⎢⎥⎣⎦为增函数,在区间2,23a ⎡⎤⎢⎥⎣⎦上为减函数,∴(){}min min (1),(2)f x f f =,又可得()()11,248f a f a =-=- ∴()()2137f f a -=- 则当733a ≤<时,()()210f f -≥,此时()min (1)1f x f a ==-x当723a <<时,()()210f f -<,此时()min (2)48f x f a ==- 当3a ≥时,223a≥,此时()f x 在区间[]1,2为增函数,故()min (1)1f x f a ==-(II)当0a =时,()2f x x x =,此时()f x 在区间[]1,2也为增函数,故()min (1)1f x f == (III )当0a <时,其草图见右显然函数()f x 在区间[]1,2为增函数,故()min (1)1f x f a ==-【课内练习】1.B 提示:令导数等于0. 2.C .提示:求导后找极值点. 3.C .提示:f′(13)=0 4.D .提示:求导后判断单调性. 5.16,-16.提示:利用极值定义. 6.32,-2716.提示:考虑区间端点函数值和极值的大小. 7. [-49,0).提示:考虑导函数在(m,0)内恒为负. 8.(1)减;(2)-1≤a≤0,(-1,+∞) 减; a>0, 1(1,)a -减,1(,)a+∞增.9. 设容器的高为x ,容器的体积为V , 则V=(90-2x )(48-2x )x,(0<V<24) =4x 3-276x 2+4320xx∵V′=12 x 2-552x+4320由V′=12 x 2-552x+4320=0得x 1=10,x 2=36 ∵x<10 时,V′>0, 10<x<36时,V′<0, x>36时,V′>0,所以,当x=10,V 有极大值V(10)=1960 又V(0)=0,V(24)=0,所以当x=10,V 有最大值V(10)=1960 10. (I)解:2b a c =+22()2()(1)()f x ax bx c ax a c x c x ax c '∴=++=+++=++令()0f x '=,得1c x x a=-=-或 0,00a d a b c>>∴<<<1,1c ca a ∴>-<- 当1cx a-<<-时, ()0f x '<;当1x >-时, ()0f x '>所以f(x)在x=-1处取得最小值即1o x =- (II)2()2(0)f x ax bx c a '=++>()f x '∴的图像的开口向上,对称轴方程为bx a=-由1ba>知2|(1)()||0()|b b b a a a ---<--()f x '∴在2[1,0]ba-上的最大值为(0)f c '=即1x =0又由21,[1,0]b b b a a a>-∈-知 ∴当b x a=-时, ()f x '取得最小值为22(),b d b f x a a a '-=-=-即 01()(1)3f x f a =-=- 21(1,),(0,)(,)3b d A a B c C a a∴---- 由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2221,a =3(1)3d a d a-=-即又由三角形ABC 的面积为32+得1(1)()223b ac a -+⋅+=利用b=a+d,c=a+2d,得222(2)3d d a+=联立(1)(2)可得3,d a ==.解法2: 2()2(0)f x ax bx c a '=++> 2(1)0,(0)b f f c a''-== 又c>0知()f x 在2[1,0]b a -上的最大值为(0)f c '= 即: 1x =0又由21,[1,0]b b b a a a>-∈-知 ∴当b x a=-时, ()f x '取得最小值为22(),b d b f x a a a '-=-=-即 01()(1)3f x f a =-=- 21(1,),(0,)(,)3b d A a B c C a a∴---- 由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2221,a =3(1)3d a d a-=-即又由三角形ABC 的面积为32+得1(1)()223b ac a -+⋅+=利用b=a+d,c=a+2d,得222(2)3d d a+=联立(1)(2)可得3,d a ==.。
基础巩固题组 (建议用时:40分钟)一、填空题1.函数f (x )=2x 3-6x 2-18x -7在[1,4]上的最小值为________. 解析 f ′(x )=6x 2-12x -18=6(x 2-2x -3) =6(x -3)(x +1),由f ′(x )>0,得x >3或x <-1; 由f ′(x )<0,得-1<x <3,故函数f (x )在[1,3]上单调递减,在[3,4]上单调递增, ∴f (x )min =f (3)=2×27-6×9-18×3-7=-61. 答案 -612.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是________.解析 ∵f ′(x )=3x 2+6x +3=3(x 2+2x +1)=3(x +1)2≥0,∴函数f (x )在R 上单调递增,故f (x )无极值点. 答案 03.(2015·泰州调研)函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则b 的取值范围是________.解析 由f (x )=x 3-3bx +3b ,得f ′(x )=3x 2-3b .