实验报告-最小二乘法的应用
- 格式:doc
- 大小:41.00 KB
- 文档页数:2
最小二乘法及其应用研究最小二乘法是一种常用的数据分析方法,它的应用非常广泛,被用于解决很多实际问题。
本文将从什么是最小二乘法到最小二乘法的应用进行详细的阐述。
一、什么是最小二乘法最小二乘法是一种用于拟合数据的方法,它可以帮助我们找到一条曲线或者直线,在这条曲线或者直线上所有数据的误差最小。
假设我们有一些数据点,我们想要用一条直线来描述这些数据点的分布规律,那么最小二乘法就可以帮助我们找到一条直线,使得这些数据点到这条直线的距离最小。
二、最小二乘法的应用最小二乘法的应用非常广泛,下面我们将分别从几个方面来介绍:1. 拟合数据最小二乘法可以用于拟合各种类型的数据,比如直线、曲线、多项式等等。
例如,我们可以用最小二乘法来拟合一条直线,从而得到这些数据点的趋势。
2. 预测结果最小二乘法不仅可以用于拟合数据,同时还可以用于预测结果。
例如,我们可以用最小二乘法来预测一些未来的数据趋势。
3. 优化算法最小二乘法还可以用于优化算法。
例如,在机器学习中,最小二乘法可以用于优化线性回归算法,从而得到更加准确的预测结果。
4. 数据处理最小二乘法还可以用于数据处理。
例如,我们可以用最小二乘法来处理某些特殊类型的数据,从而得到更加准确的结果。
三、最小二乘法的优缺点最小二乘法虽然有很多应用,但是它也有一些缺点,下面我们将介绍一下最小二乘法的优缺点:优点:1. 算法简单,易于实现2. 可以处理大部分数据类型3. 在处理异常数据时有一定的容错能力缺点:1. 当数据量较大时,计算量也会变得很大2. 在处理异常数据时容易产生误差3. 对数据类型有一定的限制四、总结最小二乘法是一种非常有用的数据分析方法。
它的应用非常广泛,被用于解决众多实际问题。
然而,我们也不能够完全依赖最小二乘法。
我们需要根据具体情况,选择合适的数据分析方法,从而得到更加准确的结果。
最小二乘法数值分析实验报告最小二乘法数值分析实验报告篇一:数值分析+最小二乘法实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析 201X年 4 月 13日篇二:数值分析上机实验最小二乘法数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形。
二、方法最小二乘法三、程序M文件:sy ms x f; xx=input( 请输入插值节点 as [x1,x2...]\n ff=i nput( 请输入插值节点处对应的函数值 as [f1,f 2...]\n m=input(请输入要求的插值次数m= n=leng th(xx); fr i=1:(m+1) syms faix; fai=x^(i-1); fr j=1:n x=xx(j);H(i,j)=eval(fai); end endA=ff*(H) *inv(H*(H) syms x; f=0; fr i=1:(m+1) f=f+A(i)*x^(i-1); end f plt(xx,ff, * ) hldnezplt(f,[xx(1),xx(n)])四、结果 sav e and run之后:请输入插值节点 as [x1,x2...] [-3 -2-1 0 1 2 3] 请输入插值节点处对应的函数值 as[f1,f2...] [-1.76 0.42 1.21.341.432.254.38]请输入要求的插值次数m=3 f =133/100+121469856021/35184372088832*x-8042142191733/450359 9627370496*x^2+1020815915537309/9007199254740992*x^3五、拓展:最小二乘法计算方法比较简单,是实际中常用的一种方法,但是必须经计算机来实现,如果要保证精度则需要对大量数据进行拟合,计算量很大。
最小二乘法的实验报告最小二乘法的实验报告引言:最小二乘法是一种常用的数学方法,用于拟合数据和求解最优解。
它适用于各种领域,如统计学、经济学、工程学等。
本实验旨在通过实际案例,探讨最小二乘法在实际问题中的应用和效果。
