浙教新版八年级上册《第1章+1.1-1.3+三角形的初步认识》2020年单元测试卷
- 格式:doc
- 大小:366.05 KB
- 文档页数:22
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
浙教版-8年级-上册-数学-第1章《三角形的初步知识》1.1认识三角形(一)-每日好题挑选【例1】若a、b、c表示△ABC的三边长,则|a-b-c|+|b-c-a|+|c-a-b|=。
【例2】若三角形的周长为17,且三边长都是正整数,那么满足条件的三角形有多少个?请分别写出它们的边长。
【例3】(1)“综合与实践”学习活动小组准备制作一组三角形,记这些三角形的三边长分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数。
用(a,b,c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3的一个三角形。
请列举出所有满足条件的三角形。
(2)各边长都是整数,且最大边长为8的三角形共有多少个?【例4】在△ABC中,∠A=50∘,∠B=30∘,点D在AB边上,连接CD,若△ACD为直角三角形,求∠BCD的度数。
【例5】在△ABC中,∠A:∠B=5:7,∠C-∠A=10°,则∠C=。
【例6】三角形中,最大的内角不能小于°。
【例7】如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于。
【例8】如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=。
【例9】如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方公分,则此方格纸的面积为平方公分。
【例9】如图,已知直线a和直线外同侧两点M,N(点M,N的连线与直线a不平行),请在直线a上找一点P,使|PM-PN|的值最大,并简要说明理由。
1.1认识三角形(一)-每日好题挑选-答案【例1】【答案】;【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简。
【例2】解:设三角形的三边分别为a、b、c,令a≤b≤c.∵a+b+c=17a+b>c,∴c≤8,∵a≤b≤c a+b+c=17,∴c≥6,∵c≤8c≥6,∴6≤c≤8,故c 的取值只能是6、7、8,当c=6时,a=5,b=6;当c=7时,a=5,b=5或a=4,b=6或a=3,b=7当c=8时,a=1,b=8或a=2,b=7或a=3,b=6或a=4,b=5所以满足条件的三角形的三边分别为:①6,6,5;②7,5,5;③7,6,4;④7,7,3;⑤8,8,1;⑥8,7,2;⑦8,6,3;⑧8,5,4;所以满足条件的三角形共有8个。
第1章一、选择题(每小题3分,共30分)(第1题)1.如图,已知MB =ND ,∠MBA =∠NDC ,则下列条件中不能判定△ABM ≌△CDN 的是(B ) A. ∠M =∠N B. AM =CN C. AB =CD D. AM ∥CN2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(C ) A. 5 B. 6 C. 12 D. 163.如图,图中∠1的度数为(D ) A. 40° B. 50° C. 60° D. 70°(第3题)(第4题)4.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数为(C )A. 15°B. 20°C. 25°D. 30°(第5题)5.如图,在余料ABCD 中,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E .若∠A =96°,则∠EBC 的度数为(B )A. 45°B. 42°C. 36°D. 30°6.如图,已知∠1=∠2,AE ⊥OB 于点E ,BD ⊥OA 于点D ,AE ,BD 的交点为C ,则图中的全等三角形共有(C )A. 2对B. 3对C. 4对D. 5对, (第6题)) ,(第7题))7.如图,BE ⊥AC 于点D ,且AD =CD ,BD =E D.若∠ABC =72°,则∠E 等于(B ) A .18° B .36° C .54° D .72°【解】 可证△ADB ≌△CDE ,△ABD ≌△CBD ,∴∠E =∠ABD =12∠ABC =36°.(第8题)8.如图,△ABC 的三边AB ,BC ,CA 的长分别是100,110,120,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BOC ∶S △CAO =(C )A .1∶1∶1B .9∶10∶11C .10∶11∶12D .11∶12∶13【解】 利用角平分线的性质定理可得△ABO ,△BOC ,△CAO 分别以AB ,BC ,AC 为底时,高线长相等,则它们的面积之比等于底之比.9.如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于点G .若∠BDC =140°,∠BGC =110°,则∠A 的度数为(B )A. 70°B. 80°C. 50°D. 55° 【解】 连结B C.∵∠BDC =140°,∴∠DBC +∠DCB =40°. 又∵∠BGC =110°,∴∠GBC +∠GCB =70°. ∴∠GBD +∠GCD =30°. ∴∠ABD +∠ACD =60°.∴∠ABC +∠ACB =100°.∴∠A =80°.,(第9题)) ,(第10题))10.如图,在△ABC 中,AD 是∠BAC 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB =c ,AC =b ,则m +n 与b +c 的大小关系是(A )A. m +n >b +cB. m +n <b +cC. m +n =b +cD. 无法确定(第10题解)【解】 如解图,在BA 的延长线上取一点E ,使AE =AC ,连结ED ,EP .∵AD 是∠BAC 的外角平分线, ∴∠CAD =∠EA D. 在△ACP 和△AEP 中,∵⎩⎨⎧AC =AE ,∠CAP =∠EAP ,AP =AP ,∴△ACP ≌△AEP (SAS ).∴PC =PE . 在△PBE 中,PB +PE >AB +AE , 即PB +PC >AB +A C.∵PB =m ,PC =n ,AB =c ,AC =b , ∴m +n >b +c .二、填空题(每小题3分,共30分)11.如图,已知△ABC 的周长为3 cm ,D ,E 分别是AB ,AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则图中阴影部分图形的周长为__3__cm.,(第11题)) , (第12题))12.如图,在△ABC 中,AB >AC ,按以下步骤作图:分别以点B 和点C 为圆心,大于12BC 长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结C D.若AB =8,AC =4,则△ACD 的周长为12.13.已知三角形的三边长分别为3,5,x ,则化简式子|x -2|+|x -9|=__7__. 【解】 提示:2<x <8.(第14题)14.如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE =__3__. 