由已知可得f ′(x )=3x 2-3b 在(0,1)上与x 轴有交点,且满足⎩⎨⎧f ′(0)<0,f ′(1)>0,即⎩⎨⎧b >0,3-3b >0.∴0<b <1.∴b 的取值范围是(0,1). 答案 (0,1)4.(2015·扬州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则 ⎩⎨⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎨⎧a =1,b =3或⎩⎨⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 答案 -75.(2016·长沙模拟)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是________. 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.答案 (-∞,-3)∪(6,+∞)6.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是________.解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1. 答案 (-∞,-1)7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析 由题意,得f ′(x )=3x 2-12,令f ′(x )=0,得x =±2,又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,所以M =24,m =-8,M -m =32. 答案 328.(2015·苏、锡、常、镇模拟)函数f (x )=ax 3+bx 2+cx +d 在x =0处有极大值1,在x =2处有极小值0,则常数a ,b ,c ,d 分别为________,________,________,________.解析 f ′(x )=3ax 2+2bx +c ,则⎩⎨⎧f (2)=0,f ′(2)=0,f (0)=1,f ′(0)=0,即⎩⎨⎧8a +4b +2c +d =0,12a +4b +c =0,d =1,c =0,解得a =14,b =-34,c =0,d =1.答案 14 34 0 1 二、解答题9.(2016·徐州一检)当a ∈⎝ ⎛⎭⎪⎫-∞,-1e 时,函数f (x )=ax -1+ln x 在区间(0,e)上的最大值为-4,求a 的值.解 由题意f ′(x )=a +1x ,令f ′(x )=0,解得x =-1a .∵a ∈⎝ ⎛⎭⎪⎫-∞,-1e ,∴0<-1a <e ,由f ′(x )>0,解得0<x <-1a,由f ′(x )<0,解得-1a <x <e.从而f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,-1a ,减区间为⎝ ⎛⎭⎪⎫-1a ,e .∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1-1+ln ⎝ ⎛⎭⎪⎫-1a =-4,解得a =-e 2.10.(2015·安徽卷)已知函数f (x )=ax(x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar =400,求f (x )在(0,+∞)内的极值.解 (1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4.所以当x <-r 或x >r 时,f ′(x )<0, 当-r <x <r 时,f ′(x )>0.因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞); f (x )的单调递增区间为(-r ,r ).(2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减.因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)内的极大值为f (r )=ar (2r )2=a 4r =4004=100.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13. 答案 -1312.(2016·南通调研)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是________.解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点,实数 a 的取值范围是⎝ ⎛⎭⎪⎫2,103.答案 ⎝ ⎛⎭⎪⎫2,10313.(2015·太原二模)已知f ′(x )=a (x +1)(x -a )是函数f (x )的导函数,若f (x )在x =a 处取得极大值,则实数a 的取值范围是________.解析 ∵f ′(-1)=f ′(a )=0,∴当a <-1时,x <a 时,f ′(x )<0,f (x )单调递减;a <x <-1时,f ′(x )>0,f (x )单调递增;x >-1时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极小值,不符合题意.当-1<a <0时,x <-1时,f ′(x )<0,f (x )单调递减;-1<x <a 时,f ′(x )>0,f (x )单调递增;x >a 时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极大值,符合题意.