一、实验目的本实验旨在通过最小二乘法,对一组实际数据进行拟合,得出最佳拟合曲线,并分析拟合结果的合理性和可靠性。
二、实验材料与方法1. 实验材料:- 一组实际数据:包含自变量和因变量的数据对。
- 计算机软件:如MATLAB、Python等,用于进行最小二乘法计算和绘制拟合曲线。
2. 实验方法:- 数据处理:对实际数据进行预处理,包括数据清洗、异常值处理等。
- 模型选择:根据实际问题和数据特点,选择适当的拟合模型。
- 参数估计:利用最小二乘法,求解模型参数的最优估计值。
- 拟合效果评估:通过计算残差平方和、确定系数等指标,评估拟合效果的好坏。
三、实验过程与结果1. 数据处理:在本实验中,我们选择了一组汽车销量与广告投入的数据。
首先,我们对数据进行了清洗,排除了异常值和缺失值。
2. 模型选择:根据实际问题和数据特点,我们选择了线性模型进行拟合。
即假设广告投入与汽车销量之间存在线性关系。
3. 参数估计:利用最小二乘法,我们求解了线性模型的参数估计值。
具体计算过程如下: - 建立线性模型:y = β0 + β1x,其中y表示汽车销量,x表示广告投入。
- 最小化残差平方和:min Σ(yi - (β0 + β1xi))^2,其中yi为实际销量,xi为实际广告投入。
- 对β0和β1求偏导,并令偏导数为0,得到最优解的估计值。
4. 拟合效果评估:通过计算残差平方和和确定系数等指标,我们评估了拟合效果的好坏。
结果显示,残差平方和较小,确定系数较接近1,表明拟合效果较好。
四、实验讨论1. 拟合效果的合理性:通过对拟合效果的评估,我们认为拟合结果较为合理。
然而,我们也要注意到,拟合结果仅仅是对观测数据的一个估计,并不能完全代表真实情况。
实验三最小二乘法处理概述:最小二乘法是实现数据处理的一种基本方法。
它给出了数据处理的一条准则,即在最小二乘意义下获得的最佳结果(或最可信赖值)应使残差平方和最小。
基于这一准则所建立的一整套的理论和方法,为随机数据的处理提供了行之有效的手段,成为实验数据处理中应用十分广泛的基础内容之一。
现代,距阵理论的发展及电子计算机的广泛应用,为这一方法提供了新的理论工具和得力的数据处理手段。
随着计量技术及其他现代科学技术的迅速发展,最小二乘法在各学科领域将获得更广泛的应用。
一实验目的线性参数的最小二乘法处理程序可归结为:首先根据具体问题列出误差方程;再按最小二乘法原理,利用求极值的方法将误差方程转化为正规方程;然后求解正规方程,得到待求的估计量;最后给出精度估计。
本实验利用程序求解组合测量问题。
二仪器设备一台计算机,配装Matlab软件。
三实验说明在不同的温度下,测定铜棒的长度l如下表,测量铜棒l值的变化呈线性关系btl+=,试给出系数a和b的最小二乘估计。
a四具体的实验过程1、按实验报告单中实现程序的步骤完成相关实验;2、给出实验结果或给出程序输出的相关形。
3、对比实验结果。
五本实验应用到的相关指令如下公式符号在程序中的书写情况:操作符+(加法),-(减法),*(乘法),/(除法),^(指数),.^(元素对元素指数),.*(元素对元素乘法),./(元素对元素除法),sum (求和),inv(C)(求距阵的逆距阵),用()指定计算顺序。
六要求完成实验报告单当中的实验,并用Word文档的按实验报告单的格式独立完成相关实验,填写相关内容,由教师检查后打印上交,统一存档。
1最小二乘法在组合测量中的应用3一 实验目的在精密测试中,组合测量占有十分重要的地位。
为了减小随机误差的影响,提高测量精度,可采用组合测量的方法。
组合测量是通过直接测量待测参数的各种组合量,然后对这些数据进行处理,它是最小二乘法在精密测试中的一种重要的应用。
最小二乘法在化学实验数据分析中的应用摘要:介绍了一种线性模型参数回归分析方法—最小二乘法,并以化学实验测试数据为例,讨论了最小二乘法在化学实验数据分析中的应用。
并对正交最小二乘法和经典最小二乘法的结果进行了简略比较。
化学实验中,经常需要根据实验测得一系列数据,例如,n 对数据(x 1, y 1) (i=1, 2, … , n),去寻找自变量x 和因变量y 之间的关系,此关系应该最能反映出给定数据的一般趋势。