【解】 在△ABE 和△ACD 中,∵⎩⎨⎧∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD (AAS ). ∴AC =AB =5.∵AE =2,∴CE =3.15.如图,在4×5的网格中,每个小正方形的边长都为1,在图中找两个格点D 和E ,使∠ABE =∠ACD =90°,并使AC =DC ,AB =EB ,则四边形BCDE 的面积为__3__.,(第15题)),(第15题解))【解】 如解图,四边形BCDE 的面积为8-3-32-12=3.(第16题)16.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO .有下列结论:①AC ⊥BD ;②CB =CD ;③△ABC ≌△ADC ;④AD =C D.其中正确结论的序号是①②③.【解】 ∵△ABO ≌△ADO ,∴∠AOB =∠AOD ,AB =AD ,∠BAO =∠DAO . ∵∠AOB +∠AOD =180°, ∴∠AOB =∠AOD =90°, ∴AC ⊥BD ,故①正确.在△ABC 和△ADC 中,∵⎩⎨⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS ), ∴CB =CD ,故②③正确.AD 与CD 不一定相等,故④错误. 综上所述,正确结论的序号是①②③.(第17题)17.如图,△ABC 三边的中线AD ,BE ,CF 的交点为G .若S △ABC =12,则图中阴影部分的面积是__4__.【解】 ∵△ABC 的三条中线AD ,BE ,CF 交于点G , ∴S △ABD =S △ACD ,S △AFG =S △BFG , S △AGE =S △CGE ,S △BDG =S △CDG , ∴S △ABG =S △ACG .∴S △BFG =S △CGE .同理,S △BFG =S △BDG ,∴图中6个小三角形的面积都相等.∴S 阴影=13S △ABC =4.18.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=90°.(第18题)(第18题解)【解】 如解图.∵AB ∥DC ,∴∠2=∠3.∵∠3+∠4=180°,∴∠2=180°-∠4. 又∵∠1+∠4=90°,即∠1=90°-∠4.∴∠2-∠1=180°-∠4-(90°-∠4)=90°.(第19题)19.如图,在△ABC 中,∠A =52°,∠ABC 与∠ACB 的平分线交于点D 1,∠ABD 1与∠ACD 1的平分线交于点D 2……依此类推,∠BD 5C 的度数是56°.【解】 ∵∠A =52°, ∴∠ABC +∠ACB =128°.∵BD 1,CD 1分别平分∠ABC 和∠ACB ,∴∠D 1BC +∠D 1CB =12(∠ABC +∠ACB )=64°.∴∠D 1=180°-64°=116°.同理,∠D 2=180°-64°-12×64°=84°……∴∠D 5=180°-64°-12×64°-⎝ ⎛⎭⎪⎫122×64°-⎝ ⎛⎭⎪⎫123×64°-⎝ ⎛⎭⎪⎫124×64°=56°.20.如图,图①是一块边长为1,周长记为P 1的等边三角形纸板,沿图①的底边剪去一块边长为12的等边三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即边长为前一块被剪掉等边三角形纸板边长的12)后得到图③……记第n (n ≥3)块纸板的周长为P n ,则P n -P n-1=⎝ ⎛⎭⎪⎫12n -1.(第20题)【解】 ∵P 1=3,P 2=212,P 3=234,P 4=278,∴P 4-P 3=18=⎝ ⎛⎭⎪⎫123=⎝ ⎛⎭⎪⎫124-1……故P n -P n -1=⎝ ⎛⎭⎪⎫12n -1.三、解答题(共40分) 21.(6分)如图,△ABC ≌△A 1B 1C 1,AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线.求证:AD =A 1D 1.(第21题)【解】 ∵△ABC ≌△A 1B 1C 1,∴AB =A 1B 1,∠B =∠B 1,∠BAC =∠B 1A 1C 1.∵AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线,∴∠BAD =12∠BAC ,∠B 1A 1D 1=12∠B 1A 1C 1.∴∠BAD =∠B 1A 1D 1. 在△ABD 与△A 1B 1D 1中,∵⎩⎨⎧∠BAD =∠B 1A 1D 1,AB =A 1B 1,∠B =∠B 1,∴△ABD ≌△A 1B 1D 1(ASA ). ∴AD =A 1D 1.(第22题)22.(6分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,C D.(1)求证:△ABE ≌△CB D.(2)若∠CAE =27°,∠ACB =45°,求∠BDC 的度数. 【解】 (1)∵∠ABC =90°, ∴∠CBD =90°=∠AB C. 在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD (SAS ). (2)∵△ABE ≌△CBD , ∴∠AEB =∠CD B.∵∠AEB 为△AEC 的外角,∴∠AEB =∠CAE +∠ACB =27°+45°=72°, ∴∠BDC =72°.(第23题)23.(6分)如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠1∶∠2∶∠3=28∶5∶3,求∠α的度数.【解】∵∠1+∠2+∠3=180°,∠1∶∠2∶∠3=28∶5∶3,∴∠1=140°,∠2=25°,∠3=15°.设BE与CD的交点为F.∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴△ABE≌△ABC≌△AD C.∴∠2=∠ABE,∠3=∠AC D.∴∠FBC=2∠2=2×25°=50°,∠FCB=2∠3=2×15°=30°.∵∠α是△FBC的一个外角,∴∠α=∠FBC+∠FCB=50°+30°=80°.24.(6分)如图,已知BD,CE是△ABC的高线,点F在BD上,BF=AC,点G在CE的延长线上,CG=A B.求证:AG⊥AF.(第24题)【解】∵BD,CE是△ABC的高线,∴∠BEC=∠CDB=90°.∵∠EHB=∠DHC,∴∠EBH=∠DCH.又∵BF=CA,AB=GC,∴△ABF≌△GCA(SAS).∴∠BAF=∠G.∵∠AEG=90°,∴∠G+∠GAE=90°,∴∠BAF+∠GAE=90°,即∠GAF=90°,∴AG⊥AF.(第25题)25.(6分)如图,已知BE,CF分别是△ABC中AC,AB边上的高线,在BE的延长线上取点P,使PB=AC,在CF的延长线上取点Q,使CQ=A B.求证:AQ⊥AP.【解】∵BE,CF分别是△ABC中AC,AB边上的高线,∴∠AEB=∠AFC=90°,∴∠ABP+∠EAF=90°,∠ACQ+∠EAF=90°,∴∠ABP=∠ACQ.在△ABP 和△QCA 中,∵⎩⎨⎧PB =AC ,∠ABP =∠QCA ,AB =QC ,∴△ABP ≌△QCA (SAS ). ∴∠APB =∠QA C.∴∠APB +∠PAE =∠QAC +∠PAE , 即180°-∠AEP =∠PAQ . ∴∠PAQ =90°,即AQ ⊥AP .26.