当a >0时,x <-1时,f ′(x )>0,f (x )单调递增;-1<x <a 时,f ′(x )<0,f (x )单调递减;x >a 时,f ′(x )>0,f (x )单调递增,此时f (x )在x =a 处取得极小值,不符合题意.∴实数a 的取值范围是(-1,0). 答案 (-1,0)14.(2015·南京、盐城调研)已知a ∈R ,函数f (x )=a x +ln x -1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x +ln x -1,x ∈(0,+∞), 所以f ′(x )=-1x 2+1x =x -1x 2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14. 又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -⎝ ⎛⎭⎪⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0. (2)因为f (x )=ax +ln x -1,所以f ′(x )=-a x 2+1x =x -ax 2,x ∈(0,+∞). 令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ∈(0,a )时,f ′(x )<0, 函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时, f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x=a时,函数f(x)取得最小值ln a.③若a≥e,则当x∈(0,e]时,f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)取得最小值a e.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为ln a;当a≥e时,函数f(x)在区间(0,e]上的最小值为a e.。
阶段性测试题三 (导数及其应用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011·烟台调研)三次函数f (x )=mx 3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m <0B .m <1C .m ≤0D .m ≤1[答案] A[解析] f ′(x )=3mx 2-1,由条件知f ′(x )≤0在(-∞,+∞)上恒成立,∴⎩⎨⎧m <0Δ=12m ≤0,∴m <0,故选A. 2.(文)(2011·山东淄博一中期末)曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角形面积为( )A .1 B.19 C.13 D.23[答案] B[解析] ∵y ′=x 2+1,∴曲线y =13x 3+x 在点(1,43)处的切线斜率k =y ′|x =1=1+1=2,∴k =2,切线方程为y -43=2(x -1),即6x -3y -2=0,令x =0得y =-23,令y =0得x =13,∴S =12×13×23=19.(理)(2011·辽宁沈阳二中检测)由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为( )A.329B .2-ln3C .4+ln3D .4-ln3 [答案] D[解析] 如图,平面图形的面积为⎠⎛13⎝⎛⎭⎫y -1y d y =[12y 2-ln y ]|31=4-ln3.[点评] 本题考查定积分求曲边形的面积,关键是根据定积分的几何意义把求解的面积归结为函数在区间上的定积分,再根据微积分基本定理求解.在把曲边形面积转化为定积分时,可以以x 为积分变量、也可以以y 为积分变量,如果是以x 为积分变量,则被积函数是以x 为自变量的函数,如果是以y 为积分变量,则被积函数是以y 为自变量的函数.本题如果是以x 为积分变量,则曲边形ABC 的面积是不如以y 为积分变量简明.3.(文)(2011·陕西咸阳模拟)已知函数f (x )=ax 2-1的图像在点A (1,f (1))处的切线l 与直线8x -y +2=0平行,若数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2010的值为( ) A.20102011 B.10052011 C.40204021D.20104021[答案] D[解析] ∵f ′(x )=2ax ,∴f (x )在点A 处的切线斜率为f ′(1)=2a ,由条件知2a =8,∴a =4,∴f (x )=4x 2-1,∴1f (n )=14n 2-1=12n -1·12n +1=12⎝⎛⎭⎫12n -1-12n +1∴数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和S n =1f (1)+1f (2)+…+1f (n )=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1,∴S 2010=20104021. (理)(2011·辽宁丹东四校联考)设函数f (x )=ax 2+b (a ≠0),若⎠⎛03f (x )d x =3f (x 0),则x 0=( )A .±1 B. 2 C .