这就是用某种曲线拟合的方法来回答这个问题一这些变量之间的最佳关系是什么。
如果从图形上看,这个问题就是按给定理平面上n 个点(x 1,y 1)进行曲线拟合问题。
要找出不同变量之间的关系。
在传统的处理方法中,通过手绘、目测的方法来达到目的。
但是,在有些情况下,因为误差的引进,使得到的结果并不是最佳的近似,甚至得出令人费解的结论。
而最小二乘法是一种有效的方法,用它反映给定的函数的一般趋势,可以不受实验随机误差的影响而出现随机波动。
随着计算机科学的发展,最小二乘法越来越被人们所采用。
经典的最小二乘法(classical least square, CLS)在化学领域的数据处理中获得广泛应用。
值得指出的是,此方法的应用有一重要前提,即假设自变量的值是完全准确的,或其测量误差与因变量的测量误差相比可以忽略不计。
例如,以分析化学中的标准曲线为例,自变量元素浓度与因变量物理测量值相比,其测量误差可以忽略不计。
然而在许多情况下,这一假定往往难以满足。
如果某一实验数据中自变量和因变量同时存在测量误差,此时经典的最小二乘法难以满足数据处理的需要。
正交最小二乘法(orthogonal least squares,OLS)也是一种线性模型参数回归分析方法。
当 自变量和因变量同时存在均值为零,相同方差的随机误差时,此方法能给出在统计意义上最好的参数拟合结果。
正交最小二乘法在许多科学领域,如医学、地质学、工程数学、信号处理等均获得应用。
MA ATLAB 实现最小 实 小二乘多项式拟合 合实验报 报告某田水稻产量 量 y 与施肥量 量 x 之间是否 否有一个确定 定性的关系? 在 7 块并排,形状大小相 相同的试验田 田上进行施肥 肥量对水稻产 产量影响的实 实验。
得到如 如下的一组数 数据。
施化肥量 x 水稻产量 y 15 330 2 20 345 25 365 30 405 35 445 40 450 45 455 5目标:用最小 小二乘方法求 求得水稻产量 量 y 与施肥量 量 x 之间的确 确定性关系。
首先描点作图460440420400380360340320 15202530354045点分布呈现“S”型,考 考虑用多项式 式函数拟合 写出最小二乘 乘拟合的函数 数形式: function [A]= =leastsquaren nihe(X,Y,n,w) mx=size(X,2 2); my=size(Y,2) ); if mx~=my error('D Data not enoug gh.X and Y dismatch.'); d end m=mx; if nargin==3 w=ones(1,m); end Q=zeros(n+1 1,1); P=zeros(n+1,n+1); f=@(x,p,y,q,w,t)(x(t)^p)*(y(t)^q)*w(t) ); for i=1:n+1 for j=1:n n+1 sum m=0; for r t=1:m sum=sum+ +f(X,i-1,X,j-1 1,w,t); end d P(i i,j)=sum; end sum=0; for t=1:m m sum m=sum+f(X,i i-1,Y,1,w,t); end Q(i,1)=s sum; end A=P\Q; xx=min(X):0 0.01:max(X); yy=zeros(1,s size(xx,2)); for i=1:size(x xx,2) for j=1:n n+1 yy( (i)=yy(i)+A(j j)*xx(i)^(j-1) ); end end plot(X,Y,'r.'); ; hold on; plot(xx,yy); title('最小二乘法多项式拟 拟合'); xlabel('x'),yla abel('y'); X=[15 20 25 30 35 40 45] ] Y=[330 345 365 405 445 450 455] 运行结果如下 下: 4 次多项式拟 拟合的结果:系数阵 A= 1.0e+002 * 6.084523 3809758176 -0.423712121248494 0.020787 7878789875 -0.000351515151561 0.000001 1818181819 即对应的函数 数关系式为: :y=608.4523 38-42.37121x+2.07879x2-0.03515 x3+0 0.00018x4最小二乘法多项式拟合460440420400 y 380 360 340 320 15202530 x3540455 次多项式拟 拟合的结果:系数阵 A= 1.0e+003 * -1.756547676480133 0.416562 2132318929 -0.032046212944121 0.001184 4015180810 -0.000020818182321 0.000000 0140000003 即函数关系式 式为 y=-1756.54768+416.5621 13x-32.04621x2+1.18402x3+0.02082x4+0.00014 + x5 最小二乘法多项式拟合460440420400 y 380 360 340 320 15202530 x354045。
最小二乘法实验报告最小二乘法实验报告引言最小二乘法是一种常用的数学方法,用于拟合数据和估计模型参数。
它通过最小化观测值与理论值之间的误差平方和,寻找最优解。
本实验旨在通过实际数据拟合的方式,探索最小二乘法的原理和应用。
实验步骤1. 数据采集在实验开始前,我们选择了一个简单的线性回归模型进行拟合。
为了收集数据,我们在实验室里设置了一个简单的装置,用于测量物体的运动距离和所需时间。
通过多次重复实验,我们得到了一组数据,包括物体运动距离和所需时间的测量值。
2. 数据处理在进行最小二乘法拟合之前,我们需要对数据进行处理。
首先,我们计算每次实验的平均速度,通过将运动距离除以所需时间得到。
然后,我们将平均速度作为自变量,所需时间作为因变量,得到一组有序的数据点。
3. 拟合模型接下来,我们使用最小二乘法来拟合线性回归模型。
线性回归模型可以表示为:y = a + bx,其中y是因变量(所需时间),x是自变量(平均速度),a和b是待估计的模型参数。
通过最小化残差平方和,我们可以得到最优的a和b的估计值。
4. 拟合结果分析通过最小二乘法拟合得到的模型参数估计值,我们可以进一步分析拟合结果的准确性和可靠性。
首先,我们计算拟合优度,即拟合值与观测值之间的相关系数。
较高的拟合优度表明模型拟合效果较好。
此外,我们还可以计算参数估计的标准误差,用于评估参数估计值的可靠性。
结果与讨论在本实验中,我们使用最小二乘法对一组实际测量数据进行了线性回归拟合。
通过计算拟合优度,我们发现拟合效果较好,相关系数接近1。
这表明我们选择的线性回归模型较为合适,并且可以用于预测因变量(所需时间)。
此外,我们还计算了参数估计的标准误差。
标准误差是对参数估计值的精度进行评估的指标。
较小的标准误差表示参数估计值较可靠。
通过计算,我们发现参数估计值的标准误差较小,说明我们得到的模型参数估计值较为准确。
结论通过本实验,我们深入了解了最小二乘法的原理和应用。
《数学实验》实验报告1x=Table[10.0+5.0*i,{i,0,4}];y={27.0,26.8,26.5,26.3,26.1};xy=Table[{x[[i]],y[[i]]},{i,1,5}];q[a_,b_,c_] :=Sum[(a+b*x[[i]]+c*x[[i]]^2-y[[i]])^2,{i,1,5}]NSolve[{D[q[a,b,c],a]==0, D[q[a,b,c],b]==0,D[q[a,b,c],c]==0},{a,b,c}]t1=ListPlot[xy,PlotStyle->PointSize[0.02]];f[x_] :=27.56+ -0.0574286*x+0.000285714*x^2;t2=Plot[f[x],{x,5,35},AxesOrigin->{5,25}];Show[t1,t2]首先得到a,b,c三个值: {{a->27.56,b->-0.0574286,c->0.000285714}}然后得到同一坐标系下的数据点散点图及拟合函数的图形:试验过程(含详细试验步骤、程序清单及异常情况记录等)输入以下mathematica语句求解参数a,b,c:运行后可得解:2为求得数据点的散点图及拟合函数的图形,输入以下语句,并将两个图画在同一坐标下:运行得:3在最开始时,我输入的程序是这样的:x=Table[10.0+5.0*i,{i,0,4}];y={27.0,26.8,26.5,26.3,26.1};xy=Table[{x[[i]],y[[i]]},{i,1,5}];q[a_,b_,c_] :=Sum[(a+b*x[[i]]+c*x[[i]]^2-y[[i]])^2,{i,1,5}]NSolve[{D[q[a,b,c],a]==0, D[q[a,b,c],b]==0,D[q[a,b,c],c]==0},{a,b,c}]t1=ListPlot[xy,PlotStyle->PointSize[0.02],DisplayFunction->Identity];f[x_] :=27.56+ -0.0574286*x+0.000285714*x^2;t2=Plot[f[x],{x,5,35},AxesOrigin->{5,25},DisplayFunction->Identity];Show[t1,t2, DisplayFunction->$ DisplayFunction]然而得到的结果没有图形(如下):我比照了老师的讲义,改动了“DisplayFunction->Identity”,可是,结果还是一样,没有图形。
最小二乘法数值分析实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析2012 年 4 月 13 日数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形二、方法最小二乘法三、程序M文件: syms x f;xx=input(‘请输入插值节点as [x1,x2...]\n’);ff=input(‘请输入插值_ __________________ ___________________ ___________________ ___________________实验一MATLAB在数值分析中的应用插值与拟合是来源于实际、又广泛应用于实际的两种重要方法随着计算机的不断发展及计算水平的不断提高,它们已在国民生产和科学研究等方面扮演着越来越重要的角色下面对插值中分段线性插值、拟合中的最为重要的最小二乘法拟合加以介绍分段线性插值所谓分段线性插值就是通过插值点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理实现分段线性插值不需编制函数程序,MATLAB自身提供了内部函数interp1其主要用法如下:interp1(x,y,xi) 一维插值◆yi=interp1(x,y,xi)对一组点(x,y) 进行插值,计算插值点xi的函数值x为节点向量值,y为对应的节点函数值如果y为矩阵,则插值对y 的每一列进行,若y 的维数超出x 或xi 的维数,则返回NaN ◆ yi=interp1(y,xi)此格式默认x=1:n ,n为向量y的元素个数值,或等于矩阵y的size(y,1) ◆ yi=interp1(x,y,xi,’method’)method用来指定插值的算法默认为线性算法其值常用的可以是如下的字符串nearest 线性最近项插值linear线性插值spline 三次样条插值贵州师范大学数学与计算机科学学院学生实验报告1. 对函数f(x)?,哪一种曲线拟合较好?为什么?能找出更好的拟合曲线吗?七、总结1、从图像可以看出用lagrange插值函数拟合数据中间拟合的很好,但两边与原函数图象相比波动太大,逼近效果很差,出现所谓的Runge现象2、从图像可以看出用最小二乘法去拟合较少的数据点,曲线拟合比直线拟合得好,高次的会比低次的拟合得好3.一般情形高次插值比低次插值精度高,但是插值次数太高也不一定能提高精度.