(10分)旧知新意:我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究: 如图①,∠DBC 与∠ECB 分别为△ABC 的两个外角,试探究∠A 与∠DBC +∠ECB 之间的数量关系. (2)初步运用:如图②,在△ABC 纸片中剪去△CED ,得到四边形ABDE .若∠1=130°,则∠2-∠C =50°.小明联想到了曾经解决的一个问题:如图③,在△ABC 中,BP ,CP 分别平分外角∠DBC ,∠ECB ,则∠P与∠A 有何数量关系?请利用上面的结论直接写出答案:∠P =90°-12∠A .(3)拓展提升:如图④,在四边形ABCD 中,BP ,CP 分别平分外角∠EBC ,∠FCB ,则∠P 与∠A ,∠D 有何数量关系?(第26题)【解】 (1)∠DBC +∠ECB =(180°-∠ABC )+(180°-∠ACB )=360°-(∠ABC +∠ACB )=360°-(180°-∠A )=180°+∠A.(2)∵∠1+∠2=180°+∠C , ∴130°+∠2=180°+∠C , ∴∠2-∠C =50°.∵∠DBC +∠ECB =180°+∠A ,BP ,CP 分别平分外角∠DBC ,∠ECB ,∴∠PBC +∠PCB =12(∠DBC +∠ECB )=12(180°+∠A ),∴∠P =180°-(∠PBC +∠PCB )=180°-12(180°+∠A )=90°-12∠A ,即∠P =90°-12∠A.(第26题解)(3)如解图,延长BA ,CD 相交于点Q ,则∠P =90°-12∠Q ,∴∠Q =180°-2∠P ,∴∠BAD +∠CDA =180°+∠Q =180°+180°-2∠P =360°-2∠P .。
浙教版八年级上册数学第一章三角形的初步学问学问点及典型例题考点二、求三角形的某一边长或周长的取值范围考点三、推断一句话是否为命题,以及改成“假如……那么……〞的形式 考点四、利用角平分线、垂线〔90°角〕、三角形的外角、内角和、全等三角形来计算角度 考点五、利用垂直平分线的性质、角平分线的性质、全等三角形来计算线段长度考点六、证明三角形全等,以及在三角形全等的根底之上进一步证明线段、角度之间的数量关系 考点七、画三角形的高线、中线、角平分线,以及根本图形的尺规作图法 考点八、方案设计题,求河宽等问题例1、两条线段的长分别是3cm 、8cm ,要想拼成一个三角形,且第三条线段a 的长为奇数,问第三条线段应取多少厘米?1、某一三角形的两边长分别是3和5,那么该三角形的周长的取值范围为〔 〕 A 、10≤a <16 B 、10<a ≤16 C 、10<a <16 D 、2<a <82、能把一个三角形分成面积相等的两部分是三角形的〔 〕A 、中线B 、高线C 、角平分线D 、过一边的中点且和这条边垂直的直线 3、一个三角形的三条高的交点不在这个三角形的内部,那么这个三角形〔 〕A. 必定是钝角三角形B. 必定是直角三角形C. 必定是锐角三角形D. 不行能是锐角三角4、△ABC 的三个不相邻外角的比为2:3:4,那么△ABC 的三个内角的度数分别为 。
例2、如图,△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=C E ,∠1=∠2。
说明BE=CD 的理由。
【设计意图】本例主要考察了角平分线和三角形全等的条件和性质,要说明两条线段相等的方法可以通过说明三角形全等来解决。
例3、AE ,AD 分别为△ABC 中BC 边上的中线和高线,且AB=7cm ,AC=5cm ,那么△ACE 和△ABE 的周长之差为多少厘米?△ACE 和△ABE 的面积之比为多少?【设计意图】本例主要考察了三角形中线、高线的性质,重在格式的书写上。
新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题本文介绍了八年级上册数学第一章《三角形的初步知识》的知识点及典型例题。
其中,三角形按角分类分为锐角三角形、直角三角形和钝角三角形;按边的关系可分为等腰三角形、等边三角形和普通三角形。
文章还介绍了三角形的内角和定理、角平分线、重要线段中线和高线的定义、命题和证明步骤。
此外,文章还讲解了全等三角形、尺规作图、线段垂直平分线和角平分线的性质,以及如何利用这些知识点计算角度和线段长度。
最后,文章列举了八个考点,包括判断三条线段能否组成三角形、求三角形的某一边长或周长的取值范围、证明三角形全等等。
例题部分也包括了两个问题的解答。
1、正确画出AC边上的高的是(C)。
2、工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是(B)三角形具有稳定性。
3、不能唯一作出直角三角形的是(C)已知一锐角及其邻边。
4、已知AD、BE、CF是△ABC的三条中线,相交于点O,设△BDO面积为1,则S△ABC=(6)。
5、在图中,由于AB=CD。
AD=BC,所以△ABO≌△CDO,△ABO与△CDO的对应顶点分别为AO和CO,所以全等三角形的对数为1,选项A。
6、根据中线定理可知,DF=EF=BF=AF=1/2AC,所以四边形DCEF是平行四边形,面积为AC的一半,即22.5cm,选项B。
7、根据角平分线定理可知,BP/PC=AB/AC,所以BP/AB=PC/AC,由此可得△BPC与△ABC相似,所以∠BPC=2∠A,选项A。
8、由于BD是BC边上的垂直平分线,所以BD=DC=4,由勾股定理可得AD=3,所以AB=5,所以ΔABD的周长为12,选项D。
9、将三角形按照图中的方式编号,可以发现只有第3块的形状与原来的三角形相同,所以应该带第3块去。
10、以B为顶点的外角为∠ABC=180°-∠A=130°,以C为顶点的外角为∠ACB=180°-∠A=130°,由于外角和等于360°,所以两个外角的平分线的夹角为130°/2=65°,选项A。
第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、三角形全等的判定知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.2、 三角形的分类:(1)按角分类: (2)按边分类:3、 三角形的主要线段的定义: (1)三角形的中线 (2)三角形的角平分线(3)三角形的高 4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 5、 三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ; (2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 6、三角形的稳定性:(1)三角形具有稳定性;(2)四边形没有稳定性. 7、全等三角形(1)三角形全等的判定 (SAS ) (ASA ) (AAS ) (SSS ) (HL )(2)全等变换:只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换 (2)对称变换(3)旋转变换中考规律盘点及预测三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。