±3 D .2[答案] C[解析] ⎠⎛03f (x )d x =⎠⎛03(ax 2+b )d x=⎪⎪⎝⎛⎭⎫13ax 3+bx30=9a +3b .由⎠⎛03f (x )d x =3f (x 0)得,9a +3b =3ax 20+3b ,∴x 20=3,∴x 0=± 3.4.(文)(2011·山西太原调研)曲线y =x 3-3x 2+1在点(-1,-3)处的切线与坐标轴所围成的封闭图形的面积为( )A .2B .3C .4D .5[答案] A[解析] y ′|x =-1=(3x 2-6x )|x =-1=9,∴切线方程为y +3=9(x +1),即9x -y +6=0,令x =0得y =6,令y =0得x =-23,∴所求面积S =12×6×23=2,故选A.(理)(2011·宁夏银川一中检测)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数.[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .5.(2011·福州市期末、河北冀州期末)已知实数a 、b 、c 、d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( )A .-1B .0C .1D .2[答案] A[分析] 利用导数可求b 、c ,由a 、b 、c 、d 成等比数列可得ad =bc . [解析] y ′=1x +2-1,令y ′=0得x =-1,当-2<x <-1时,y ′>0,当x >-1时,y ′<0,∴b =-1,c =ln(-1+2)-(-1)=1,∴ad =bc =-1,故选A.6.(2011·黄冈市期末)设a ∈R ,函数f (x )=e x +a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )A .-ln22B .-ln2C .ln2 D.ln22[答案] C[解析] ∵f ′(x )=e x -ae -x 为奇函数,∴a =1,设切点为P (x 0,y 0),则f ′(x 0)=ex 0-e -x 0=32,∴ex 0=2,∴x 0=ln2.7.(2011·日照调研)下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导数f ′(x )的图象,则f (-1)的值为( )A.13 B .-13C.73 D .-13或53[答案] B[解析] f ′(x )=x 2+2ax +a 2-1,其图象为开口向上的抛物线,故不是第一个图;第二个图中,a =0,f ′(x )=x 2-1,但已知a ≠0,故f ′(x )的图象为第三个图,∴f ′(0)=0,∴a =±1,又其对称轴在y 轴右边,∴a =-1,∴f (x )=13x 3-x 2+1,∴f (-1)=-13,故选B.8.(2011·潍坊一中期末)设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.9.(2011·北京学普教育中心)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是..单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,32)C .[1,2)D .[32,2)[答案] B[解析] 因为f (x )定义域为(0,+∞),f ′(x )=4x -1x ,由f ′(x )=0,得x =12.据题意,⎩⎪⎨⎪⎧k -1<12<k +1k -1≥0,解得1≤k <32,选B.10.(2011·江西吉安质检)已知曲线方程f (x )=sin 2x +2ax (a ∈R ),若对任意实数m ,直线l :x +y +m =0都不是曲线y =f (x )的切线,则a 的取值范围是( )A .(-∞,-1)∪(-1,0)B .(-∞,-1)∪(0,+∞)C .(-1,0)∪(0,+∞)D .a ∈R 且a ≠0,a ≠-1[答案] B[解析] 若存在实数m ,使直线l 是曲线y =f (x )的切线,∵f ′(x )=2sin x cos x +2a =sin2x +2a ,∴方程sin2x +2a =-1有解,∴-1≤a ≤0,故所求a 的取值范围是(-∞,-1)∪(0,+∞),选B.11.(2011·彭州中学月考)若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7][答案] B[解析] 令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0得x =-1或x =3(舍去).∵f (-1)=7,f (-2)=0,f (2)=-20. ∴f (x )的最小值为f (2)=-20, 故m ≤-20,综上可知应选B.12.(2011·蚌埠二中质检)定义在R 上的函数f (x )满足f (4)=1,f ′(x )为f (x )的导函数,已知函数y =f ′(x )的图象如图所示.若两正数a ,b 满足f (2a +b )<1,则b +2a +2的取值范围是( )A.⎝⎛⎭⎫13,12B.⎝⎛⎭⎫-∞,12∪(3,+∞) C.⎝⎛⎭⎫12,3 D .(-∞,-3)[答案] C[解析] 由y =f ′(x )的图象知,x >0时,f ′(x )>0,x <0时,f ′(x )<0,∴y =f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∵两正数a ,b 满足f (2a +b )<1且f (4)=1,∴2a +b <4,如图,b +2a +2表示点A (-2,-2)与线段BC 上的点连线的斜率,其中B (2,0),C (0,4), ∵k AB =12,k AC =3,a >0,b >0,∴12<b +2a +2<3.