八、附录1、M文件:function cy=Lagrange(x,y,n,cx)m=length(cx);cy=zeros(1,m);for k=1:n+1t=ones(1,m);for j=1:n+1if j~=kt=t.*(cx-x(j))./(x(k)-x(j));endendcy=cy+y(k).*t ;end>> x=-5::5;>> y=1./(x. +1);>> plot(x,y)>> n=10;>> x0=-5:10/n:5;>> y0=1./(1+x0. );>> cx=-5::5;>> cy=Lagrange(x0,y0,n,cx);>> hold on>> plot(cx,cy)e1 =xxxx大学数值分析实验报告题目:学院:专业:年级:学生姓名:学号:日期:曲线拟合的最小二乘法xxxx学院xxxxxxx xxxx级xxx xxx 2014年12月24日课题八曲线拟合的最小二乘法一、问题的提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘拟合求得拟合曲线在某冶炼过程中,根据统计数据的含碳量与时间关系,试求出含碳量y与时间t的拟合曲线0 5 10 15 20 25 30 35 40 45 50 55t(分)y(x10?4)0 二、要求1、用最小二乘法进行曲线的拟合;2、近似表达式为:?(t)?a0?a1t?a2t2?a3t3;?(t),3、打印出拟合函数:并打印出?(tj)与y(tj)的误差,其中j?1,2,3,?,12;4、另外选取一个近似表达式,尝试拟合效果的比较;5、*绘制出拟合曲线图;三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线性方程组;3、探索拟合函数的选择与拟合进精度间的关系;四、MATLAB2011a简介及算法介绍MATLAB2011a本实验是基于MATLAB2011a软件平台进行程序设计MATLAB2011a是一款将数据结构、程序特性以及图形用户界面完美地结合在一起的一款强大的软件MATLAB的核心是矩阵和数组,在MATLAB2011a中,所有的数据都是以矩阵或数组的形式来表示和存储的MATLAB2011a提供了常用的矩阵代数运算功能,同时还提供了非常广泛的、灵活的数组运算功能,用于数据集的处理MATLAB的编程特性与其他高级语言类似,同时它还可以与其他语言(如Fortran和C语言)混合编程,进一步扩展了自身的功能这次作业课题,主要采用了MATLAB语言进行程序的编写,误差计算,拟合函数的输出,以及拟合曲线(1)和拟合曲线(2)与原离散数据点在一个图形界面中的现实的显示最小二乘拟合法在函数的最佳平方逼近中f(x)?C[a,b],如果f(x)只在一组离散的点集?xi,i?0,1,2,3,?,m?上给出,这就是科学实验中经常见到的实验数据?(xi,yi),i?0,1,2,3,?m?的曲线拟合,这里yi?f(xi)(i?0,1,2,3,?,m),要求一个函数y?S*(x)与所给数据?(xi,yi),i?0,1,2,3,?m?拟合若记误差?i?S(xi)?yi(i?0,1,2,3,?,m),??(?0,?1,?2,?3,??m)T,设?0(x),?1(x),?,?n(x)是*?C[a,b]上线性无关的函数族,在??span??0(x),?1(x),?,?n(x)?中找一个函数S*(x)使误差平方和??这里22[S(xi)?yi]?min?[S*(xi)?yi]2, ()2i*2i?0i?0s(x)??i?0mmmS(x)?a0?0(x)?a1?1(x)?a2?2(x )?a3?3(x)??an?n(x) (n?m). () 这就是一般的最小二乘逼近,用几何语言说,就称为曲线拟合的最小二乘法. 用最小二乘法拟合曲线时,首先要确定S(x)的形式,这不是单纯的数学问题,还与所研究问题的运动规律及所得到的观测数据(xi,yi)有关;通常要从问题的运动规律或给定的数据描图,确定S(x)的形式,并通过实际计算选出最好的结果——这点将从下面的例题得到说明. S(x)的一般表达式为()式表示的线性形式.若?k(x)是k次多项式,S(x)就是n次多项式为了使问题的提法更有一般性,通常在最小二乘法中都考虑加权平方和2?2??22(xi)[S*(xi)?yi]2. ()i?0m 这里?