典例分析三角形直角三象形 斜三角形锐角三角形钝角三角形三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形例1、小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成 一个三角形,那么他选的三根木棒的长度分别是_ 6 .___11___.____16___. 例2 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG , △ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( ) 例3 如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ) A.BD=DC ,AB=AC B.∠ADB=∠ADC ,BD=DC C.∠B=∠C ,∠BAD=∠CAD D.∠B=∠C ,BD=DC例4 如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的 两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .基础练习一、精心选一选(每小题3分,共30分)1、在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、 2、下列各图中,正确画出AC 边上的高的是( )A 、B 、C 、D 、 3、如图1,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( ) A 、两点之间的线段最短; B 、三角形具有稳定性; C 、长方形是轴对称图形; D 、长方形的四个角都是直角;4、图2中的三角形被木板遮住了一部分,被遮住的两个角不可能是( ) A 、一个锐角,一个钝角; B 、两个锐角;C 、一个锐角,一个直角;D 、一个直角,一个钝角; 5、以下不能构成三角形三边长的数组是( )A 、(1,3,2)B 、(3,4,5)C 、(23,24,25) D 、(3,4,5)6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( )A A A AB B B BC C C C E E EE BA CD EF 图1图2A 、115°B 、120°C 、125°D 、130°7、小明不慎将一块三角形的玻璃碎成如图3所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去 A 、第1块; B 、第2块; C 、第3块; D 、第4块;8、如图4,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( )A 、150°B 、130°C 、120°D 、100°9、用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A 、1 B 、2 C 、3 D 、4 10、如图5,在△ABC 中,D 、E 分别是AC 、BC 边上的 点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( ) A 、15° B 、20° C 、25° D 、30° 二、耐心填一填(每小题3分,共30分)11、在△ABC 中,若∠A -∠B=90°,则此三角形是________三角形;若C B A ∠=∠=∠3121,由此三角形是_______三角形;12、如图6,已知AC=BD ,要使△ABC ≌△DCB , 只需增加的一个条件是________________; 13、设△ABC 的三边为a 、b 、c ,化简______________|b a c ||a c b ||c b a |=--+--+--14、已知三角形的两边长分别是3cm 和7cm ,第三边长是偶数,则这个三角形的周长为___________cm ; 15、如图7,在△ABC 中,已知AD=DE ,AB=BE ,∠A=80°,则∠CED=________16、如图8,把矩形ABCD 沿AM 折叠,使D 点落在N 点处,如果AD=35cm ,DM=5cm ,∠DAM=30°,则AN=_____cm ,NM=______cm ,∠BNA=_________度;17、如图9,△ABC 中,AB=AC ,BD 、CE 分别是AC 、AB 边上的高,BD 、CE 交于点O ,且AD=AE ,连结AO ,则图中共有_________对全等三角形;18、如图10,已知∠B=∠C ,AD=AE ,则AB=AC ,请说明理由(填空) 解:在△ABC 和△ACD 中, ∠B=∠______ (__________) ∠A=∠______ (________________)12 3 4图3ABCED 图5ABCDO图6D AB EC 图7 A B CD N M 图8 A B C DE O图9 ABD图10ABEAE=________ (__________) ∴△ABE ≌△ACD (______________)∴AB=AC (______________________________) 19、如图11所,∠A+∠B+∠C+∠D+∠E=________; 20、用一副三角板可以直接得到30°、45°、60°、90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°、120°等,请你拼一拼,用一副三角板还能拼还能拼出哪些小于平角的角?这些角的度数是:____________________; 三、细心做一做(共60分)24、(8分)某产品的商标如图15所示,O 是线段AC 、DB 的交点,且AC=BD ,AB=DC ,小华认为图中的两个三角形全等,他的思考过程是: ∵AC=DB ,∠AOB=∠DOC ,AB=AC , ∴△ABO ≌△DCO你认为小华的思考过程对吗?如果正确,指出他用 的是判别三角形全等的哪个条件,如果不正确, 写出你的思考过程。
第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°(第1题)(第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是()A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS 4.如图,△ABC≌△A′B′C′,则∠C的度数是()A.56°B.51°C.107°D.73°(第4题)(第5题)(第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为()A.12 B.13 C.15 D.166.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是()A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为()A.8 B.6 C.4 D.2(第9题) (第12题)(第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出()A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题)(第17题)(第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF =∠AFC,∠FAE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△MCN≌△ACN.(第22题) 23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D二、11.