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·四川广元诊断)曲线y =xe x+2x +1在点(0,1)处的切线方程为________. [答案] y =3x +1[解析] y ′=e x +xe x +2,y ′|x =0=3,∴切线方程为y -1=3(x -0),即y =3x +1. 14.(文)(2011·广东省高州长坡中学期末)函数f (x )=1+log 2x ,f (x )的反函数为g (x ),则g ′(2)=________.[答案] 2ln2[解析] 由y =1+log 2x 得x =2y -1,∴f (x )的反函数为g (x )=2x -1,∴g ′(x )=2x -1ln2,∴g ′(2)=2ln2.(理)(2011·辽宁沈阳二中检测)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.[答案] 2[解析] f (5)+f ′(5)=(-5+8)+(-1)=2.15.(文)函数y =13x 3-ax 2+x -2a 在R 上不是单调函数,,则a 的取值范围是________.[答案] (-∞,-1)∪(1,+∞)[解析] y ′=x 2-2ax +1,若函数在R 上单调,应有y ′≥0恒成立,∴4a 2-4≤0,∴a 2≤1,∴-1≤a ≤1,因此所求a 的取值范围是(-∞,-1)∪(1,+∞).(理)(2011·安徽巢湖质检)定积分⎠⎛12|3-2x |d x =________[答案] 12[解析] ⎠⎛12|3-2x |d x =2⎠⎛21.5(2x -3)d x =2(x 2-3x )|21.5=2×14=12. 16.(2011·湖南长沙一中期末)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义:设f ″(x )是函数y =f (x )的导数y =f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求(1)函数f (x )=x 3-3x 2+3x 对称中心为________.(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g ⎝⎛⎭⎫12011+g ⎝⎛⎭⎫22011+g ⎝⎛⎭⎫32011+g ⎝⎛⎭⎫42011+…+g ⎝⎛⎭⎫20102011=________.[答案] (1)(1,1) (2)2010[解析] (1)f ′(x )=3x 2-6x +3,f ″(x )=6x -6,令6x -6=0得x =1,f (1)=1,∴f (x )的对称中心为(1,1).(2)令h (x )=13x 3-12x 2+3x -512,k (x )=1x -12,h ′(x )=x 2-x +3,h ″(x )=2x -1,由2x -1=0得x =12,h ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1,∴h (x )的对称中心为⎝⎛⎭⎫12,1,∴h (x )+h (1-x )=2,x =12011,22011,…,20102011.又k (x )的对称中心为⎝⎛⎭⎫12,0,∴k (x )+k (1-x )=0,x =12011,22011,…,20102011.∴g ⎝⎛⎭⎫12011+g⎝⎛⎭⎫22011+…+g ⎝⎛⎭⎫20102011=h ⎝⎛⎭⎫12011+h ⎝⎛⎭⎫22011+…+h ⎝⎛⎭⎫20102011+k ⎝⎛⎭⎫12011+k ⎝⎛⎭⎫22011+…+k ⎝⎛⎭⎫20102011=2010. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(文)(2011·山西太原调研)已知函数f (x )=13x 3-ax 2+(a 2-1)x +b (a ,b ∈R ),其图象在点(1,f (1))处的切线方程为x +y -3=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间,并求出f (x )在区间[-2,4]上的最大值. [解析] (1)f ′(x )=x 2-2ax +a 2-1, ∵(1,f (1))在x +y -3=0上,∴f (1)=2, ∵(1,2)在y =f (x )上,∴2=13-a +a 2-1+b ,又f ′(1)=-1,∴a 2-2a +1=0, 解得a =1,b =83.(2)∵f (x )=13x 3-x 2+83,∴f ′(x )=x 2-2x ,由f ′(x )=0可知x =0和x =2是f (x )的极值点,所以有x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x ) + 0 - 0 + f (x )极大值极小值所以f (x )的单调递增区间是(-∞,0)和(2,+∞),单调递减区间是(0,2). ∵f (0)=83,f (2)=43,f (-2)=-4,f (4)=8,∴在区间[-2,4]上的最大值为8.(理)(2011·淄博期末)定义在R 上的函数f (x )=ax 3+bx 2+cx +3同时满足以下条件:①f (x )在(0,1)上是减函数,在(1,+∞)上是增函数;②f ′(x )是偶函数;③f (x )在x =0处的切线与直线y =x +2垂直.