(x)?0 (i?0,1,2,3,?m)是[a,b]上的权函数它表示不同的点(xi,yi)处的数据比重不同,列如:?(xi)可以表示点(xi,yi)处的重复观测次数用最小二乘法拟合曲线的问题,就是在形如()式的S(x)中求一函数y?S(x),使()式取得最小值它转化为求取多元函数*I(a0,a1,?an)(xi)[?aj?(xi)?f(xi)]2i?0j?0mn***的极小点(a0,a1,?,an)的问题这与多元函数求极值的必要条件的问题一样,则有:mn?I?2??(xi)[?aj?(xi)?f(xi)]?k(xi)?0k?0,1,2,?,n. ?aki?0j?0若记(?j,?k)(xi)?j(xi)?k(xi),()i?0mm(f,?k)(xi)f(xi)?k(xi)?dk,k?0,1,2,3?,n, ()i?0上式可以改写为:?(?j?0mk,?j)aj?dk, k?0,1,2,3?,n, ()线性方程组()称为法方程,可以将其写成:Ga?d其中??Ta?(a0,a1,?a2),d?(d0,d1,?dn)T,(0,0)(0,1)(,)(,)11G10(n,0)(n, 1)(0,n)(n,1)() (?n,?n)?五、课题分析拟合近似表达式:?(t)?a0?a1t?a2t2?a3t3的最高次数为三次,我们知道当拟合多项式的最高次数n?3时,与连续的情形一样,在求解法方程Ga?d的过程中,会出现系数矩阵(格拉姆矩阵)G为病态的问题但是如果?0(x),?1(x),?2(x),?,?n(x)是关于点集?xi?(i?0,1,2,?,m)带权?(xi)(i?0,1,2,?,m)正交的函数族,即:0,jk,()(?j,?k)(xi)?j(xi)?k(xi)??i?0?Ak?0,j?k,m则法方程的解为:(f,?k)?(?k,?k)*ak(x)f(x)?iii?0mk(xi),k?0,1,2,?,n ()??(x)?ii?0m2k(xi)这样就能避免求解格拉姆矩阵,也不会在求解线性方程组是就不会出现病态问题现在我们需要根据给定的节点x0,x1,?xm及权函数?(xi)?0,造出带权?(xi)正交的多项式?Pn(x)?.注意n?m,用递推公式表示Pk(x),即:?P0(x)?1,?() ?P1(x)?(x??1)P0(x),?P(x)?(x??)P(x) P(x),k?1,2,3,?,n?1.k?1kkk?1?k?1这里Pk(x)是首项系数为1的k次多项式,根据Pk(x)的正交性,得:m??(xi)xiPk2(xi)??(xPk(x),Pk(x))??k?1?i?0?m?(Pk(x),Pk(x))2?(x)P(x)?iki?i?0??(xPk,Pk),k?0,1,2,3,?,n?1, () ??(P,P)kk?m??(xi)Pk2(xi)??(Pk,Pk)i?0?,k?1,2,3 ,?,n??k(Pk?1,Pk?1)?(xi)Pk2?1(xi)??i?0?用正交多项式?Pk(x)?的线性组合做最小二乘曲线拟合,只要根据公式()和()逐步求Pk(x)得同时,相应计算出系数(f,Pk)*ak??(Pk,Pk)??(x)f(x)P(x)iikii?0m??(x)Pii?0m, k?0,1,2,?,n,()2k(xi)*并逐步把ak,Pk(x)累加到S(x)中去,最后就会得到所求的拟合曲线。
《数字信号处理及算法实现实验报告》
实验名称:信号发生器的实现
姓名:杨叶康
学号:1501214462
日期:2015年10月8日
最小二乘法的应用
一、实验目的
熟悉MATLAB的使用方法,熟练掌握最小二乘法的原理
二、实验原理和方法
最小二乘法的基本思想是找到一条直线,使所有的点到直线的距离之和最小。
我们利用MATLAB中的程序设计语言来表达最小二乘法,从而得到拟合曲线。
三、实验内容
程序源代码见“zuixiaoerchengfade yingyong.m”文件。
得到的关系式为y=0.4851x+0.1007
拟合曲线截图:
四、实验分析
本实验使用MATLAB,在M文件中编写程序,通过输入x和y 的采样值,利用最小二乘法得到拟合曲线。