如果两个角是同角或等角的余角,那么这两个角相等12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 点拨:由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5.17.ASA18.22° 点拨:∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠FAE =∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠AC F +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°,∴∠ECD =13∠ACD =22°. 三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等.20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等).在△ABE 和△DCF 中,⎩⎨⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知),∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等).21.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7.∵a 为方程|a -3|=2的解,∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形,故a =1不符合题意.∴a =5,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.22.(1)解:作图略.(2)证明:∵CN ⊥AM ,∴∠CNA =∠CNM =90°.∵AB ∥CD ,∴∠CMA =∠MAB .∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM .在△MCN 和△ACN 中,∵⎩⎨⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN ,∴△MCN ≌△ACN (AAS ).23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A +∠C =180°-∠AOC ,∠B +∠D =180°-∠BOD ,∠AOC =∠BOD ,∴∠A +∠C =∠B +∠D .(2)解:①3;4②以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP ,以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP∵AP ,DP 分别平分∠CAB 和∠BDC ,∴∠BAP =∠CAP ,∠CDP =∠BDP , ∴2∠P =∠B +∠C .∵∠B =100°,∠C =120°,∴∠P =12(∠B +∠C )=12×(100°+120°)=110°. ③3∠P =∠B +2∠C ,其理由是:∵∠CAP =13∠CAB ,∠CDP =13∠CDB , ∴∠BAP =23∠CAB ,∠BDP =23∠CDB . 以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴∠C -∠P =∠CDP -∠CAP =13(∠CDB -∠CAB ), ∠P -∠B =∠BDP -∠BAP =23(∠CDB -∠CAB ), ∴2(∠C -∠P )=∠P -∠B ,∴3∠P =∠B +2∠C .1、人生如逆旅,我亦是行人。
浙教版-8年级-上册-数学-第1章《三角形的初步知识》1.1认识三角形(二)-每日好题挑选【例1】已知P是△ABC内任意一点。
(1)如图1,求证:AB+AC>PB+PC;(2)如图2,连接PA,比较12(AB+AC+BC)与PA+PB+PC的大小关系。
【例2】利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【例3】如图,A,B是边长为1的小正方形组成的网格中的两个格点,在格点中任意放置点C,恰好能使的ΔABC的面积为的2点的个数为。
【例4】如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长。
【例5】已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数;(2)△ABC是什么三角形。
【例6】(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数;(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由。
【例7】在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长。
【例8】如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB,AC引垂线,垂足为E,F,CG是AB边上的高线。
(1)试猜想线段DE,DF,CG之间存在着怎样的等量关系,并说明理由;(2)若点D在底边的延长线上,则(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由。
2020年秋浙教版八年级数学上册第1章三角形的初步认识单元测试卷一、选择题(共10题;共30分)1.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A. 10cmB. 5cmC. 20cmD. 25cm2.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A. B. C. D.EF的长为半径作弧,两弧相3.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A. AO平分∠EAFB. AO垂直平分EFC. GH垂直平分EFD. GH平分AF4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A. 90°B. 120°C. 135°D. 150°5.下列说法中正确的是()A. 面积相等的两个图形是全等形B. 周长相等的两个图形是全等形C. 所有正方形都是全等形D. 能够完全重合的两个图形是全等形6.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A. 35°B. 70°C. 85°D. 95°7.如图,已知AB=CD,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A. ∠M=∠NB. MB=NDC. AM=CND. AM//CN8.如图,直线AB//CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A. 120°B. 100°C. 150°D. 160°9.如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE,CD交于点F.若∠BAC=35°,则∠BFC的大小是( )A. 106°B. 108°C. 110°D. 112°10.如图,D,E分别是AB,AC上的点,BE与CD交于点F,给出下列三个条件:①∠DBF=∠ECF;②∠BDF=∠CEF;③BD=CE.两两组合在一起,共有三种组合:(1)①②(2)①③(3)②③问能判定AB=AC的组合的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)二、填空题(共8题;共24分)11.△ABC的两条边的长度分别为3和5,若第三条边为偶数,则△ABC的周长为________.12.将一副三角板如图放置,则图中的∠1=________°.13.命题“对角线相等”的逆命题是________.14.如图,C是线段AB上一点,∠DAC=∠D,∠EBC=∠E,AO平分∠DAC,BO平分∠EBC.若∠DCE=40°,则∠O=________°.15.如图,直线l1∥l2,∠A=85°,∠B=70°,则∠1-∠2=________.16.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为________.17.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC。