(1)求函数y =f (x )的解析式;(2)设g (x )=ln x -mx ,若存在实数x ∈[1,e ],使g (x )<f ′(x ),求实数m 的取值范围.[解析] (1)f ′(x )=3ax 2+2bx +c ,∵f (x )在(0,1)上是减函数,在(1,+∞)上是增函数, ∴f ′(1)=3a +2b +c =0① 由f ′(x )是偶函数得:b =0②又f (x )在x =0处的切线与直线y =x +2垂直,f ′(0)=c =-1③ 由①②③得:a =13,b =0,c =-1,即f (x )=13x 3-x +3.(2)由已知得:存在实数x ∈[1,e ],使ln x -mx <x 2-1即存在x ∈[1,e ],使m >x ln x -x 3+x设M (x )=x ln x -x 3+x x ∈[1,e ],则M ′(x )=ln x -3x 2+2 设H (x )=ln x -3x 2+2,则H ′(x )=1x -6x =1-6x 2x∵x ∈[1,e ],∴H ′(x )<0,即H (x )在[1,e ]上递减 于是,H (x )≤H (1),即H (x )≤-1<0,即M ′(x )<0 ∴M (x )在[1,e ]上递减,∴M (x )≥M (e )=2e -e 3于是有m >2e -e 3为所求.18.(本小题满分12分)(2011·四川资阳模拟)函数f (x )=ax 3-6ax 2+3bx +b ,其图象在x =2处的切线方程为3x +y -11=0.(1)求函数f (x )的解析式;(2)若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围;(3)是否存在点P ,使得过点P 的直线若能与曲线y =f (x )围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P 点的坐标;若不存在,说明理由.[解析] (1)由题意得f ′(x )=3ax 2-12ax +3b , ∵f ′(2)=-3且f (2)=5,∴⎩⎪⎨⎪⎧ 12a -24a +3b =-3,8a -24a +6b +b =5,即⎩⎪⎨⎪⎧4a -b =1,-16a +7b =5,解得a =1,b =3,∴f (x )=x 3-6x 2+9x +3.(2)由f (x )=x 3-6x 2+9x +3可得,f ′(x )=3x 2-12x +9,13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根, 即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点,g ′(x )=3x 2-14x +8=(3x -2)(x -4),则g (x ),g ′(x )的变化情况如下表.⎝⎛⎭⎫-∞,23 23 ⎝⎛⎭⎫23,4 4 (4,+∞)g ′(x ) + 0 - 0 + g (x )极大值极小值则函数f (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m .y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,则有⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0,解得-16<m <6827.(3)存在点P 满足条件.∵f (x )=x 3-6x 2+9x +3,∴f ′(x )=3x 2-12x +9=3(x -1)(x -3),由f ′(x )=0,得x 1=1,x 2=3.当x <1时,f ′(x )>0;当1<x <3时,f ′(x )<0;当x >3时,f ′(x )>0.可知极值点为A (1,7),B (3,3),线段AB 中点P (2,5)在曲线y =f (x )上,且该曲线关于点P (2,5)成中心对称.证明如下:∵f (x )=x 3-6x 2+9x +3,∴f (4-x )=(4-x )3-6(4-x )2+9(4-x )+3 =-x 3+6x 2-9x +7,∴f (x )+f (4-x )=10,上式表明,若点A (x ,y )为曲线y =f (x )上任一点,其关于P (2,5)的对称点A (4-x,10-y )也在曲线y =f (x )上,曲线y =f (x )关于点P (2,5)对称.故存在点P (2,5),使得过该点的直线若能与曲线y =f (x )围成两个封闭图形,则这两个封闭图形的面积相等.19.(本小题满分12分)(2011·烟台调研)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直,(1)求实数a 、b 的值;(2)若函数f (x )在区间[m ,m +1]上单调递增,求m 的取值范围. [解析] (1)∵f (x )=ax 3+bx 2的图象经过点M (1,4),∴a +b =4.①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b , 由条件f ′(1)·(-19)=-1,即3a +2b =9,②由①②式解得a =1,b =3. (2)f (x )=x 3+3x 2,f ′(x )=3x 2+6x , 令f ′(x )=3x 2+6x ≥0得x ≥0或x ≤-2,∴f (x )的单调递增区间为(-∞,-2]和[0,+∞)由条件知m ≥0或m +1≤-2, ∴m ≥0或m ≤-3.20.(本小题满分12分)(2011·厦门期末)已知函数f (x )=1+a ln xx,(a ∈R ).