浙教新版八年级上册《第1章 1.1-1.3 三角形的初步认识》2020年单元测试卷一、选择题(每小题3分,共30分)1.(3分)下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,112.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=﹣2B.a=﹣2,b=3C.a=2,b=﹣3D.a=﹣3,b=2 3.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)AD是△ABC的中线,AB=6cm,AC=4cm,则△ABD和△ACD的周长差为()A.6cm B.4cm C.2cm D.无法确定6.(3分)如图所示,AD、BF、CE分别是△ABC的三条高线,则下列△ABC的面积表述正确的是()A.AB•BF B.AB•CE C.BC•BF D.AC•CE 7.(3分)已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是()A.54°B.72°C.108°D.144°8.(3分)下列说法中,正确的是()A.有一个角是锐角的三角形一定是锐角三角形B.钝角三角形的三条角平分线上的交点可能在三角形外C.每一个直角三角形都只有一条高D.三角形的任何一个外角大于和它不相邻的任意一个内角9.(3分)如图,在三角形ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F 为AB上的一点,CF⊥AD于H.下列判断正确的有()(1)AD是三角形ABE的角平分线;(2)BE是三角形ABD边AD上的中线;(3)CH为三角形ACD边AD上的高.A.1个B.2个C.3个D.0个10.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°二、填空题(每小题3分,共30分)11.(3分)三角形的内角和等于度,外角和等于度.12.(3分)已知a,b,c是△ABC的三条边长,则(a﹣b)2﹣c20.(填“>”“<”或“=”)13.(3分)三角形的三边长分别为3,5,x,化简式子|x﹣2|+|x﹣9|=.14.(3分)如图,在△ABC中,BE平分∠ABC,CF平分∠ACB,BE、CF相交于点0,若∠A=70°,则∠BOC=度.15.(3分)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为.16.(3分)如图,在△ABC中,已知D,E,F分别是BC,AD,CE的中点,若△ABC的面积为16cm2,则△BEF(阴影部分)的面积等于cm2.17.(3分)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是度.18.(3分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.19.(3分)如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为.20.(3分)4个人进行游泳比赛,赛前A,B,C,D等4名选手进行预测,A说:“我肯定得第一名”,B说:“我绝对不会得最后一名”,C说:“我不可能得第一名,也不会得最后一名”,D说:“那只有我是最后一名!”,比赛揭晓后,发现他们之中只有一位预测错误,预测错误的人是.三、解答题(共60分)21.(8分)如图,试说明∠A+∠B+∠C=∠ADC.22.(10分)如图,已知∠A,请你画出△ABC的角平分线AD,中线AE,高线AF.此时图中除△ABC外,还有多少个三角形?23.(10分)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.24.(10分)如图,AF、AD分别是△ABC的高和角平分线.(1)已知∠BAC=68°,∠BAF=54°,求∠ADB的度数;(2)若BD=2DC,S△ABC=6,求S△ADC.25.(10分)阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积为S=.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=7,b=5,c=6.(1)求△ABC的面积;(2)过点C作CD⊥AB,垂足为D,求线段CD的长.26.(12分)在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A 为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为°,△AOB(填“是”或“不是”灵动三角形);(2)若∠BAC=60°,求证:△AOC为“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.浙教新版八年级上册《第1章 1.1-1.3 三角形的初步认识》2020年单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=﹣2B.a=﹣2,b=3C.a=2,b=﹣3D.a=﹣3,b=2【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故B选项中a、b的值不能说明命题为假命题;在C中,a2=4,b2=9,且2>﹣3,此时不但不满足a2>b2,也不满足a>b不成立,故C选项中a、b的值不能说明命题为假命题;在D中,a2=9,b2=4,且﹣3<2,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故D选项中a、b的值能说明命题为假命题;故选:D.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.3.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.4.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.5.(3分)AD是△ABC的中线,AB=6cm,AC=4cm,则△ABD和△ACD的周长差为()A.6cm B.4cm C.2cm D.无法确定【分析】根据三角形中线的等于可得BD=CD,然后求出△ABD和△ACD的周长差=AB ﹣AC,然后代入数据进行计算即可得解.