(1)若函数f (x )在x =1处取得极值,求实数a 的值;(2)在(1)条件下,若直线y =kx 与函数y =f (x )的图象相切,求实数k 的值.[解析] (1)∵f (x )=1+a ln x x, ∴f ′(x )=a x ·x -(1+a ln x )x 2=a -1-a ln x x 2, ∵函数f (x )在x =1处取得极值,∴f ′(1)=a -1=0,∴a =1经检验,a =1时,函数f (x )在x =1处取得极值.(2)由(1)可知,a =1,∴f (x )=1+ln x x ,∴f ′(x )=-ln x x 2, 设切点A ⎝⎛⎭⎫x 0,1+ln x 0x 0,∴k =f ′(x 0)=-ln x 0x 20又k =k OA =1+ln x 0x 20,∴1+ln x 0x 20=-ln x 0x 20, ∴ln x 0=-12,∴x 0=e -12,∴k =e 2. 21.(本小题满分12分)(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知函数f (x )=x 3+ax 2+b 的图象在点P (1,0)处的切线与直线3x +y =0平行.(1)求常数a ,b 的值;(2)求函数f (x )在区间[0,m ]上的最小值和最大值(m >0).[解析] (1)f ′(x )=3x 2+2axf ′(1)=3+2a =-3,∴a =-3f (1)=a +b +1=0,∴b =2.(2)f (x )=x 3-3x 2+2,f ′(x )=3x 2-6x令f ′(x )=0得,x 1=0,x 2=2,当x <0或x >2时,f ′(x )>0,当0<x <2时,f ′(x )<0, ∴f (x )增区间为(-∞,0)和(2,+∞),减区间为(0,2),f (0)=2,令f (x )=x 3-3x 2+2=2得x =0或x =3.∴f (0)=f (3)=2,①当0≤m ≤2时f (x )min =f (m )=m 3-3m 2+2f (x )max =f (0)=2②当2<m ≤3时f (x )min =f (2)=-2f (x )max =f (0)=2③当m >3时f (x )min =f (2)=-2f (x )max =f (m )=m 3-3m 2+2.22.(本小题满分12分)(文)已知函数f (x )=x 3-3ax 2-3a 2+a (a >0).(1)求函数f (x )的单调区间;(2)若曲线y =f (x )上有两点A (m ,f (m ))、B (n ,f (n ))处的切线都与y 轴垂直,且函数y =f (x )在区间[m ,n ]上存在零点,求实数a 的取值范围.[解析] (1)f ′(x )=3x 2-6ax =3x (x -2a ).令f ′(x )=0,得x 1=0,x 2=2a列表如下: x(-∞,0) 0 (0,2a ) 2a (2a ,+∞) f ′(x )+ 0 - 0 + f (x ) -3a 2+a -4a 3-3a 2+a 由上表可知,函数f (x )的单调递增区间为(-∞,0),(2a ,+∞);单调递减区间为(0,2a ).(2)由(1)可知,m =0,n =2a 且在x =0,x =2a 处分别取得极值.f (0)=-3a 2+a ,f (2a )=-4a 3-3a 2+a .由已知得函数y =f (x )在区间[0,2a ]上存在零点,∴f (0)×f (2a )≤0即(-3a 2+a )(-4a 3-3a 2+a )≤0∴a 2(3a -1)(4a -1)(a +1)≤0 ∵a >0∴(3a -1)(4a -1)≤0,解得14≤a ≤13故实数a 的取值范围是[14,13]. (理)(2011·北京学普教育中心联考版)已知函数f (x )=x 2+ax -ln x ,a ∈R ;(1)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(2)令g (x )=f (x )-x 2,是否存在实数a ,当x ∈(0,e ](e 是自然对数的底数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由.[解析] f ′(x )=2x +a -1x =2x 2+ax -1x ≤0在[1,2]上恒成立 令h (x )=2x 2+ax -1,x ∈[1,2],∴h (x )≤0在[1,2]上恒成立∴⎩⎪⎨⎪⎧ h (1)=1+a ≤0h (2)=7+2a ≤0得⎩⎪⎨⎪⎧ a ≤-1a ≤-72,∴a ≤-72. (2)假设存在实数a ,使g (x )=f (x )-x 2,x ∈(0,e ]有最小值3g (x )=ax -ln x ,x ∈(0,e ],g ′(x )=a -1x =ax -1x①当a ≤0时,g ′(x )<0,g (x )在(0,e ]上单调递减∴g (x )min =g (e )=ae -1=3,∴a =4e(舍去) ②当0<1a <e 即a >1e 时,在(0,1a )上,g ′(x )<0;在(1a,e ]上,g ′(x )>0 ∴g (x )在(0,1a ]上单调递减,在(1a,e ]上单调递增 ∴g (x )min =g ⎝⎛⎭⎫1a =1+ln a =3,∴a =e 2满足条件 ③当1a ≥e 即0<a ≤1e时,g ′(x )<0,g (x )在(0,e ]上单调递减 g (x )min =g (e )=ae -1=3∴a =4e >1e(舍去) 综上所述,存在a =e 2使得当x ∈(0,e ]时,g (x )有最小值3.。