【解答】解:∵AD是△ABC的中线,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=6cm,AC=4cm,∴△ABD和△ACD的周长差=6﹣4=2cm.故选:C.【点评】本题考查了三角形的中线、角平分线、高线,利用中线的定义求出△ABD和△ACD的周长差=AB﹣AC是解题的关键,作出图形更形象直观.6.(3分)如图所示,AD、BF、CE分别是△ABC的三条高线,则下列△ABC的面积表述正确的是()A.AB•BF B.AB•CE C.BC•BF D.AC•CE【分析】根据三角形面积公式以及三角形的高的定义即可求解.【解答】解:∵AD、BF、CE分别是△ABC的三条高线,∴求△ABC的面积正确的公式是S△ABC=BC•AD=AC•BF=AB•CE.故选:B.【点评】考查了三角形的高的定义,三角形的面积公式,关键是熟练掌握三角形面积公式.7.(3分)已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是()A.54°B.72°C.108°D.144°【分析】根据三角形内角和定理和已知条件得出方程,解方程即可.【解答】解:∵2(∠B+∠C)=3∠A,∠A+∠B+∠C=180°,∴2(180°﹣∠A)=3∠A,解得:∠A=72°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.8.(3分)下列说法中,正确的是()A.有一个角是锐角的三角形一定是锐角三角形B.钝角三角形的三条角平分线上的交点可能在三角形外C.每一个直角三角形都只有一条高D.三角形的任何一个外角大于和它不相邻的任意一个内角【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,三角形的角平分线与高线的定义,三角形的内角和定理对各选项分析判断后利用排除法求解.【解答】解:A、有一个角是锐角的三角形一定是锐角三角形错误,故本选项错误;B、钝角三角形的三条角平分线上的交点一定在三角形内部,故本选项错误;C、每一个直角三角形都有三条高,故本选项错误;D、三角形的任何一个外角大于和它不相邻的任意一个内角,故本选项正确.故选:D.【点评】本题考查了三角形的外角性质,角平分线与高线的定义,以及三角形的内角和定理,是基础题,熟记性质与概念是解题的关键.9.(3分)如图,在三角形ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F 为AB上的一点,CF⊥AD于H.下列判断正确的有()(1)AD是三角形ABE的角平分线;(2)BE是三角形ABD边AD上的中线;(3)CH为三角形ACD边AD上的高.A.1个B.2个C.3个D.0个【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是三角形ABC的角平分线,AG 是三角形ABE的角平分线,故此选项错误;②根据三角形的中线的概念,知BG是三角形ABD边AD上的中线,故此选项错误;③根据三角形的高的概念,知此选项正确.故选:A.【点评】注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.10.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.二、填空题(每小题3分,共30分)11.(3分)三角形的内角和等于180度,外角和等于360度.【分析】根据三角形内角和定理和外角和定理求解.【解答】解:三角形的内角和等于180°,外角和等于360°.故答案为180,360.【点评】本题考查了三角形的内角和定理:三角形的内角和等于180°.也考查了三角形外角性质.12.(3分)已知a,b,c是△ABC的三条边长,则(a﹣b)2﹣c2<0.(填“>”“<”或“=”)【分析】利用平方差公式以及三角形的三边关系即可解决问题.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),∵a+c>b,b+c>a,∴a﹣b+c>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2<0.故答案为:<.【点评】本题考查平方差公式,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)三角形的三边长分别为3,5,x,化简式子|x﹣2|+|x﹣9|=7.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析求解.【解答】解:根据三角形的三边关系,得5﹣3<x<5+3,即2<x<8,则|x﹣2|+|x﹣9|=x﹣2﹣x+9=7.故答案为:7.【点评】本题主要考查了三角形的三边关系,任意两边之和>第三边,任意两边之差<第三边,比较简单.14.(3分)如图,在△ABC中,BE平分∠ABC,CF平分∠ACB,BE、CF相交于点0,若∠A=70°,则∠BOC=125度.【分析】根据三角形内角和定理得到∠ABC+∠ACB=180°﹣∠A=110°,再根据角平分线定义得到∠OBC=∠ABC,∠OCB=∠ACB,则∠OBC+∠OCB=(∠ACB+∠ABC)=55°,然后根据三角形内角和定理计算出∠BOC的度数.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵BE平分∠ABC,CF平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=×110°=55°∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣55°=125°.故答案为125.【点评】本题考查了三角形的内角和定理:三角形的内角和等于180°.也考查了角平分线定义.15.(3分)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为8或10cm.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据已知的两边和是11,即为奇数,结合周长为奇数,则第三边应是偶数,即可求解.【解答】解:根据三角形的三边关系,得第三边应大于9﹣2=7,而小于9+2=11.又因为三角形的两边长分别为2和9,且周长为奇数,所以第三边应是偶数,则第三边是8或10cm.故答案为:8或10cm.【点评】考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.16.(3分)如图,在△ABC中,已知D,E,F分别是BC,AD,CE的中点,若△ABC的面积为16cm2,则△BEF(阴影部分)的面积等于4cm2.【分析】由三角形的面积公式,等底同高的两个三角形的面积相等,面积的和差求出△BEF(阴影部分)的面积等于4cm2.【解答】解:如图所示:∵点D是BC的中心,∴BD=CD,∴,又∵S△ABC=16,∴,同理可得:S BDE=4,S△CDE=4,又∵S△BCE=S△BDE+S CDE,∴S△BCE=4+4=8,又∵F是EC的中点,∵=,故答案为4.【点评】本题综合考查了三角形的面积公式,等底同高的两个三角形的面积相等,面积的和差等相关知识,重点掌握三角形面积公式及等底同高的两个三角形的面积求法.17.(3分)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是64度.【分析】由折叠的性质得到∠D=∠B=32°,再利用外角性质即可求出所求角的度数.【解答】解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故答案为:64.【点评】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.(3分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=30°.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.【点评】本题考查了三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.19.(3分)如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为540°.【分析】根据多边形内角和为(n﹣2)×180°,再根据正方形性质即可得出答案.【解答】解:根据多边形内角和为(n﹣2)×180°,∴截得的六边形的和为(6﹣2)×180°=720°,∵∠B=∠C=90°,∴∠1,∠2,∠3,∠4的和为720°﹣180°=540°.故答案为540°.【点评】本题主要考查了多边形内角和公式及正方形性质,难度适中.20.(3分)4个人进行游泳比赛,赛前A,B,C,D等4名选手进行预测,A说:“我肯定得第一名”,B说:“我绝对不会得最后一名”,C说:“我不可能得第一名,也不会得最后一名”,D说:“那只有我是最后一名!”,比赛揭晓后,发现他们之中只有一位预测错误,预测错误的人是A.【分析】分别假设每个人的预测错误,进而分别分析得出答案.【解答】解:如果A错,则B为第一,C为第二,D为最后一名,所以A是错的.如果B错,则B最后,D也错,出现矛盾;如果C错,则C是第一或最后一名,与A第一、D最后,矛盾;如果D错,其他都对的话,则没有最后一名;故答案为:A.【点评】此题主要考查了推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.三、解答题(共60分)21.(8分)如图,试说明∠A+∠B+∠C=∠ADC.【分析】延长AD交BC于点E,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答即可.【解答】证明:如图,延长AD交BC于点E,根据三角形的外角性质,∠1=∠A+∠B,∠ADC=∠1+∠C,所以,∠A+∠B+∠C=∠ADC.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线是解题的关键.22.(10分)如图,已知∠A,请你画出△ABC的角平分线AD,中线AE,高线AF.此时图中除△ABC外,还有多少个三角形?【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:有9个三角形:△ABF,△ABD,△ABE,△AFD,△AFE,△AFC,△ADE,△ADC,△AEC.【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键.23.(10分)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.【分析】首先在△ABD中,由三角形的外角性质得到∠EDC+∠1=∠B+40°,同理可得到∠2=∠EDC+∠C,联立两个式子,结合∠B=∠C,∠1=∠2的已知条件,即可求出∠EDC的度数.【解答】解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.【点评】此题主要考查的是三角形的外角性质,理清图形中各角之间的关系是解题的关键.24.(10分)如图,AF、AD分别是△ABC的高和角平分线.(1)已知∠BAC=68°,∠BAF=54°,求∠ADB的度数;(2)若BD=2DC,S△ABC=6,求S△ADC.【分析】(1)根据∠ADB=∠DAF+∠AFD,求出∠DAF,∠AFD即可解决问题;(2)由BD=2DC,推出CD=BC,推出S△ADC=S△ABC即可解决问题;【解答】解:(1)∵DA平分∠BAC,∴∠BAD=∠CAD=∠BAC=34°,∵∠BAF=54°,∴∠DAF=54°﹣34°=20°,∵AF⊥BC,∴∠AFD=90°,∴∠ADB=∠DAF+∠AFD=20°+90°=110°.(2)∵BD=2DC,∴CD=BC,∴S△ADC=S△ABC=2.【点评】本题考查三角形的高,角平分线,三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(10分)阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积为S=.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=7,b=5,c=6.(1)求△ABC的面积;(2)过点C作CD⊥AB,垂足为D,求线段CD的长.【分析】(1)利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;(2)利用面积法求CD的长.【解答】解:(1)∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;(2)如图,∵△ABC的面积=AB•CD,∴×6×CD=6,∴CD=2.【点评】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.也考查了阅读理解能力.26.(12分)在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A 为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为30°,△AOB是(填“是”或“不是”灵动三角形);(2)若∠BAC=60°,求证:△AOC为“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“灵动三角形”的概念判断;(2)根据“灵动三角形”的概念证明即可;(3)分点C在线段OB和线段OB的延长线上两种情况,根据“灵动三角形”的定义计算.【解答】解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“灵动三角形”,故答案为:30;是;(2)∵AB⊥OM,∴∠BAO=90°,∵∠BAC=60°,∴∠OAC=∠BAO﹣∠BAC=30°,∵∠MON=60°,∴∠ACO=180°﹣∠OAC﹣∠MON=90°,∴∠ACO=3∠OAC,∴△AOC为“灵动三角形”;(3)设∠OAC=x°则∠BAC=90﹣x,∠ACB=60+x,∠ABC=30°∵△ABC为“灵动三角形”,Ⅰ、当∠ABC=3∠BAC时,°,∴30=3(90﹣x),∴x=80;Ⅱ、当∠ABC=3∠ACB时,∴30=3(60+x)∴x=﹣50 (舍去)∴此种情况不存在;Ⅲ、当∠BCA=3∠BAC时,∴60+x=3(90﹣x),∴x=52.5°,Ⅳ、当∠BCA=3∠ABC时,∴60+x=90°,∴x=30°;Ⅴ、当∠BAC=3∠ABC时,∴90﹣x=90°,∴x=0°(舍去);Ⅵ、当∠BAC=3∠ACB时,∴90﹣x=3(60+x),∴x=﹣22.5(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°.【点评】本题考查的是三角形内角和定理、“灵动三角形”的概念,用分类讨论的思想解决问题是解本题的关键.。